
04:00 Wednesday 21st January, 2015
Copyright c�Cosma Rohilla Shalizi; do not distribute without permission

updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Chapter 3

Evaluating Statistical Models:
Error and Inference

3.1 What Are Statistical Models For? Summaries, Fore-
casts, Simulators

There are (at least) three levels at which we can use statistical models in data analysis:
as summaries of the data, as predictors, and as simulators.

The lowest and least demanding level is just to use the model as a summary of the
data — to use it for data reduction, or compression. Just as one can use the sample
mean or sample quantiles as descriptive statistics, recording some features of the data
and saying nothing about a population or a generative process, we could use estimates
of a model’s parameters as descriptive summaries. Rather than remembering all the
points on a scatter-plot, say, we’d just remember what the OLS regression surface
was.

It’s hard to be wrong about a summary, unless we just make a mistake. (It may or
may not be helpful for us later, but that’s different.) When we say “the slope which
minimized the sum of squares was 4.02”, we make no claims about anything but the
training data. It relies on no assumptions, beyond our doing the calculations right.
But it also asserts nothing about the rest of the world. As soon as we try to connect
our training data to the rest of the world, we start relying on assumptions, and we
run the risk of being wrong.

Probably the most common connection to want to make is to say what other
data will look like — to make predictions. In a statistical model, with random noise
terms, we do not anticipate that our predictions will ever be exactly right, but we also
anticipate that our mistakes will show stable probabilistic patterns. We can evaluate
predictions based on those patterns of error — how big is our typical mistake? are we
biased in a particular direction? do we make a lot of little errors or a few huge ones?

Statistical inference about model parameters — estimation and hypothesis testing
— can be seen as a kind of prediction, extrapolating from what we saw in a small

60

61 3.2. ERRORS, IN AND OUT OF SAMPLE

piece of data to what we would see in the whole population, or whole process. When
we estimate the regression coefficient b̂ = 4.02, that involves predicting new values
of the dependent variable, but also predicting that if we repeated the experiment and
re-estimated b̂ , we’d get a value close to 4.02.

Using a model to summarize old data, or to predict new data, doesn’t commit us
to assuming that the model describes the process which generates the data. But we
often want to do that, because we want to interpret parts of the model as aspects of
the real world. We think that in neighborhoods where people have more money, they
spend more on houses — perhaps each extra $1000 in income translates into an extra
$4020 in house prices. Used this way, statistical models become stories about how the
data were generated. If they are accurate, we should be able to use them to simulate
that process, to step through it and produce something that looks, probabilistically,
just like the actual data. This is often what people have in mind when they talk about
scientific models, rather than just statistical ones.

An example: if you want to predict where in the night sky the planets will be,
you can actually do very well with a model where the Earth is at the center of the
universe, and the Sun and everything else revolve around it. You can even estimate,
from data, how fast Mars (for example) goes around the Earth, or where, in this
model, it should be tonight. But, since the Earth is not at the center of the solar
system, those parameters don’t actually refer to anything in reality. They are just
mathematical fictions. On the other hand, we can also predict where the planets will
appear in the sky using models where all the planets orbit the Sun, and the parameters
of the orbit of Mars in that model do refer to reality.1

This chapter focuses on evaluating predictions, for three reasons. First, often we
just want prediction. Second, if a model can’t even predict well, it’s hard to see how it
could be right scientifically. Third, often the best way of checking a scientific model
is to turn some of its implications into statistical predictions.

3.2 Errors, In and Out of Sample
With any predictive model, we can gauge how well it works by looking at its errors.
We want these to be small; if they can’t be small all the time we’d like them to be
small on average. We may also want them to be patternless or unsystematic (because
if there was a pattern to them, why not adjust for that, and make smaller mistakes).
We’ll come back to patterns in errors later, when we look at specification testing
(Chapter 10). For now, we’ll concentrate on the size of the errors.

To be a little more mathematical, we have a data set with points zn = z1, z2, . . . zn .
(For regression problems, think of each data point as the pair of input and output
values, so zi = (xi , yi), with xi possibly a vector.) We also have various possible mod-
els, each with different parameter settings, conventionally written ✓. For regression,
✓ tells us which regression function to use, so m✓(x) or m(x;✓) is the prediction we
make at point x with parameters set to ✓. Finally, we have a loss function L which

1We can be pretty confident of this, because we use our parameter estimates to send our robots to Mars,
and they get there.

