17:54 Tuesday 30 April, 2013

Chapter 25

Time Series

So far, we have assumed that all data points are pretty much independent of each
other. In the chapters on regression, we assumed that each Y; was independent of
every other, given its X;, and we often assumed that the X; were themselves indepen-
dent. In the chapters on multivariate distributions and even on causal inference, we
allowed for arbitrarily complicated dependence between the variables, but each data-
point was assumed to be generated independently. We will now relax this assumption,

and see what sense we can make of dependent data.

25.1 Time Series, What They Are

The simplest form of dependent data are time series, which are just what they sound
like: a series of values recorded over time. The most common version of this, in
statistical applications, is to have measurements of a variable or variables X at equally-
spaced time-points starting from ¢, written say X,, X, ,, X, ,,..., or X(¢),X(t +
h),X(t +2h),.... Here h, the amount of time between observations, is called the
“sampling interval”, and 1/5 is the “sampling frequency” or “sampling rate”.

Figure 25.1 shows two fairly typical time series. One of them is actual data (the
number of lynxes trapped each year in a particular region of Canada); the other is
the output of a purely artificial model. (Without the labels, it might not be obvious
which one was which.) The basic idea of all of time series analysis is one which we’re
already familiar with from the rest of statistics: we regard the actual time series we see
as one realization of some underlying, partially-random (“stochastic”) process, which
generated the data. We use the data to make guesses (“inferences”) about the process,
and want to make reliable guesses while being clear about the uncertainty involved.
The complication is that each observation is dependent on all the other observations;
in fact it’s usually this dependence that we want to draw inferences about.

25.1.0.0.2 Other kinds of time series One sometimes encounters irregularly-
sampled time series, X(t,),X(t,),..., where t; —¢t,_; # t;,; — t;. This is mostly
an annoyance, unless the observation times are somehow dependent on the values.
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data(lynx); plot(lynx)

Figure 25.1: Left: annual number of trapped lynxes in the Mackenzie River region of
Canada. Right: a toy dynamical model. (See code online for the toy.)

Continuously-observed processes are rarer — especially now that digital sampling has
replaced analog measurement in so many applications. (It is more common to model
the process as evolving continuously in time, but observe it at discrete times.) We
skip both of these in the interest of space.

Regular, irregular or continuous time series all record the same variable at every
moment of time. An alternative is to just record the sequence of times at which some
event happened; this is called a “point process”. More refined data might record the
time of each event and its type — a “marked point process”. Point processes include
very important kinds of data (e.g., earthquakes), but they need special techniques,
and we’ll skip them.

25.1.0.0.3 Notation For a regularly-sampled time series, it’s convenient not to
have to keep writing the actual time, but just the position in the series, as X, X,,.. .,

or X(1),X(2),.... This leads to a useful short-hand, that Xl./ =(Xp Xig- - X X)),

a whole block of time; some people write X, ; with the same meaning.

25.2 Stationarity

In our old IID world, the distribution of each observation is the same as the distribu-
tion of every other data point. It would be nice to have something like this for time
series. The property is called stationarity, which doesn’t mean that the time series
never changes, but that its distribution doesn’t.

More precisely, a time series is strictly stationary or strongly stationary when
Xlk and Xt“rk_1 have the same distribution, for all £ and ¢ — the distribution of
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477 25.2. STATIONARITY

blocks of length & is time-invariant. Again, this doesn’t mean that every block of
length % has the same value, just that it has the same distribution of values.

If there is strong or strict stationarity, there should be weak or loose (or wide-
sense) stationarity, and there is. All it requires is that E[X;] = E[X, ], and that
Cov [X},X, ] =Cov [X,,X, ;_;]. (Notice that it’s not dealing with whole blocks
of time any more, just single time-points.) Clearly (exercise!), strong stationarity
implies weak stationarity, but not, in general, the other way around, hence the names.
It may not surprise you to learn that strong and weak stationarity coincide when X,
is a Gaussian process, but not,in general, otherwise.

You should convince yourself that an IID sequence is strongly stationary.

25.2.1 Autocorrelation

Time series are serially dependent: X, is in general dependent on all earlier values
in time, and on all later ones. Typically, however, there is decay of dependence
(sometimes called decay of correlations): X, and X, , become more and more nearly
independent as » — co. The oldest way of measuring this is the autocovariance,

y(h)=Cov [X,,X, ;] (25.1)

which is well-defined just when the process is weakly stationary. We could equally
well use the autocorrelation,

(h)= Cov [Xl,XtJrh] _ y(h)
P Var [X;] y(0)

(25.2)

again using stationarity to simplify the denominator.

As I said, for most time series y(h) — 0 as b grows. Of course, y(h) could be
exactly zero while X, and X, are strongly dependent. Figure 25.2 shows the auto-
correlation functions (ACFs) of the lynx data and the simulation model; the correla-
tion for the latter is basically never distinguishable from zero, which doesn’t accord
at all with the visual impression of the series. Indeed, we can confirm that some-
thing is going on the series by the simple device of plotting X, , | against X, (Figure
25.3). More general measures of dependence would include looking at the Spearman
rank-correlation of X, and X, ,, or quantities like mutual information.

