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Chapter 20

Graphical Models

We have spent a lot of time looking at ways of figuring out how one variable (or set
of variables) depends on another variable (or set of variables) — this is the core idea in
regression and in conditional density estimation. We have also looked at how to esti-
mate the joint distribution of variables, both with kernel density estimation and with
models like factor and mixture models. The later two show an example of how to
get the joint distribution by combining a conditional distribution (observables given
factors; mixture components) with a marginal distribution (Gaussian distribution of
factors; the component weights). When dealing with complex sets of dependent vari-
ables, it would be nice to have a general way of composing conditional distributions
together to get joint distributions, and especially nice if this gave us a way of reason-
ing about what we could ignore, of seeing which variables are irrelevant to which
other variables. This is what graphical models let us do.

20.1 Conditional Independence and Factor Models
The easiest way into this may be to start with the diagrams we drew for factor anal-
ysis. There, we had observables and we had factors, and each observable depended
on, or loaded on, some of the factors. We drew a diagram where we had nodes,
standing for the variables, and arrows running from the factors to the observables
which depended on them. In the factor model, all the observables were conditionally
independent of each other, given all the factors:

p(X1,X2, . . .Xp |F1, F2, . . . Fq ) =
pY

i=1
p(Xi |F1, . . . Fq ) (20.1)

But in fact observables are also independent of the factors they do not load on, so
this is still too complicated. Let’s write loads(i ) for the set of factors on which the
observable Xi loads. Then

p(X1,X2, . . .Xp |F1, F2, . . . Fq ) =
pY

i=1
p(Xi |Floads(i )) (20.2)
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Figure 20.1: Illustration of a typical model with two latent factors (F1 and F2, in
circles) and four observables (X1 through X4).

Consider Figure 20.1. The conditional distribution of observables given factors
is

p(X1,X2,X3,X4|F1, F2) = p(X1|F1, F2)p(X2|F1, F2)p(X3|F1)p(X4|F 2) (20.3)

X1 loads on F1 and F2, so it is independent of everything else, given those two vari-
ables. X1 is unconditionally dependent on X2, because they load on common factors,
F1 and F2; and X1 and X3 are also dependent, because they both load on F1. In fact, X1
and X2 are still dependent given F1, because X2 still gives information about F2. But
X1 and X3 are independent given F1, because they have no other factors in common.
Finally, X3 and X4 are unconditionally independent because they have no factors in
common. But they become dependent given X1, which provides information about
both the common factors.

None of these assertions rely on the detailed assumptions of the factor model,
like Gaussian distributions for the factors, or linear dependence between factors and
observables. What they rely on is that Xi is independent of everything else, given the
factors it loads on. The idea of graphical models is to generalize this, by focusing on
relations of direct dependence, and the conditional independence relations implied
by them.

20.2 Directed Acyclic Graph (DAG) Models
We have a collection of variables, which to be generic I’ll write X1,X2, . . .Xp . These
may be discrete, continuous, or even vectors; it doesn’t matter. We represent these
visually as nodes in a graph. There are arrows connecting some of these nodes. If an
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arrow runs from Xi to Xj , then Xi is a parent of Xj . This is, as the name “parent”
suggests, an anti-symmetric relationship, i.e., Xj cannot also be the parent of Xi .
This is why we use an arrow, and why the graph is directed1. We write the set of
all parents of Xj as parents( j ); this generalizes the notion of the factors which an
observable loads on to. The joint distribution “decomposes according to the graph”:

p(X1,X2, . . .Xp ) =
pY

i=1
p(Xi |Xparents(i )) (20.4)

If Xi has no parents, because it has no incoming arrows, take p(Xi |Xparents(i )) just to
be the marginal distribution p(Xi ). Such variables are called exogenous; the others,
with parents, are endogenous. An unfortunate situation could arise where X1 is the
parent of X2, which is the parent of X3, which is the parent of X1. Perhaps, under
some circumstances, we could make sense of this and actually calculate with Eq. 20.4,
but the general practice is to rule it out by assuming the graph is acyclic, i.e., that it
has no cycles, i.e., that we cannot, by following a series of arrows in the graph, go
from one node to other nodes and ultimately back to our starting point. Altogether
we say that we have a directed acyclic graph, or DAG, which represents the direct
dependencies between variables.2

What good is this? The primary virtue is that if we are dealing with a DAG model,
the graph tells us all the dependencies we need to know; those are the conditional
distributions of variables on their parents, appearing in the product on the right hand
side of Eq. 20.4. (This includes the distribution of the exogeneous variables.) This fact
has two powerful sets of implications, for probabilistic reasoning and for statistical
inference.