04:00 Wednesday 21st January, 2015

3.2. ERRORS, IN AND OUT OF SAMPLE 62

tells us how big the error is when we use a certain ✓ on a certain data point, L(z,✓).
For mean-squared error, this would just be

L(z,✓) = (y �m✓(x))
2 (3.1)

But we could also use the mean absolute error

L(z,✓) = |y �m✓(x)| (3.2)

or many other loss functions. Sometimes we will actually be able to measure how
costly our mistakes are, in dollars or harm to patients. If we had a model which
gave us a distribution for the data, then p✓(z) would a probability density at z, and
a typical loss function would be the negative log-likelihood, � log m✓(z). No matter
what the loss function is, I’ll abbreviate the sample average of the loss over the whole
data set by L(zn ,✓).

What we would like, ideally, is a predictive model which has zero error on future
data. We basically never achieve this:

• The world just really is a noisy and stochastic place, and this means even the
true, ideal model has non-zero error.2 This corresponds to the first, �2

x , term
in the bias-variance decomposition, Eq. 1.26 from Chapter 1.

• Our models are usually more or less mis-specified, or, in plain words, wrong.
We hardly ever get the functional form of the regression, the distribution of
the noise, the form of the causal dependence between two factors, etc., exactly
right.3 This is the origin of the bias term in the bias-variance decomposition.
Of course we can get any of the details in the model specification more or less
wrong, and we’d prefer to be less wrong.

• Our models are never perfectly estimated. Even if our data come from a perfect
IID source, we only ever have a finite sample, and so our parameter estimates
are (almost!) never quite the true, infinite-limit values. This is the origin of
the variance term in the bias-variance decomposition. But as we get more and
more data, the sample should become more and more representative of the
whole process, and estimates should converge too.

So, because our models are flawed, we have limited data and the world is stochastic,
we cannot expect even the best model to have zero error. Instead, we would like to
minimize the expected error, or risk, or generalization error, on new data.

What we would like to do is to minimize the risk or expected loss

E[L(Z ,✓)] =
Z

L(z,✓)p(z)d z (3.3)

2This is so even if you believe in some kind of ultimate determinism, because the variables we plug
in to our predictive models are not complete descriptions of the physical state of the universe, but rather
immensely coarser, and this coarseness shows up as randomness.

3Except maybe in fundamental physics, and even there our predictions are about our fundamental
theories in the context of experimental set-ups, which we never model in complete detail.

04:00 Wednesday 21st January, 2015

63 3.2. ERRORS, IN AND OUT OF SAMPLE

To do this, however, we’d have to be able to calculate that expectation. Doing that
would mean knowing the distribution of Z — the joint distribution of X and Y , for
the regression problem. Since we don’t know the true joint distribution, we need to
approximate it somehow.

A natural approximation is to use our training data zn . For each possible model
✓, we can could calculate the sample mean of the error on the data, L(zn ,✓), called
the in-sample loss or the empirical risk. The simplest strategy for estimation is then
to pick the model, the value of ✓, which minimizes the in-sample loss. This strategy
is imaginatively called empirical risk minimization. Formally,

c✓n ⌘ argmin
✓2⇥

L(zn ,✓) (3.4)

This means picking the regression which minimizes the sum of squared errors, or
the density with the highest likelihood4. This what you’ve usually done in statistics
courses so far, and it’s very natural, but it does have some issues, notably optimism
and over-fitting.

The problem of optimism comes from the fact that our training data isn’t per-
fectly representative. The in-sample loss is a sample average. By the law of large
numbers, then, we anticipate that, for each ✓,

L(zn ,✓)! E[L(Z ,✓)] (3.5)

as n!1. This means that, with enough data, the in-sample error is a good approx-
imation to the generalization error of any given model ✓. (Big samples are repre-
sentative of the underlying population or process.) But this does not mean that the
in-sample performance of ✓̂ tells us how well it will generalize, because we purposely
picked it to match the training data zn . To see this, notice that the in-sample loss
equals the risk plus sampling noise:

L(zn ,✓) = E[L(Z,✓)]+ ⌘n(✓) (3.6)