Autocorrelation is important for four reasons, however. First, because it is the
oldest measure of serial dependence, it has a “large installed base”: everybody knows
about it, they use it to communicate, and they’ll ask you about it. Second, in the
rather special case of Gaussian processes, it really does tell us everything we need
to know. Third, in the somewhat less special case of linear prediction, it tells us
everything we need to know. Fourth and finally, it plays an important role in a
crucial theoretical result, which we’ll go over next.
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Figure 25.2: Autocorrelation functions of the lynx data (above) and the simulation
(below). The act function plots the autocorrelation function as an automatic side-
effect; it actually returns the actual value of the autocorrelations, which you can
capture. The 95% confidence interval around zero is computed under Gaussian as-
sumptions which shouldn’t be taken too seriously, unless the sample size is quite
large, but are useful as guides to the eye.
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Figure 25.3: Plots of X, ,; versus X,, for the lynx (above) and the simulation (below).
(See code online.) Note that even though the correlation between successive iterates

is next to zero for the simulation, there is clearly a lot of dependence.
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479 25.2. STATIONARITY

25.2.2 The Ergodic Theorem

With IID data, the ultimate basis of all our statistical inference is the law of large
numbers, which told us that

1 7
;ZXl- —E[X|] (25.3)
=1

For complicated historical reasons, the corresponding result for time series is
called the ergodic theorem!. The most general and powerful versions of it are quite
formidable, and have very subtle proofs, but there is a simple version which gives the
flavor of them all, and is often useful enough.

25.2.2.1 The World’s Simplest Ergodic Theorem
Suppose X, is weakly stationary, and that

0]

S Iy(h) = y(0)r < oo (25.4)

]7:0

(Remember that y(0) = Var [ X, ].) The quantity t is called the correlation time, or
integrated autocorrelation time.

Now consider the average of the first 7z observations,
— 1"
X, ==Y X, (25.5)
n t=1
This time average is a random variable. Its expectation value is

E[X,]= %iE[Xt] =E[X]] (25.6)

!In the late 1800s, the physicist Ludwig Boltzmann needed a word to express the idea that if you took
an isolated system at constant energy and let it run, any one trajectory, continued long enough, would
be representative of the system as a whole. Being a highly-educated nineteenth century German-speaker,
Boltzmann knew far too much ancient Greek, so he called this the “ergodic property”, from ergon “energy,
work” and hodos “way, path”. The name stuck.
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25.2. STATIONARITY 480

because the mean is stationary. What about its variance?

Varl:)_(,,:l = Var [%g)(t] (25.7)
= iz Zn:Vaf [X:]HZn] Z Cov [XZ,XS]} (25.8)
n L =1 t=1 s=t+1
= iz nVar[Xl]-i-ZZn: Zn: }/(s—t):| (25.9)
n L t=1s=t+1
1 i n n
< 5 [m@+230 3] |}’(5—f>|] (25.10)
n L t=1s=t+1
1 i n n
S 3 ”V(°>+ZZZ|7(19)I] (25.11)
L t=1 h=1
1 i n 0o
s 3 ”V(O)HZZIV(MI] (25.12)
L t=1 h=1
ny(0)(1+27)
= T 7 (25.13)
S (25.14)
n

Eq. 25.9 uses stationarity again, and then Eq. 25.13 uses the assumption that the
correlation time T is finite. . .

Since E [X”:I =E[X,], and Var I:X”:I — 0, we have that X,, » E[X], exactly as
in the IID case. (“Time averages converge on expected values.”) In fact, we can say a
bit more. Remember Chebyshev’s inequality: for any random variable Z,

Var[Z]
Pr(|Z—E[Z]]> ) < —— (25.15)
€
* 0)(1+2
Pr (X, —E[X,]]>¢) < LJZFT) (25.16)

ne

which goes to zero as 7 grows for any given .
You may wonder whether the condition that 37° |y(h)| < oo is as weak as pos-

sible. It turns out that it can in fact be weakened to just lim,_,  + 37 y(h)=0, as
indeed the proof above might suggest.

25.2.2.2 Rate of Convergence

If the X, were all IID, or even just uncorrelated, we would have Var [)_( n} =y(0)/n

exactly. Our bound on the variance is larger by a factor of (1+ 27), which reflects
the influence of the correlations. Said another way, we can more or less pretend
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481 25.2. STATIONARITY

that instead of having 7 correlated data points, we have /(14 27) independent data
points, that 7/(1+27) is our effective sample size’

Generally speaking, dependence between observations reduces the effective sam-
ple size, and the stronger the dependence, the greater the reduction. (For an extreme,
consider the situation where X, is randomly drawn, but thereafter X,,; = X,.) In
more complicated situations, finding the effective sample size is itself a tricky under-
taking, but it’s often got this general flavor.

25.2.2.3 Why Ergodicity Matters

The ergodic theorem is important, because it tells us that a single long time series
becomes representative of the whole data-generating process, just the same way that
a large IID sample becomes representative of the whole population or distribution.
We can therefore actually learn about the process from empirical data.

Strictly speaking, we have established that time-averages converge on expectations
only for X, itself, not even for f(X,) where the function f is non-linear. It might be
that £(X,) doesn’t have a finite correlation time even though X, does, or indeed vice
versa. This is annoying; we don’t want to have to go through the analysis of the last
section for every different function we might want to calculate.

When people say that the whole process is ergodic, they roughly speaking mean
that

%if(x;”e—l) —E[f(X})] (25.17)

for any reasonable function f. This is (again very roughly) equivalent to
1 n
—> Pr(Xf €A X" eB) > Pr(X} €A)Pr(X] €B) (25.18)
n t=1

which is a kind of asymptotic independence-on-average’

If our data source is ergodic, then what Eq. 25.17 tells us is that sample averages
of any reasonable function are representative of expectation values, which is what we
need to be in business statistically. This in turn is basically implied by stationarity.*
What does this let us do?

2Some people like to define the correlation time as, in this notation, 1+ 27 for just this reason.