Let’s take inference first, because it’s more obvious: all that we have to estimate
are the conditional distributions p(Xi |Xparents(i )). We do not have to estimate the
distribution of Xi given all of the other variables, unless of course they are all parents
of Xi . Since estimating distributions, or even just regressions, conditional on many
variables is hard, it is extremely helpful to be able to read off from the graph which
variables we can ignore. Indeed, if the graph tells us that Xi is exogeneous, we don’t
have to estimate it conditional on anything, we just have to estimate its marginal
distribution.

20.2.1 Conditional Independence and the Markov Property
The probabilistic implication of Eq. 20.4 is perhaps even more important, and that
has to do with conditional independence. Pick any two variables Xi and Xj , where
Xj is not a parent of Xi . Consider the distribution of Xi conditional on its parents
and Xj . There are two possibilities. (i) Xj is not a descendant of Xi . Then we can
see that Xi and Xj are conditionally independent. This is true no matter what the
actual conditional distribution functions involved are; it’s just implied by the joint

1See Appendix F for a brief review of the ideas and jargon of graph theory.
2See §20.4 for remarks on undirected graphical models, and graphs with cycles.
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X1 X2 X3 X4

Figure 20.2: DAG for a discrete-time Markov process. At each time t , Xt is the child
of Xt�1 and the parent of Xt+1.

distribution respecting the graph. (ii) Alternatively, Xj is a descendant of Xi . Then in
general they are not independent, even conditional on the parents of Xi . So the graph
implies that certain conditional independence relations will hold, but that others in
general will not hold.

As you know from your probability courses, a sequence of random variables
X1,X2,X3, . . . forms a Markov process3 when “the past is independent of the future
given the present”: that is,

Xt+1 |= (Xt�1,Xt�2, . . .X1)|Xt (20.5)

from which it follows that

(Xt+1,Xt+2,Xt+3, . . .) |= (Xt�1,Xt�2, . . .X1)|Xt (20.6)

which is called the Markov property. DAG models have a similar property: if we
take any collection of nodes I , it is independent of its non-descendants, given its
parents:

XI |= Xnon�descendants(I )|Xparents(I ) (20.7)

This is the directed graph Markov property. The ordinary Markov property is in
act a special case of this, when the graph looks like Figure 20.24.

20.3 Examples of DAG Models and Their Uses
Factor models are examples of DAG models (as we’ve seen). So are mixture models
(Figure 20.3) and Markov chains (see above). DAG models are considerably more
flexible, however, and can combine observed and unobserved variables in many ways.

Consider, for instance, Figure 20.4. Here there are two exogeneous variables,
labeled “Smoking” and “Asbestos”. Everything else is endogenous. Notice that “Yel-
low teeth” is a child of “Smoking” alone. This does not mean that (in the model)

3After the Russian mathematician A. A. Markov, who introduced the theory of Markov processes in
the course of a mathematical dispute with his arch-nemesis, to show that probability and statistics could
apply to dependent events, and hence that Christianity was not necessarily true (I am not making this up:
Basharin et al., 2004).

4To see this, take the “future” nodes, indexed by t + 1 and up, as the set I . Their parent consists just of
Xt , and all their non-descendants are the even earlier nodes at times t � 1, t � 2, etc.
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Figure 20.3: DAG for a mixture model. The latent class Z is exogenous, and the
parent of the observable random vector X . (If the components of X are conditionally
independent given Z , they could be represented as separate boxes on the lower level.

whether someone’s teeth get yellowed (and, if so, how much) is a function of smok-
ing alone; it means that whatever other influences go into that are independent of
the rest of the model, and so unsystematic that we can think about those influences,
taken together, as noise.

Continuing, the idea is that how much someone smokes influences how yellow
their teeth become, and also how much tar builds up in their lungs. Tar in the lungs,
in turn, leads to cancer, as does by exposure to asbestos.