Here ⌘(✓) is a random term which has mean zero, and represents the effects of having
only a finite quantity of data, of size n, rather than the complete probability distribu-
tion. (I write it ⌘n(✓) as a reminder that different values of ✓ are going to be affected
differently by the same sampling fluctuations.) The problem, then, is that the model
which minimizes the in-sample loss could be one with good generalization perfor-
mance (E[L(Z,✓)] is small), or it could be one which got very lucky (⌘n(✓)was large
and negative):

c✓n = argmin
✓2⇥
�
E[L(Z ,✓)]+ ⌘n(✓)

�
(3.7)

We only want to minimize E[L(Z ,✓)], but we can’t separate it from ⌘n(✓), so we’re
almost surely going to end up picking a c✓n which was more or less lucky (⌘n < 0)
as well as good (E[L(Z ,✓)] small). This is the reason why picking the model which
best fits the data tends to exaggerate how well it will do in the future (Figure 3.1).

4Remember, maximizing the likelihood is the same as maximizing the log-likelihood, because log is
an increasing function. Therefore maximizing the likelihood is the same as minimizing the negative log-
likelihood.

04:00 Wednesday 21st January, 2015

3.2. ERRORS, IN AND OUT OF SAMPLE 64

0 2 4 6 8 10

2
4

6
8

10
12

regression slope

M
S

E
 ri

sk

n<-20; theta<-5
x<-runif(n); y<-x*theta+rnorm(n)
empirical.risk <- function(b) { mean((y.emp-b*x.emp)^2) }
true.risk <- function(b) { 1 + (theta-b)^2*(0.5^2+1/12) }
curve(Vectorize(empirical.risk)(x),from=0,to=2*theta,

xlab="regression slope",ylab="MSE risk")
curve(true.risk,add=TRUE,col="grey")

Figure 3.1: Plots of empirical and generalization risk for a simple case of regression
through the origin, Y = ✓X+✏, ✏⇠N (0,1), with the true ✓= 5, and X ⇠Unif(0,1).
The black curve is the mean squared error on one particular training sample (of size
n = 20) as we vary the guessed slope; here the minimum is at ✓̂ = 5.53. The grey
curve is the true or generalization risk. (See Exercise 2.) The gap between the grey
and the black curves is what the text calls ⌘n(✓).

04:00 Wednesday 21st January, 2015

65 3.3. OVER-FITTING AND MODEL SELECTION

Again, by the law of large numbers ⌘n(✓) ! 0 for each ✓, but now we need to
worry about how fast it’s going to zero, and whether that rate depends on ✓. Suppose
we knew that min✓ ⌘n(✓) ! 0, or max✓ |⌘n(✓)| ! 0. Then it would follow that
⌘n(c✓n)! 0, and the over-optimism in using the in-sample error to approximate the
generalization error would at least be shrinking. If we knew how fast max✓ |⌘n(✓)|
was going to zero, we could even say something about how much bigger the true risk
was likely to be. A lot of more advanced statistics and machine learning theory is
thus about uniform laws of large numbers (showing max✓ |⌘n(✓)|! 0) and rates of
convergence.

Learning theory is a beautiful, deep, and practically important subject, but also
a subtle and involved one. (See §3.6 for references.) To stick closer to analyzing real
data, and to not turn this into an advanced probability class, I will only talk about
some more-or-less heuristic methods, which are good enough for many purposes.

3.3 Over-Fitting and Model Selection
The big problem with using the in-sample error is related to over-optimism, but at
once trickier to grasp and more important. This is the problem of over-fitting. To
illustrate it, let’s start with Figure 3.2. This has the twenty X values from a Gaussian
distribution, and Y = 7X 2 � 0.5X + ✏, ✏ ⇠ N (0,1). That is, the true regression
curve is a parabola, with additive and independent Gaussian noise. Let’s try fitting
this — but pretend that we didn’t know that the curve was a parabola. We’ll try
fitting polynomials of different orders in x — order 0 (a flat line), order 1 (a linear
regression), order 2 (quadratic regression), up through order 9. Figure 3.3 shows the
data with the polynomial curves, and Figure 3.4 shows the in-sample mean squared
error as a function of the order of the polynomial.

