
Homework 4: Free Soil

36-402, Spring 2015

Due at 11:59 pm on Monday, 9 February 2015

AGENDA: Practice writing, testing, and debugging simple R func-
tions. Practice decomposing a big computational problem into a bunch
of small, inter-locking functions. Practice estimating a categorical con-
trast. Practice with weighted least squares. Practice with bootstrapping.
Finally, an early observance of Lincoln’s birthday.

GRADING: The problems add up to 90 points. The remaining 10
points are reserved for style and clarity. (See rubric at the end of this
assignment.) This will apply to all future homework until further notice.

Recall that equation for the standard error of a proportion, when we observe a
binomial with n trials and success probability p:

È

p(1− p)

n
(1)

Further recall the estimated standard error in an observed proportion p̂:
È

p̂(1− p̂)

n
(2)

Recall, finally, that the Mobility variable from homework 1 was an observed propor-
tion, the fraction of children born into the bottom fifth of the income distribution
who make their way to the top fifth of the distribution by age 30.

Load the data set from homework 1 as a data frame named mobility. We will
only need three columns, Mobility, Population and State, though you may also
want to keep Name for debugging purposes. Do not remove any row from the data
frame which has complete values for these variables.

1. (15) Write a function, se.prop, to calculate the standard error for proportions.
It should take a vector of proportions, p, and a vector of trial numbers, n, and
return a vector of standard errors.

(a) (2) Construct a test case to check that se.prop gives the right answer
when p = 0.5, n = 1.

(b) (2) Construct a test case to check that when se.prop is given a vector of
different n’s, all with the same p (not equal to 0 or 1), the answers are
proportional to 1/

p
n.

1



(c) (2) Construct a test case to check that when p = 0, the returned value is
always 0, for multiple n.

(d) (2) Construct a test case to check that when p = 1, the returned value is
always 0, for multiple n.

(e) (2) Construct a test case to check that when given a vector p of mixed 0s
and 1s, the returned vector has all 0s, for multiple n.

(f ) (2) Construct a test case to check that when given a vector of different,
non-extreme values for p, and a constant n, the entries of the returned
vector are proportional to

p

p(1− p).
(g) (2) Check that se.propworks properly when p=c(0.3,0.8) and n=c(12,72).

This includes working out what the proper answers should be.
(h) (1) Explain whether your code implements Eq. 1 or Eq. 2.

2. (10)

(a) (3) Use se.prop to calculate the standard error of the mobility for each
community in the data from homework 1; report the summary statistics.

(b) (1) Plot the histogram of the standard errors.
(c) (2) Make a scatter-plot of the standard errors vs. population.
(d) (2) Make a scatter-plot of the standard errors vs. mobility.
(e) (2) How reliable were the inferential statistics you calculated in home-

work 1?

3. (15)

(a) (5) Write a function, WSE, to calculate weighted mean squared error. It
should take as arguments predicted, a vector of predicted values; observed,
a vector of observed values; and weights, a vector of weights. It should
return a single real number, the weighted mean squared error. Mathemat-
ically, that is to say, it should find

∑n
i=1 wi

�

yi − ŷi
�2

∑n
i ′=1 wi ′

Make the default value for observed the Mobility column of the data,
and the default values for weights equal to one over the squares of the
standard errors in Mobility from the previous problem. Hint: You could
write this using a for loop, or even two of them, but there are more
elegant ways.

(b) (3) Check that WSE works properly when predicted is c(0.15,0.05),
observed is c(0.14,0.07), and weights is c(0.01, 0.42). (This in-
cludes working out what the right answer should be.)

(c) (2) Create three modified versions of this test case, each changing one of
the three arguments, and make sure that your function works correctly
on all three.

2



(d) (2) Explain why, for modeling mobility, the weights should be the inverse
square standard errors.

(e) (3) Check that WSE returns the MSE when all the weights are equal. (They
will not be equal for those default values.)

4. (10)

(a) (5) Write a function, dixie, which reads in a vector of state names (in
the form used in the mobility data set), and returns a binary vector, 1
if the state was part of the Confederacy during the US civil war, and 0
otherwise.

(b) (5) Check that it gives the correct results when applied to a vector of the
50 state names and the District of Columbia.

5. (10) Write a function, dixie.fit, which takes two arguments: a data frame
with a column named State, and a vector of length two, levels. It should
test, for each row, whether the state was in the Confederacy (using dixie), and
if so return the first element of levels, and if not, return the second element.
Check that it works correctly when levels=c(1,0). Explain how you know
that is the correct behavior.

6. (10) Write a function, dixie.WSE, which takes as input levels, without de-
fault, and a data frame, defaulting to mobility. It should predict the mobility
level for each city based on whether it was in the Confederacy or not, using the
function dixie.fit, and return the weighted squared error, using WSE, with
the actual values of Mobility as the response and weights based on their stan-
dard errors. For full credit, call, do not re-write, the functions from the earlier
problems.

Construct a test case using a data frame of four rows to check that is working
properly, when levels=c(0.01,0.15).

7. (5) Optimize the weighted squared error for this two-parameter model, starting
from the initial guess that the mobility level for the former Confederacy is 0.01,
while that for the rest of the country is 0.15. Report the best-fitting values of
levels.

Hint: See recipe 13.2 in The R Cookbook.

8. (10) Turn the optimization from the previous problem into a function, which
takes as arguments a data frame (with default equal to mobility) and an initial
guess at levels (with default equal to c(0.01,0.15)), and returns the fitted
values of levels (and nothing else). Check that running it with the defaults
reproduces your answer from the previous problem. Check that you get a
different answer if you remove the first half of the data frame.

9. (5) Use resampling of rows to give standard errors for levels.

3



RUBRIC (10): The text is laid out cleanly, with clear divisions between prob-
lems and sub-problems. The writing itself is well-organized, free of grammatical and
other mechanical errors, and easy to follow. Figures and tables are easy to read, with
informative captions, axis labels and legends, and are placed near the text of the cor-
responding problems. All quantitative and mathematical claims are supported by
appropriate derivations, included in the text, or calculations in code. Numerical re-
sults are reported to appropriate precision. Code is either properly integrated with a
tool like R Markdown or knitr, or included as a separate .R file. In the latter case, the
code is clearly divided into sections referring to particular problems. In either case,
the code is indented, commented, and uses meaningful names. All code is relevant
to the text; there are no dangling or useless commands. All parts of all problems are
answered with actual coherent sentences, and never with raw computer code or its
output.

EXTRA CREDIT (10): Show, mathematically, that the optimal values for levels
are always given by two weighted averages of Mobility. Show how to find them
by two calls to weighted.average, without using WSE, dixie.fit, dixie.WSE, or
any optimization function. For full extra credit, check that code implementing this
matches the answer you obtained above.

4