Now notice that, in this model, teeth-yellowing will be unconditionally depen-
dent on, i.e., associated with, the level of tar in the lungs, because they share a com-
mon parent, namely smoking. Yellow teeth and tarry lungs will however be condi-
tionally independent given that parent, so if we control for smoking we should not
be able to predict the state of someone’s teeth from the state of their lungs or vice
versa.

On the other hand, smoking and exposure to asbestos are independent, at least
in this model, as they are both exogenous5. Conditional on whether someone has
cancer, however, smoking and asbestos will become dependent.

To understand the logic of this, suppose (what is in fact true) that both how much
someone smokes and how much they are exposed to asbestos raises the risk of can-
cer. Conditional on not having cancer, then, one was probably exposed to little of
either tobacco smoke or asbestos. Conditional on both not having cancer and having

5If we had two variables which in some physical sense were exogenous but dependent on each other,
we would represent them in a DAG model by either a single vector-valued random variable (which would
get only one node), or as children of a latent unobserved variable, which was truly exogenous.
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Smoking

Yellow teeth Tar in lungs
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Figure 20.4: DAG model indicating (hypothetical) relationships between smoking,
asbestos, cancer, and covariates.
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been exposed to a high level of asbestos, one probably was exposed to an unusually
low level of tobacco smoke. Vice versa, no cancer plus high levels of tobacco tend to
imply especially little exposure to asbestos. We thus have created a negative associa-
tion between smoking and asbestos by conditioning on cancer. Naively, a regression
where we “controlled for” cancer would in fact tell us that exposure to asbestos keeps
tar from building up in the lungs, prevents smoking, and whitens teeth.

More generally, conditioning on a third variable can create dependence between
otherwise independent variables, when what we are conditioning on is a common
descendant of the variables in question.6 This conditional dependence is not some
kind of finite-sample artifact or error — it really is there in the joint probability dis-
tribution. If all we care about is prediction, then it is perfectly legitimate to use it. In
the world of Figure 20.4, it really is true that you can predict the color of someone’s
teeth from whether they have cancer and how much asbestos they’ve been exposed
to, so if that’s what you want to predict7, why not use that information? But if you
want to do more than just make predictions without understanding, if you want to
understand the structure tying together these variables, if you want to do science, if
you don’t want to go around telling yourself that asbestos whitens teeth, you really
do need to know the graph.8

20.3.1 Missing Variables
Suppose that we do cannot observe one of the variables, such as the quantity of tar
in the lungs, but we somehow know all of the conditional distributions required by
the graph. (Tar build-up in the lungs might indeed be hard to measure for living
people.) Because we have a joint distribution for all the variables, we could estimate
the conditional distribution of one of them given the rest, using the definition of
conditional probability and of integration:

p(Xi |X1,X2,Xi�1,Xi+1,Xp ) =
p(X1,X2,Xi�1,Xi ,Xi+1,Xp )R

p(X1,X2,Xi�1, xi ,Xi+1,Xp )d xi
(20.8)

We could in principle do this for any joint distribution. When the joint distribution
comes from a DAG model, however, we can simplify this considerably. Recall that,
from Eq. 20.7, Xi conditioning on its parents makes Xi independent of all its non-
descendants. We can therefore drop from the conditioning everything which isn’t
either a parent of Xi , or a descendant. In fact, it’s not hard to see that given the
children of Xi , its more remote descendants are also redundant. Actually doing the
calculation then boils down to a version of the EM algorithm.9

6Economists, psychologists, and other non-statisticians often repeat the advice that if you want to
know the effect of X on Y , you should not condition on Z when Z is endogenous. This is bit of folklore
is an incorrect relic of the days of ignorance, though it shows a sound indistinct groping towards a truth
those people were unable to grasp. If we want to know whether asbestos is associated with tar in the lungs,
conditioning on the yellowness of teeth is fine, even though that is an endogenous variable.