31v’s worth sketching a less rough statement. Instead of working with X,, work with the whole future
trajectory ¥, = (X, X, 1,X,,,-..)- Now the dynamics, the rule which moves us into the future, can be
summed up in a very simple, and deterministic, operation 7: Y,y = TY, = (X, , X, 1, X;43,-..). A
set of trajectories is invariant if it is left unchanged by 7' for every y € 4, there is another y’ in A where
Ty =1y. A process is ergodic if every invariant set either has probability 0 or probability 1. What this
means is that (almost) all trajectories generated by an ergodic process belong to a single invariant set, and
they all wander from every part of that set to every other part — they are metrically transitive. (Because:
no smaller set with any probability is invariant.) Metric transitivity, in turn, is equivalent, assuming
stationarity, to 77! Z?;Ol Pr(Y €A, T'Y € B) > Pr(Y € A)Pr(Y € B). From metric transitivity follows
Birkhoff’s “individual” ergodic theorem, that 7~ Z:’:—g F(T'Y)— E[f(Y)], with probability 1. Since a
function of the trajectory can be a function of a block of length &, we get Eq. 25.17.

*Again, a sketch of a less rough statement. Use Y again for whole trajectories. Every stationary
distribution for Y can be written as a mixture of stationary and ergodic distributions, rather as we wrote
complicated distributions as mixtures of simple Gaussians in Chapter 19. (This is called the “ergodic
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25.3. MARKOV MODELS 482

25.3 Markov Models

For this section, we’ll assume that X, comes from a stationary, ergodic time series.
So for any reasonable function f, the time-average of f(X,) converges on E[f(X,)].
Among the “reasonable” functions are the indicators, so

1 n
=D 1,(X,) - Pr(X, €A) (25.19)
n t=1
Since this also applies to functions of blocks,
_ZlAB X, 11) 2> Pr(X, €A, X, €B) (25.20)

and so on. If we can learn joint and marginal probabilities, and we remember how to
divide, then we can learn conditional probabilities.

It turns out that pretty much any density estimation method which works for
IID data will also work for getting the marginal and conditional distributions of time
series (though, again, the effective sample size depends on how quickly dependence
decays). So if we want to know p(x,), or p(x,,|x,), we can estimate it just as we
learned how to do in Chapter 15.

Now, the conditional pdf p(x, +1|x ) always exists, and we can always estimate
it. But why stop just one step back into the past? Why not look at p(x,|x,,x,_;),
or for that matter p(x,|x’ There are three reasons, in decreasing order of
pragmatism.

t— 999)

e Estimating p(x,,[x/ 4,,) means estimating a thousand-and-one-dimensional
distribution. The curse of dimensionality will crush us.

e Because of the decay of dependence, there shouldn’t be much difference, much
of the time, between p(x, |x; 4,) and p(x,|x} ooo), etc. Even if we could
go very far back into the past, it shouldn’t, usually, change our predictions very
much.

e Sometimes, a finite, short block of the past completely screens off the remote
past.

You will remember the Markov property from your previous probability classes:

X, o ALXX, (25.21)

decomposition” of the process.) We can think of this as first picking an ergodic process according to
some fixed distribution, and then generating Y from that process. Time averages computed along any one
trajectory thus converge according to Eq. 25.17. If we have only a single trajectory, it looks just like a
stationary and ergodic process. If we have multiple trajectories from the same source, each one may be
converging to a different ergodic component. It is common, and only rarely a problem, to assume that the
data source is not only stationary but also ergodic.
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483 25.3. MARKOV MODELS

When the Markov property holds, there is simply no point in looking at p(x, |x,, x,_,),
because it’s got to be just the same as p(x, |x,). If the process isn’t a simple Markov
chain but has a higher-order Markov property,

X, o ALX 7R x (25.22)

—k+1
then we never have to condition on more than the last & steps to learn all that there
is to know. The Markov property means that the current state screens off the future
from the past.

It is always an option to model X, as a Markov process, or a higher-order Markov
process. If it isn’t exactly Markov, if there’s really some dependence between the past
and the future even given the current state, then we’re introducing some bias, but it
can be small, and dominated by the reduced variance of not having to worry about
higher-order dependencies.

25.3.1 Meaning of the Markov Property

The Markov property is a weakening of both being strictly IID and being strictly
deterministic.

That being Markov is weaker than being IID is obvious: an IID sequence satisfies
the Markov property, because everything is independent of everything else no matter
what we condition on.

In a deterministic dynamical system, on the other hand, we have X, ; = g(X,)
for some fixed function g. Iterating this equation, the current state X, fixes the
whole future trajectory X, 1, X, ,,,.... In a Markov chain, we weaken thisto X, , =
g(X,,U,), where the U, are IID noise variables (which we can take to be uniform for
simplicity). The current state of a Markov chain doesn’t fix the exact future trajec-
tory, but it does fix the distribution over trajectories.

The real meaning of the Markov property, then, is about information flow: the
current state is the only channel through which the past can affect the future.
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25.4. AUTOREGRESSIVE MODELS 484

t X

1 g;; ig? lagd lagl lag2 lag3
1823 | 585 871 585 321 269
1824 | 871 1475 871 585 321
1825 | 1475 = 2821 1475 871 585
1826 | 2821 3928 2821 1475 871
1827 | 3928 5943 3928 2821 1475
1828 | 5943 4950 5943 3928 2821
1829 | 4950

Figure 25.4: Turning a time series (here, the beginning of 1ynx) into a regression-
suitable matrix.

design.matrix.from.ts <- function(ts,order) {
n <- length(ts)
x <- ts[(order+1) :n]
for (lag in 1:order) {
x <- cbind(x,ts[(order+1i-lag): (n-lag)])
}
colnames(x) <- c("lag0",paste("lag",l:order,sep=""))
return(as.data.frame(x))

}

Code Example 32: Example code for turning a time series into a design matrix,
suitable for regression.

25.4 Autoregressive Models

Instead of trying to estimate the whole conditional distribution of X,, we can just
look at its conditional expectation. This is a regression problem, but since we are
regressing X, on earlier values of the series, it’s called an autoregression:

E[XIX/7)=x] = r(x]) (25.23)

If we think the process is Markov of order p, then of course there is no point in
conditioning on more than p steps of the past when doing an autoregression. But
even if we don’t think the process is Markov, the same reasons which inclined us
towards Markov approximations also make limited-order autoregressions attractive.

