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The Big Picture

1 Knowing the sampling distribution of a statistic tells us about
statistical uncertainty (standard errors, biases, confidence sets)

2 The bootstrap principle: approximate the sampling distribution
by simulating from a good model of the data, and treating the
simulated data just like the real data

3 Sometimes we simulate from the model we’re estimating
(parametric bootstrap)

4 Sometimes we simulate by re-sampling the original data
(nonparametric bootstrap)

5 As always, stronger assumptions mean less uncertainty if we’re
right
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Statistical Uncertainty

Re-run the experiment (survey, census, . . . ) and we get more or less
different data
∴ everything we calculate from data (estimates, test statistics,
policies, . . . ) will change from trial to trial as well
This variability is (the source of) statistical uncertainty
Quantifying this is a way of being honest about what we do and do
not know
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Measures of Statistical Uncertainty

Standard error = standard deviation of an estimator
could equally well use median absolute deviation, etc.

p-value = Probability we’d see a signal this big if there was just noise
Confidence region = All the parameter values we can’t reject at low
error rates:

1 Either the true parameter is in the confidence region
2 or we are very unlucky
3 or our model is wrong

etc.
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The Sampling Distribution Is the Source of All Knowledge

Data X ∼ PX,θ0
, for some true θ0

We calculate a statistic T = τ(X) so it has distribution PT ,θ0

If we knew PT ,θ0
, we could calculate Var[T ] (and so standard error),

E[T ] (and so bias), quantiles (and so confidence intervals or
p-values), etc.
Problem 1: Most of the time, PX,θ0

is very complicated
Problem 2: Most of the time, τ is a very complicated function
Problem 3: We certainly don’t know θ0
Upshot: We don’t know PT ,θ0

and can’t use it to calculate anything
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The Solution

Classically (≈ 1900–≈ 1975): Restrict the model and the statistic
until you can calculate the sampling distribution, at least for very
large n
Modern (≈ 1975–): Use complex models and statistics, but simulate
calculating the statistic on the model
some use of this idea back to the 1940s at least
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The Bootstrap Principle

1 Find a good estimate P̂ for PX,θ0

2 Generate a simulation X̃ from P̂, set T̃ = τ(X̃)
3 Use the simulated distribution of the T̃ to approximate PT ,θ0

Refinements: improving the initial estimate P̂
reducing the number of simulations or speeding them up
transforming τ so the final approximation is more stable
First step: find a good estimate P̂ for PX,θ0
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Parametric Bootstrap

If we are using a model, our best guess at PX,θ0
is PX,θ̂, with our best

estimate θ̂ of the parameters
THE PARAMETRIC BOOTSTRAP

1 Get data X, estimate θ̂ from X
2 Repeat b times:

1 Simulate X̃ from PX,θ̂ (simulate data of same size/“shape” as real
data)

2 Calculate T̃ = τ(X̃) (treat simulated data the same as real data)
3 Use empirical distribution of T̃ as PT ,θ0
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Concrete Example

Is Moonshine over-weight?
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Switch to R

Data on weights of 144 cats; fit Gaussian, find 95th percentile

library(MASS); data(cats); summary(cats)
(q95.gaussian <- qnorm(0.95,mean=mean(cats$Bwt),sd=sd(cats$Bwt)))
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Switch to R

Simulate from fitted Gaussian; bundle up estimating 95th percentile
into a function

rcats.gaussian <- function() {
rnorm(n=nrow(cats),mean=mean(cats$Bwt),sd=sd(cats$Bwt))

}

est.q95.gaussian <- function(x) {
m <- mean(x)
s <- sd(x)
return(qnorm(0.95,mean=m,sd=s))

}
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Switch to R

Simulate, plot the sampling distribution from the simulations

sampling.dist.gaussian <- replicate(1000, est.q95.gaussian(rcats.gaussian()))
plot(hist(sampling.dist.gaussian,breaks=50),freq=FALSE)
plot(density(sampling.dist.gaussian))
abline(v=q95.gaussian,lty=2)
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Switch to R

Find standard error and a crude confidence interval

sd(sampling.dist.gaussian)
quantile(sampling.dist.gaussian,c(0.025,0.975))
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Improving on the Crude Confidence Interval

The crude confidence interval uses the distribution of θ̃ under θ̂
But really we want the distribution of θ̂ under θ
Observation: Generally speaking,

Pr
θ̂

�

θ̃− θ̂≤ a
�

→ Prθ0

�

θ̂−θ0 ≤ a
�

faster than
Pr
θ̂

�

θ̃≤ a
�

→ Prθ0

�

θ̂≤ a
�

(errors converge faster, as in CLT)

θ̂−θ0 is (nearly) “pivotal”
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The Basic, Pivotal CI

qα/2,q1−α/2 = quantiles of θ̃

1−α = Pr
θ̂

�

qα/2 ≤ θ̃≤ q1−α/2

�

= Pr
θ̂

�

qα/2− θ̂≤ θ̃− θ̂≤ q1−α/2− θ̂
�

≈ Prθ0

�

qα/2− θ̂≤ θ̂−θ0 ≤ q1−α/2− θ̂
�

= Prθ0

�

qα/2− 2θ̂≤−θ0 ≤ q1−α/2− 2θ̂
�

= Prθ0

�

2θ̂− q1−α/2 ≤ θ0 ≤ 2θ̂− qα/2
�

Basically: re-center the simulations around the empirical data
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Switch to R