7Maybe you want to guess who’d be interested in buying whitening toothpaste.
8We return to this example in §21.2.2.
9Graphical models, especially directed ones, are often called “Bayes nets” or “Bayesian networks”, be-

cause this equation is, or can be seen as, a version of Bayes’s rule. Since of course it follows directly from
the definition of conditional probability, there is really nothing Bayesian about them.
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If we observe only a subset of the other variables, we can still use the DAG to de-
termine which ones actually matter to estimating Xi , and which ones are superfluous.
The calculations then however become much more intricate.10

20.4 Non-DAG Graphical Models: Undirected Graphs
and Directed Graphs with Cycles

This section is optional, as, for various reasons, we will not use these models in this
course.

20.4.1 Undirected Graphs
There is a lot of work on probability models which are based on undirected graphs, in
which the relationship between random variables linked by edges is completely sym-
metric, unlike the case of DAGs11. Since the relationship is symmetric, the preferred
metaphor is not “parent and child”, but “neighbors”. The models are sometimes
called Markov networks or Markov random fields, but since DAG models have a
Markov property of their own, this is not a happy choice of name, and I’ll just call
them “undirected graphical models”.

The key Markov property for undirected graphical models is that any set of nodes
I is independent of the rest of the graph given its neighbors:

XI |= Xnon�neighbors(I )|Xneighbors(I ) (20.9)

This corresponds to a factorization of the joint distribution, but a more complex one
than that of Eq. 20.4, because a symmetric neighbor-of relation gives us no way of
ordering the variables, and conditioning the later ones on the earlier ones. The trick
turns out to go as follows. First, as a bit of graph theory, a clique is a set of nodes
which are all neighbors of each other, and which cannot be expanded without los-
ing that property. We write the collection of all cliques in a graph G as cliques(G).
Second, we introduce potential functions  c which take clique configurations and
return non-negative numbers. Third, we say that a joint distribution is a Gibbs dis-
tribution12 when

p(X1,X2, . . .Xp )/
Y

c2cliques(G)
 c (Xi2c ) (20.10)

That is, the joint distribution is a product of factors, one factor for each clique. Fre-
quently, one introduces what are called potential functions, Uc = log c , and then
one has

p(X1,X2, . . .Xp )/ e�
P

c2cliques(G)Ui (Xi2c ) (20.11)

10There is an extensive discussion of relevant methods in Jordan (1998).
11I am told that this is more like the idea of causation in Buddhism, as something like “co-dependent

origination”, than the asymmetric one which Europe and the Islamic world inherited from the Greeks
(especially Aristotle), but you would really have to ask a philosopher about that.

12After the American physicist and chemist J. W. Gibbs, who introduced such distributions as part
of statistical mechanics, the theory of the large-scale patterns produced by huge numbers of small-scale
interactions.
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The key correspondence is what is sometimes called the Gibbs-Markov theorem:
a distribution is a Gibbs distribution with respect to a graph G if, and only if, it obeys
the Markov property with neighbors defined according to G.13.

In many practical situations, one combines the assumption of an undirected graph-
ical model with the further assumption that the joint distribution of all the random
variables is a multivariate Gaussian, giving a Gaussian graphical model. An im-
portant consequence of this assumption is that the graph can be “read off” from the
inverse of the covariance matrix ⌃, sometimes called the precision matrix. Specifi-
cally, there is an edge linking Xi to Xj if and only if (⌃�1)i j 6= 0. (See Lauritzen (1996)
for an extensive discussion.) These ideas sometimes still work for non-Gaussian dis-
tributions, when there is a natural way of transforming them to be Gaussian (Liu
et al., 2009), though it is unclear just how far that goes.

20.4.1.0.1 Further reading Markov random fields where the graph is a regular
lattice are used extensively in spatial statistics. Good introductory-level treatments
are provided by Kindermann and Snell (1980) (the full text of which is free online),
and by Guttorp (1995), which also covers the associated statistical methods. Winkler
(1995) is also good, but presumes more background in statistical theory. (I would
recommend reading it after Guttorp.) Guyon (1995) is at a similar level of sophistica-
tion to Winkler, but, unlike the previous references, emphasizes the situations where
the graph is not a regular lattice. Griffeath (1976), while presuming more probability
theory on the part of the reader, is extremely clear and insightful, including what is
simultaneously one of the deepest and most transparent proofs of the Gibbs-Markov
theorem. Lauritzen (1996) is a mathematically rigorous treatment of graphical mod-
els from the viewpoint of theoretical statistics, covering both the directed and undi-
rected cases.