Since this is a regression problem, we can employ all the tools we know for regres-
sion analysis: linear models, kernel regression, spline smoothing, additive models,
etc., mixtures of regressions, etc. Since we are regressing X, on earlier values from
the same series, it is useful to have tools for turning a time series into a regression-style
design matrix (as in Figure 25.4); see Code Example 32.
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485 25.4. AUTOREGRESSIVE MODELS

Suppose p = 1. Then we essentially want to draw regression curves through plots
like those in Figure 25.3. Figure 25.5 shows an example for the artificial series.

25.4.1 Autoregressions with Covariates

Nothing keeps us from adding a variable other than the past of X, to the regression:
E[X, X/ 7] (25.24)
or even another time series:

t t
E I:Xf+1|Xt—/e+1’ Zt—l+1:| (25.25)
These are perfectly well-defined conditional expectations, and quite estimable in prin-
ciple. Of course, adding more variables to a regression means having to estimate
more, so again the curse of dimensionality comes up, but our methods are very much

the same as in the basic regression analyses.

25.4.2 Additive Autoregressions

As before, if we want some of the flexibility of non-parametric smoothing, without
the curse of dimensionality, we can try to approximate the conditional expectation
as an additive function:

P
E [Xt |Xf_‘;:| rag+ > g(X, ) (25.26)
7j=1

25.4.2.0.1 Example: The lynx Let’s try fitting an additive model for the lynx.
Code Example 33 shows some code for doing this. (Most of the work is re-shaping
the time series into a data frame, and then automatically generating the right formula
for gam.) Let’s try out p = 2.

lynx.aar2 <- aar(lynx,2)

This inherits everything we can do with a GAM, so we can do things like plot
the partial response functions (Figure 25.6), plot the fitted values against the actual
(Figure 25.7), etc. To get a sense of how well it can actually extrapolate, Figure 25.8
re-fits the model to just the first 80 data points, and then predicts the remaining 34.

25.4.3 Linear Autoregression

When people talk about autoregressive models, they usually (alas) just mean linear
autoregressions. There is almost never any justification in scientific theory for this
preference, but we can always ask for the best linear approximation to the true au-
toregression, if only because it’s fast to compute and fast to converge.
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plot(lag0 ~ lagl,data=design.matrix.from.ts(y,1),xlab=expression(y[t-1]),
ylab=expression(y[t]) ,pch=16)

abline(1lm(lag0~lagl,data=design.matrix.from.ts(y,1)),col="red")

yaarl <- aar(y,order=1)

points(y[-length(y)],fitted(yaarl),col="blue")

Figure 25.5: Plotting successive values of the artificial time series against each other,
along with the linear regression, and a spline curve (see below for the aar function,
which fits additive autoregressive models; with order=1, it just fits a spline.
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plot(lynx.aar2,pages=1)

Figure 25.6: Partial response functions for the second-order additive autoregression
model of the lynx. Notice that a high count last year predicts a higher count this
year, but a high count two years ago predicts a lower count this year. This is the sort
of alternation which will tend to drive oscillations.
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plot (lynx)
lines(1823:1934,fitted(lynx.aar2),1lty="dashed")

Figure 25.7: Actual time series (solid line) and predicted values (dashed) for the
second-order additive autoregression model of the lynx. The match is quite good,
but of course every one of these points was used to learn the model, so it’s not quite
as impressive as all that. (Also, the occasional prediction of a negative number of
lynxes is less than ideal.)
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lynx.aar2b <- aar(lynx[1:80],2)

out.of.sample <- design.matrix.from.ts(lynx[-(1:78)],2)
lynx.preds <- predict(lynx.aar2b,newdata=out.of.sample)
plot (lynx)
lines(1823:1900,fitted(lynx.aar2b),lty="dashed")
lines(1901:1934,1ynx.preds,col="grey")

Figure 25.8: Out-of-sample forecasting. The same model specification as before is
estimated on the first 80 years of the lynx data, then used to predict the remaining
34 years. Solid black line, data; dashed line, the in-sample prediction on the training
data; grey lines, predictions on the testing data. The RMS errors are 723 lynxes/year
in-sample, 922 lynxes/year out-of-sample.
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aar <- function(ts,order) {
stopifnot (require (mgcv))
fit <- gam(as.formula(auto.formula(order)),
data=design.matrix.from.ts(ts,order))
return(fit)

}

auto.formula <- function(order) {
inputs <- paste("s(lag",l:order,")",sep="",collapse="+")
form <- paste("lag0 ~ ",inputs)
return(form)

}

Code Example 33: Fitting an additive autoregression of arbitrary order to a time
series. See online for comments.

The analysis we did in Chapter 2 of how to find the optimal linear predictor car-
ries over with no change whatsoever. If we want to predict X, as a linear combination

of the last k observations, X, _;,X,_,,...X,_,, then the ideal coefficients 3 are

B= <Var [ th__;] ) ~ Cov [ X, Xz] (25.27)

| i P) and similarly

where Var [X t_p] is the variance-covariance matrix of (X,_,,... X,
Cov [Xt‘__;,X t] is a vector of covariances. Assume stationarity, Var [X, | is constant

in ¢, and so the common factor of the over-all variance goes away, and S could be
written entirely in terms of the correlation function p. Stationarity also lets us esti-
mate these covariances, by taking time-averages.

A huge amount of effort is given over to using linear AR models, which in my
opinion is out of all proportion to their utility — but very reflective of what was
computationally feasible up to about 1980. My experience is that results like Figure
25.9 is pretty typical.