Find the basic CI

2*q95.gaussian - quantile(sampling.dist.gaussian,c(0.975,0.025))
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Model Checking

As always, if the model isn’t right, relying on the model is asking for
trouble
How good is the Gaussian as a model for the distribution of cats’
weights?
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Switch to R

Compare histogram to fitted Gaussian density and to a smooth
density estimate

plot(hist(cats$Bwt),freq=FALSE)
curve(dnorm(x,mean=mean(cats$Bwt),sd=sd(cats$Bwt)),add=TRUE,col="purple")
lines(density(cats$Bwt),lty=2)
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Nonparametric Bootstrap: Resampling

Problem: Suppose we don’t have a trust-worthy parametric model
Resource; We do have data, which tells us a lot about the
distribution
Solution: Resampling, treat the sample like a whole population

THE NONPARAMETRIC BOOTSTRAP

1 Get data X, containing n samples
2 Repeat b times:

1 Generate X̃ by drawing n samples from X with replacement
(resample the data)

2 Calculate T̃ = τX̃ (treat simulated data the same as real data)
3 Use empirical distribution of T̃ as PT ,θ
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Is Moonshine Overweight, Take 2

Model-free estimate of the 95th percentile is the 95th percentile of
the data
How precise is that?
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Switch to R

Resampling, re-estimating, and finding sampling distribution,
standard error, bias, CIs

(q95.np <- quantile(cats$Bwt,0.95))
resample <- function(x) {

sample(x,size=length(x),replace=TRUE)
}
est.q95.np <- function(x) {

quantile(x,0.95)
}
sampling.dist.np <- replicate(1000, est.q95.np(resample(cats$Bwt)))
plot(density(sampling.dist.np))
abline(v=q95.np,lty=2)
sd(sampling.dist.np)
mean(sampling.dist.np - q95.np)
quantile(sampling.dist.np,c(0.025,0.975))
2*q95.np - quantile(sampling.dist.np,c(0.975,0.025))
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Bootstrapping Regressions

A regression is a model for Y conditional on X

Y =m(X)+noise

Silent about distribution of X, so how do we simulate?
Options, putting less and less trust in the model:

1 Hold xi fixed, set ỹi = m̂(xi)+noise from model’s estimated
noise distribution (e.g., Gaussian)

2 Hold xi fixed, set ỹi = m̂(xi)+ a resampled residual
3 Resample (xi,yi) pairs (resample data-points or resample cases)
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Cats’ Hearts

The cats data set has weights for cats’ hearts, as well as bodies

Much cuter than an actual photo of cats’ hearts

Source: http://yaleheartstudy.org/site/wp-content/uploads/2012/03/cat-heart1.jpg

How does heart weight relate to body weight?
(Useful if Moonshine’s vet wants to know how much heart medicine to prescribe)
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Switch to R

Plot the data with the regression line

plot(Hwt~Bwt, data=cats, xlab="Body weight (kg)", ylab="Heart weight (g)")
cats.lm <- lm(Hwt ~ Bwt, data=cats)
abline(cats.lm)
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Switch to R

Coefficients and “official” confidence intervals:

coefficients(cats.lm)
confint(cats.lm)
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Switch to R

The residuals don’t look very Gaussian:

plot(cats$Bwt,residuals(cats.lm))
plot(density(residuals(cats.lm)))
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Switch to R

Find CIs for coefficients by resampling cases:

coefs.cats.lm <- function(subset) {
fit <- lm(Hwt~Bwt,data=cats,subset=subset)
return(coefficients(fit))

}
cats.lm.sampling.dist <- replicate(1000, coefs.cats.lm(resample(1:nrow(cats))))
(limits <- apply(cats.lm.sampling.dist,1,quantile,c(0.025,0.975)))
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Sources of Error in Bootstrapping

Simulation Using only b bootstrap replicates
Make this small by letting b→∞
Costs computing time

Approximation Using P̂ instead of PX,θ0

Make this small by careful statistical modeling
Estimation Only a finite number of samples

Make this small by being careful about what we
simulate (e.g., basic interval vs. crude interval)

Generally: for fixed n, nonparametric boostrap shows more
uncertainty than parametric bootstraps, but is less at risk to
modeling mistakes
yet another bias-variance tradeoff
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Summing Up

1 Standard errors, biases, confidence regions, p-values, etc., could
all be calculated from the sampling distribution of our statistic

2 The bootstrap principle: simulate from a good estimate of the
real process, use that to approximate the sampling distribution

Parametric bootstrapping simulates an ordinary model
Nonparametric bootstrapping resamples the original data

Simulations get processed just like real data
3 Bootstrapping works for regressions and for complicated

models as well as distributions and simple models
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