If you are curious about Gibbs distributions in, so to speak, their natural habitat,
the book by Sethna (2006), also free online, is the best introduction to statistical me-
chanics I have seen, and presumes very little knowledge of actual physics on the part
of the reader. Honerkamp (2002) is less friendly, but tries harder to make connec-
tions to statistics. If you already know what an exponential family is, then Eq. 20.11
is probably extremely suggestive, and you should read Mandelbrot (1962).

20.4.2 Directed but Cyclic Graphs
Much less work has been done on directed graphs with cycles. It is very hard to give
these a causal interpretation, in the fashion described in the next chapter. Feedback
processes are of course very common in nature and technology, and one might think

13This theorem was proved, in slightly different versions, under slightly different conditions, and by
very different methods, more or less simultaneously by (alphabetically) Dobrushin, Griffeath, Grimmett,
and Hammersley and Clifford, and almost proven by Ruelle. In the statistics literature, it has come
to be called the “Hammersley-Clifford” theorem, for no particularly good reason. In my opinion, the
clearest and most interesting version of the theorem is that of Griffeath (1976), an elementary exposi-
tion of which is given by Pollard (http://www.stat.yale.edu/~pollard/Courses/251.spring04/
Handouts/Hammersley-Clifford.pdf). (Of course, Griffeath was one of my Ph.D. supervisors, so dis-
count accordingly.) Calling it the “Gibbs-Markov theorem” says more about the content, and is fairer to
all concerned.
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Figure 20.5: Directed but cyclic graphical model of a feedback loop. Signs (+, � on
arrows are “guides to the mind”. Cf. Figure 20.6.

to represent these as cycles in a graph. A model of a thermostat, for instance, might
have variables for the set-point temperature, the temperature outside, how much the
furnace runs, and the actual temperature inside, with a cycle between the latter two
(Figure 20.5).

Thinking in this way is however simply sloppy. It always takes some time to tra-
verse a feedback loop, and so the cycle really “unrolls” into an acyclic graph link-
ing similar variables at different times (Figure 20.6). Sometimes14, it is clear that
when people draw a diagram like Figure 20.5, the incoming arrows really refer to
the change, or rate of change, of the variable in question, so it is merely a visual
short-hand for something like Figure 20.6.

Directed graphs with cycles are thus primarily useful when measurements are so
slow or otherwise imprecise that feedback loops cannot be unrolled into the actual
dynamical processes which implement them, and one is forced to hope that one can
reason about equilibria instead15. If you insist on dealing with cyclic directed graphi-
cal models, see Richardson (1996); Lacerda et al. (2008) and references therein.

20.5 Further Reading
The paper collection Jordan (1998) is actually extremely good, unlike most collec-
tions of edited papers; Jordan and Sejnowski (2001) is also useful. Lauritzen (1996)
is thorough but more mathematically demanding. The books by Spirtes et al. (1993,
2001) and by Pearl (1988, 2000, 2009b) are classics, especially for their treatment of
causality, of which much more soon. Glymour (2001) discusses applications to psy-
chology.

While I have presented DAG models as an outgrowth of factor analysis, their
historical ancestry is actually closer to the “path analysis” models introduced by the
great mathematical biologist Sewall Wright in the 1920s to analyze processes of de-
velopment and genetics. These proved extremely influential in psychology. Loehlin
(1992) is user-friendly, though aimed at psychologists with less mathematical sophis-
tication than students taking this course. Li (1975), while older, is very enthusiastic
and has many interesting applications.

14As in Puccia and Levins (1985), and the LoopAnalyst package based on it (Dinno, 2009).
15Economists are fond of doing so, generally without providing any rationale, based in economic theory,

for supposing that equilibrium is a good approximation.
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Set point
on thermostat

Furnace
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Furnace
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Figure 20.6: Directed, acyclic graph for the situation in Figure 20.5, taking into ac-
count the fact that it takes time to traverse a feedback loop. One should imagine this
repeating to times t + 2, t + 3, etc., and extending backwards to times t � 1, t � 2,
etc., as well. Notice that there are no longer any cycles.
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