25.4.3.1 “Unit Roots” and Stationary Solutions
Suppose we really believed a first-order linear autoregression,
X, =a+BX, +e, (25.28)

with €, some IID noise sequence. Let’s suppose that the mean is zero for simplicity,
so  =0. Then

w2 = BX APe ey (25.29)
X5 = BX 4L, +Pete, (25.30)

etc. If this is going to be stationary, it’d better be the case that what happened at
time ¢ doesn’t go on to dominate what happens at all later times, but clearly that
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Yt

Yt-1

library(tseries)
yar8 <- arma(y,order=c(8,0))
points(y[-length(y)],fitted(yar8) [-1],col="red")

Figure 25.9: Adding the predictions of an eighth-order linear AR model (red dots)
to Figure 25.5. We will see the arma function in more detail next time; for now,
it’s enough to know that when the second component of its order argument is 0, it
estimates and fits a linear AR model.
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25.4. AUTOREGRESSIVE MODELS 492

will happen if | 8| > 1, whereas if | 3| < 1, eventually all memory of X, (and ¢,) fades
away. The linear AR(1) model in fact can only produce stationary distributions when
|8l < 1.

For higher-order linear AR models, with parameters 3, 5,,...3 » the corre-
sponding condition is that all the roots of the polynomial

)4
> Bz -1 (25.31)
j=1

must be outside the unit circle. When this fails, when there is a “unit root”, the linear
AR model cannot generate a stationary process.

There is a fairly elaborate machinery for testing for unit roots, which is sometimes
also used to test for non-stationarity. It is not clear how much this really matters. A
non-stationary but truly linear AR model can certainly be estimated®; a linear AR
model can be non-stationary even if it has no unit roots®; and if the linear model is
just an approximation to a non-linear one, the unit-root criterion doesn’t apply to
the true model anyway.

25.4.4 Conditional Variance

Having estimated the conditional expectation, we can estimate the conditional vari-

ance Var [Xt |Xtt__;] just as we estimated other conditional variances, in Chapter 7.

25.4.4.0.1 Example: lynx The lynx series seems ripe for fitting conditional vari-
ance functions — presumably when there are a few thousand lynxes, the noise is going
to be larger than when there are only a few hundred.

sq.res <- residuals(lynx.aar2)"2

lynx.condvarl <- gam(sq.res ~ s(lynx[-(1:2)]))

lynx.condvar2 <- gam(sq.res ~ s(lagl)+s(lag2),
data=design.matrix.from.ts(lynx,2))

I have fit two different models for the conditional variance here, just because.
Figure 25.10 shows the data, and the predictions of the second-order additive AR
model, but with just the standard deviation bands corresponding to the first of these
two models; you can try making the analogous plot for 1ynx. condvar2.

25.4.5 Regression with Correlated Noise; Generalized Least Squares

Suppose we have an old-fashioned regression problem

Y, =r(X,)+e, (25.32)

5Because the correlation structure stays the same, even as the means and variances can change. Consider
X,=X,_,+e¢,,withe, IID.
®Start it with X, very far from the expected value.
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plot(lynx,ylim=c(-500,10000))

sdl <- sqrt(fitted(lynx.condvarl))
lines(1823:1934,fitted(lynx.aar2)+2xsdl,col="grey")
lines(1823:1934,fitted(lynx.aar2)-2*sdl,col="grey")
lines(1823:1934,sd1,1ty="dotted")

Figure 25.10: The lynx data (black line), together with the predictions of the additive
autoregression £2 conditional standard deviations. The dotted line shows how the
conditional standard deviation changes over time; notice how it ticks upwards around
the big spikes in population.
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only now the noise terms ¢, are themselves a dependent time series. Ignoring this
dependence, and trying to estimate 7 by minimizing the mean squared error, is very
much like ignoring heteroskedasticity. (In fact, heteroskedastic ¢, are a special case.)
What we saw in Chapter 7 is that ignoring heteroskedasticity doesn’t lead to bias,
but it does mess up our understanding of the uncertainty of our estimates, and is
generally inefficient. The solution was to weight observations, with weights inversely
proportional to the variance of the noise.

With correlated noise, we do something very similar. Suppose we knew the co-
variance function y(h) of the noise. From this , we could construct the variance-
covariance matrix I of the ¢, (since I';; = y (i — /), of course).

We can use this as follows. Say that our guess about the regression function is .
Stacking y;,7,,...7, into a matrix y as usual in regression, and likewise creating m(x),
the Gauss-Markov theorem (Appendix D) tells us that the most efficient estimate is
the solution to the generalized least squares problem,

1
MgLs = argmin —(y - m(x)) T~ (y — m(x)) (25.33)

as opposed to just minimizing the mean-squared error,

1
Moys = argmin — (y — m(x))’ (y — m(x)) (25.34)

Multiplying by the inverse of I" appropriately discounts for observations which are
very noisy, and discounts for correlations between observations introduced by the
noise.

This raises the question of how to get y(b) in the first place. If we knew the true
regression function r, we could use the covariance of Y, — r(X,) across different ¢.
Since we don’t know 7, but have only an estimate 72, we can try alternating between
using a guess at y to estimate 77z, and using 72 to improve our guess at y. We used this
sort of iterative approximation for weighted least squares, and it can work here, too.

7Tf you want to use a linear model for 2, this can be carried through to an explicit modification of the
usual ordinary-least-squares estimate — Exercise 1.
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25.5 Bootstrapping Time Series

The big picture of bootstrapping doesn’t change: simulate a distribution which is
close to the true one, repeat our estimate (or test or whatever) on the simulation, and
then look at the distribution of this statistic over many simulations. The catch is that
the surrogate data from the simulation has to have the same sort of dependence as the
original time series. This means that simple resampling is just wrong (unless the data
are independent), and our simulations will have to be more complicated.

25.5.1 Parametric or Model-Based Bootstrap

Conceptually, the simplest situation is when we fit a full, generative model — some-
thing which we could step through to generate a new time series. If we are confident
in the model specification, then we can bootstrap by, in fact, simulating from the
fitted model. This is the parametric bootstrap we saw in Chapter 6.

25.5.2 Block Bootstraps

Simple resampling won’t work, because it destroys the dependence between succes-
sive values in the time series. There is, however, a clever trick which does work, and

is almost as simple. Take the full time series x” and divide it up into overlapping

blocks of length &, so xf,xf“, ... xZ—k+1‘ Now draw m = n/k of these blocks with

replacement®, and set them down in order. Call the new time series £7.

Within each block, we have preserved all of the dependence between observa-
tions. It’s true that successive observations are now completely independent, which
generally wasn’t true of the original data, so we’re introducing some inaccuracy, but
we’re certainly coming closer than just resampling individual observations (which
would be £ = 1). Moreover, we can make this inaccuracy smaller and smaller by
letting & grow as 7 grows. One can show” that the optimal & = O(n!/%); this gives a
growing number (O(7%?)) of increasingly long blocks, capturing more and more of
the dependence. (We will consider how exactly to pick k in the next chapter.)

The block bootstrap scheme is extremely clever, and has led to a great many vari-
ants. Three in particular are worth mentioning.

1. In the circular block bootstrap (or circular bootstrap), we “wrap the time se-
ries around a circle”, so that it goes x;, x,,. .. X,y 5 X X152y, We then sample
the 7 blocks of length & this gives us, rather than the merely 7 — k& blocks of
the simple block bootstrap. This makes better use of the information we have

about dependence on distances < k.

2. In the block-of-blocks bootstrap, we first divide the series into blocks of length
k,, and then subdivide each of those into sub-blocks of length &, < k,. To
generate a new series, we sample blocks with replacement, and then sample

81f 2 /k isn’t a whole number, round.
9Le., I will not show.
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t X
1821 | 269 lag2 lagl lag0
1822 | 321 269 321 585
1823 | 585 321 585 871
1824 | 871 = 585 871 1475
1825 | 1475 871 1475 2821
1826 | 2821 1475 2821 3928
1827 | 3928 2821 3928 5943
1828 | 5943
t X
1821 | 269
1822 | 321
lag2 lagl lag0 1923 | 585

269 321 585
= g71 1475 2821 = 18241 871

1825 | 1475
585 871 1475 1326 | 2821
1827 | 585
1828 | 871

Figure 25.11: Scheme for block bootstrapping: turn the time series (here, the first
eight years of 1ynx) into blocks of consecutive values; randomly resample enough of
these blocks to get a series as long as the original; then string the blocks together in
order. See rblockboot online for code.

sub-blocks within each block with replacement. This gives a somewhat better
idea of longer-range dependence, though we have to pick two block-lengths.

3. In the stationary bootstrap, the length of each block is random, chosen from
a geometric distribution of mean k. Once we have chosen a sequence of block
lengths, we sample the appropriate blocks with replacement. The advantage
of this is that the ordinary block bootstrap doesn’t quite give us a stationary
time series. (The distribution of ka , is not the same as the distribution of

X:“.) Averaging over the random choices of block lengths, the stationary
bootstrap does. It tends to be slightly slower to converge that the block or
circular bootstrap, but there are some applications where the surrogate data
really needs to be strictly stationary.

25.5.3 Sieve Bootstrap

A compromise between model-based and non-parametric bootstraps is to use a sieve
bootstrap. This also simulates from models, but we don’t really believe in them;
rather, we just want them to be reasonable easy to fit and simulate, yet flexible enough
that they can capture a wide range of processes if we just give them enough capacity.

17:54 Tuesday 30 April, 2013



497 25.5. BOOTSTRAPPING TIME SERIES

6000 7000
|

5000

4000

lynx

3000
|
—
—

2000
|

1000

AR VALP VR VRN ALY JJUJ/

I I I I I I
1820 1840 1860 1880 1900 1920

0
|

Time

plot (lynx)
lines(1821:1934, rblockboot(lynx,4),col="grey")

Figure 25.12: The lynx time series, and one run of resampling it with a block boot-
strap, block length = 4. (See online for the code to rblockboot.)
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We then (slowly) let them get more complicated as we get more data'®. One popular
choice is to use linear AR(p) models, and let p grow with » — but there is nothing
special about linear AR models, other than that they are very easy to fit and simulate
from. Additive autoregressive models, for instance, would often work at least as well.

25.6 Trends and De-Trending

The sad fact is that a lot of important real time series are not even approximately
stationary. For instance, Figure 25.13 shows US national income per person (adjusted
for inflation) over the period from 1952 (when the data begins) until now. It is possible
that this is sample from a stationary process. But in that case, the correlation time is
evidently much longer than 50 years, on the order of centuries, and so the theoretical
stationarity is irrelevant for anyone but a very ambitious quantitative historian.

More sensibly, we should try to treat data like this as a non-stationary time series.
The conventional approach is o try to separate time series like this into a persistent
trend, and stationary fluctuations (or deviations) around the trend,

Y, = X, +Z, (25.35)

series = fluctuations+ trend

Since we could add or subtract a constant to each X, without changing whether they
are stationary, we’ll stipulate that E[X,] =0, s0 E[Y,] =E[Z,]. (In other sit-
uations, the decomposition might be multiplicative instead of additive, etc.) How
might we find such a decomposition?

If we have multiple independent realizations Y, of the same process, say m of
them, and they all have the same trend Z,, then we can try to find the common trend
by averaging the time series:

Z,=E[Y,|~>Y, (25.36)

Multiple time series with the same trend do exist, especially in the experimental sci-
ences. Y; , might be the measurement of some chemical in a reactor at time ¢ in the *h
repetition of the experiment, and then it would make sense to average the Y ; to get
the common Z, trend, the average trajectory of the chemical concentration. One can
tell similar stories about experiments in biology or even psychology, though those
are complicated by the tendency of animals to get tired and to learn'!.

For better or for worse, however, we have only one realization of the post-WWII
US economy, so we can’t average multiple runs of the experiment together. If we
have a theoretical model of the trend, we can try to fit that model. For instance,

10This is where the metaphor of the “sieve” comes in: the idea is that the mesh of the sieve gets finer and
finer, catching more and more subtle features of the data.

"Even if we do have multiple independent experimental runs, it is very important to get them aligned in
time, so that Y; , and Y; , refer to the same point in time relative to the start of the experiment; otherwise,
averaging them is just mush. It can also be important to ensure that the initial state, before the experiment,
is the same for every run.
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gdppc <- read.csv("gdp-pc.csv")
gdppc$y <- gdppc$y*le6
plot(gdppc,log="y",type="1",ylab="GDP per capita")

Figure 25.13: US GDP per capita, constant dollars (consumer price index deflator).
Note logarithmic scale of vertical axis. (The values were initially recorded in the file
in millions of dollars per person per year, hence the correction.)
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some (simple) models of economic growth predict that series like the one in Figure
25.13 should, on average, grow at a steady exponential rate!?. We could then estimate
Z, by fitting a model to Y, of the form B,e”*, or even by doing a linear regression of
logY, on . The fluctuations X, are then taken to be the residuals of this model.

If we only have one time series (no replicates), and we don’t have a good theory
which tells us what the trend should be, we fall back on curve fitting. In other words,
we regress Y, on t, call the fitted values Z,, and call the residuals X,. This is frankly
rests more on hope than on theorems. The hope is that the characteristic time-scale
for the fluctuations X, (say, their correlation time 7) is short compared to the charac-
teristic time-scale for the trend Z,'?. Then if we average Y, over a band-width which
is large compared to 7, but small compared to the scale of Z,, we should get some-
thing which is mostly Z, — there won’t be too much bias from averaging, and the
fluctuations should mostly cancel out.

Once we have the fluctuations, and are reasonably satisfied that they’re stationary,
we can model them like any other stationary time series. Of course, to actually make
predictions, we need to extrapolate the trend, which is a harder business.

25.6.1 Forecasting Trends

The problem with making predictions when there is a substantial trend is that it is
usually hard to know how to continue or extrapolate the trend beyond the last data
point. If we are in the situation where we have multiple runs of the same process,
we can at least extrapolate up to the limits of the different runs. If we have an actual
model which tells us that the trend should follow a certain functional form, and
we’ve estimated that model, we can use it to extrapolate. But if we have found the
trend purely through curve-fitting, we have a problem.

Suppose that we’ve found the trend by spline smoothing, as in Figure 25.16. The
fitted spline model will cheerfully make predictions for the what the trend of GDP
per capita will be in, say, 2252, far outside the data. This will be a simple linear ex-
trapolation, because splines are always linear outside the data range (Chapter 8, p.
178). This is just because of the way splines are set up, not because linear extrapola-
tion is such a good idea. Had we used kernel regression, or any of many other ways
of fitting the curve, we’d get different extrapolations. People in 2252 could look back
and see whether the spline had fit well, or some other curve would have done better.
(But why would they want to?) Right now, if all we have is curve-fitting, we are in a
dubious position even as regards 2013, never mind 2252

12This is not guite what is claimed by Solow (1970), which you should read anyway if this kind of
question is at all interesting to you.

3T am being deliberately vague about what “the characteristic time scale of Z,” means. Intuitively,
it’s the amount of time required for Z, to change substantially. You might think of it as something like
n~! Z;:ll 1/|Z, 1 — Z,|, if you promise not to treat that too seriously. Trying to get an exact statement of
what’s involved in identifying trends requires being very precise, and getting into topics at the intersection
of statistics and functional analysis which are beyond the scope of this class.

Yet again, we hit a basic philosophical obstacle, which is the problem of induction. We have so far
evaded it, by assuming that we’re dealing with IID or a stationary probability distribution; these assump-
tions let us deductively extrapolate from past data to future observations, with more or less confidence.
(For more on this line of thought, see Hacking (2001); Spanos (2011); Gelman and Shalizi (2013).) If we
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gdppc.exp <- 1lm(log(y) ~ year,data=gdppc)
beta0 <- exp(coefficients(gdppc.exp) [1])

beta <- coefficients(gdppc.exp) [2]

curve (betaOxexp (beta*x) ,1ty="dashed" ,add=TRUE)

Figure 25.14: As in Figure 25.13, but with an exponential trend fitted.
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plot(gdppc$year,residuals(gdppc.exp) ,xlab="year",
ylab="logged fluctuation around trend",type="1",lty="dashed")

Figure 25.15: The hopefully-stationary fluctuations around the exponential growth
trend in Figure 25.14. Note that these are log ﬁ, and so unitless.
o€
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gdp.spline <- fitted(gam(y~s(year),data=gdppc))
lines(gdppc$year,gdp.spline,lty="dotted")

Figure 25.16: Figure 25.14, but with the addition of a spline curve for the time trend
(dotted line). This is, perhaps unsurprisingly, not all zhat different from the simple
exponential-growth trend.
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lines(gdppc$year,log(gdppcdy/gdp.spline) ,xlab="year",
ylab="logged fluctuations around trend",lty="dotted")

Figure 25.17: Adding the logged deviations from the spline trend (dotted) to Figure
25.15.
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25.6.2 Seasonal Components

Sometimes we know that time series contain components which repeat, pretty ex-
actly, over regular periods. These are called seasonal components, after the obvious
example of trends which cycle each year with the season. But they could cycle over
months, weeks, days, etc.

The decomposition of the process is thus

Y, =X,+7,+S, (25.37)

where X, handles the stationary fluctuations, Z, the long-term trends, and S, the
repeating seasonal component.

If Z, =0, or equivalently if we have a good estimate of it and can subtract it out,
we can find S, by averaging over multiple cycles of the seasonal trend. Suppose that
we know the period of the cycle is 7', and we can observe m = n/T full cycles. Then

1 m—1
S,x— > Y, r (25.38)
m j=0

This works because, with Z, out of the picture, Y, = X, + §,, and §, is periodic,
S, =S, 7. Averaging over multiple cycles, the stationary fluctuations tend to cancel
out (by the ergodic theorem), but the seasonal component does not.

For this trick to work, we need to know the period. If the true 7' = 355, but we
use T =365 without thinking!®, we can get mush.

We also need to know the over-all trend. Of course, if there are seasonal compo-
nents, we really ought to subtract them out before trying to find Z,. So we have yet
another vicious cycle, or, more optimistically, another case for iterative approxima-
tion.

25.6.3 Detrending by Differencing

Suppose that Y, has a linear time trend:
Y, =B+ Bt+X, (25.39)

with X, stationary. Then if we take the difference between successive values of Y,

the trend goes away:
Y, =Y, =B+X,—-X,_, (25.40)

Since X, is stationary, S+X,—X,_, isalso stationary. Taking differences has removed
the trend.
Ditferencing will not only get rid of linear time trends. Suppose that

Z,=7, +e€, (25.41)

assume a certain form or model for the trend, then again we can deduce future behavior on that basis. But
if we have neither probabilistic nor mechanistic assumptions, we are, to use a technical term, stuck with
induction. Whether there is some principle which might help — perhaps a form of Occam’s Razor (Kelly,
2007)? — is a nice question.

5Exercise: come up with an example of a time series where the periodicity should be 355 days.
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where the “innovations” or “shocks” €, are IID, and that
Y, =27, +X, (25.42)

with X, stationary, and independent of the ¢,. It is easy to check that (i) Z, is not
stationary (Exercise 2), but that (i1) the first difference

Y, =Y, =¢+X,-X,_, (25.43)

is stationary. So differencing can get rid of trends which are built out of the summa-
tion of persistent random shocks.

This gives us another way of making a time series stationary: instead of trying to
model the time trend, take the difference between successive values, and see if that is
stationary. (The diff () function in R does this; see Figure 25.18.) If such “first dif-
ferences” don’t look stationary, take differences among differences, third differences,
etc., until you have something satisfying.

Notice that now we can continue to the trend: once we predict Y, ; —Y,, we add
it on to Y, (which we observed) to get Y, ;.

Differencing is like taking the discrete version of a derivative. It will eventually
get rid of trends if they correspond to curves (e.g., polynomials) with only finitely
many non-zero derivatives. It fails for trends which aren’t like that, like exponentials
or sinusoids, though you can hope that eventually the higher differences are small
enough that they don’t matter much.

25.6.4 Bootstrapping with Trends

All the bootstraps discussed in §25.5 work primarily for stationary time series. (Para-
metric bootstraps are an exception, since we coxld include trends in the model.) If
we have done extensive de-trending, the reasonable thing to do is to use a bootstrap
to generate a series of fluctuations, add it to the estimated trend, and then repeat the
whole analysis on the new, non-stationary surrogate series, including the de-trending.
This works on the same sort of principle as resampling residuals in regressions (§6.4,
especially 6.4.3).

25.7 Further Reading

Shumway and Stoffer (2000) is a good introduction to conventional time series anal-
ysis, covering R practicalities. Lindsey (2004) surveys a broader range of situations in
less depth; it is readable, but opinionated, and I don’t always agree with the opinions.
Fan and Yao (2003) is a deservedly-standard reference on nonparametric time series
models. The theoretical portions would be challenging for most readers of this book,
but the methodology isn’t, and it devotes about the right amount of space (no more
than a quarter of the book) to the usual linear-model theory.

The block bootstrap was introduced by Kiinsch (1989). Davison and Hinkley
(1997, §8.2) has a characteristically-clear treatment of the main flavors of bootstrap
for time series; Lahiri (2003) is a thorough but theoretical. Bithlmann (2002) is also
useful.
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plot(gdppc$year[-1],diff (Log(gdppcdy)) ,type="1",xlab="year",
ylab="differenced log GDP per capita")

Figure 25.18: First differences of log GDP per capita, i.e., the year-to-year growth
rate of GDP per capita.
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The best introduction to stochastic processes I know of, by a very wide mar-
gin, is Grimmett and Stirzaker (1992). However, like most textbooks on stochastic
processes, it says next to nothing about how to use them as models of data. Two ex-
ceptions I can recommend are the old but insightful Bartlett (1955), and the excellent
Guttorp (1995).

The basic ergodic theorem in §25.2.2.1 follows a continuous-time argument in
Frisch (1995). My general treatment of ergodicity is heavily shaped by Gray (1988)
and Shields (1996).

In parallel to the treatment of time series by statisticians, physicists and mathe-
maticians developed their own tradition of time-series analysis (Packard ez al., 1980),
where the basic models are not stochastic processes but deterministic, yet unstable,
dynamical systems. Perhaps the best treatment of this are Abarbanel (1996); Kantz
and Schreiber (2004). There are in fact very deep connections between this approach
and the question of why probability theory works in the first place (Ruelle, 1991),
but that’s not a subject for data analysis.

25.8 Exercises

1. In Eq. 25.33, assume that 7(x) has to be a linear function, m(x) = - x. Solve
for the optimal S in terms of y, x, and I'. This “generalized least squares” (GLS)
solution should reduce to ordinary least squares when I = ¢°I.

2.1t Z, =7, | +e¢,, with ¢, IID, prove that Z, is not stationary. Hint: consider
Var [Z,].
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