Notice that the in-sample error goes down as the order of the polynomial in-
creases; it has to. Every polynomial of order p is also a polynomial of order p+1, so
going to a higher-order model can only reduce the in-sample error. Quite generally,
in fact, as one uses more and more complex and flexible models, the in-sample error
will get smaller and smaller.5

Things are quite different if we turn to the generalization error. In principle, I
could calculate that for any of the models, since I know the true distribution, but
it would involve calculating things like E

⇥
X 18⇤, which won’t be very illuminating.

Instead, I will just draw a lot more data from the same source, twenty thousand
data points in fact, and use the error of the old models on the new data as their
generalization error6. The results are in Figure 3.5.

What is happening here is that the higher-order polynomials — beyond order 2 —
are not just a little optimistic about how well they fit, they are wildly over-optimistic.
The models which seemed to do notably better than a quadratic actually do much,

5In fact, since there are only 20 data points, they could all be fit exactly if the order of the polynomials
went up to 19. (Remember that any two points define a line, any three points a parabola, etc. — p + 1
points define a polynomial of order p which passes through them.)

6This works, yet again, because of the law of large numbers. In Chapters 5 and especially 6, we will see
much more about replacing complicated probabilistic calculations with simple simulations.

04:00 Wednesday 21st January, 2015

3.3. OVER-FITTING AND MODEL SELECTION 66

-2 -1 0 1 2

0
10

20
30

40
50

x

y

plot(x,y2)
curve(7*x^2-0.5*x,add=TRUE,col="grey")

Figure 3.2: Scatter-plot showing sample data and the true, quadratic regression curve
(grey parabola).

04:00 Wednesday 21st January, 2015

67 3.3. OVER-FITTING AND MODEL SELECTION

-2 -1 0 1 2

0
10

20
30

40
50

x

y

poly.formulae <- c("y~1", paste("y ~ poly(x,", 1:9, ")", sep=""))
poly.formulae <- sapply(poly.formulae, as.formula)
df.plot <- data.frame(x=seq(min(x),max(x),length.out=200))
fitted.models <- list(length=length(poly.formulae))
for (model_index in 1:length(poly.formulae)) {

fm <- lm(formula=poly.formulae[[model_index]])
lines(df.plot$x, predict(fm,newdata=df.plot),lty=model_index)
fitted.models[[model_index]] <- fm

}

Figure 3.3: Twenty training data points (dots), and ten different fitted regression lines
(polynomials of order 0 to 9, indicated by different line types). R NOTES: The poly

command constructs orthogonal (uncorrelated) polynomials of the specified degree from its
first argument; regressing on them is conceptually equivalent to regressing on 1, x, x2, . . . xdegree,
but more numerically stable. (See ?poly.) This builds a vector of model formulae and then fits
each one in turn, storing the fitted models in a new list.

04:00 Wednesday 21st January, 2015

3.3. OVER-FITTING AND MODEL SELECTION 68

0 2 4 6 8

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.
0

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

mse.q <- sapply(fitted.models, function(mdl) { mean(residuals(mdl)^2) })
plot(0:9,mse.q,type="b",xlab="polynomial degree",ylab="mean squared error",

log="y")

Figure 3.4: Empirical MSE vs. degree of polynomial for the data from the previous
figure. Note the logarithmic scale for the vertical axis.

04:00 Wednesday 21st January, 2015

69 3.3. OVER-FITTING AND MODEL SELECTION

0 2 4 6 8

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.
0

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

x.new = rnorm(2e4); y.new = 7*x.new^2 - 0.5*x.new + rnorm(2e4)
gmse <- function(mdl) { mean((y.new - predict(mdl, data.frame(x=x.new))^2) }
gmse.q <- sapply(fitted.models, gmse)
plot(0:9,mse.q,type="b",xlab="polynomial degree",

ylab="mean squared error",log="y",ylim=c(min(mse.q),max(gmse.q)))
lines(0:9,gmse.q,lty=2,col="blue")
points(0:9,gmse.q,pch=24,col="blue")

Figure 3.5: In-sample error (black dots) compared to generalization error (blue trian-
gles). Note the logarithmic scale for the vertical axis.

04:00 Wednesday 21st January, 2015

3.4. CROSS-VALIDATION 70

much worse. If we picked a polynomial regression model based on in-sample fit, we’d
chose the highest-order polynomial available, and suffer for it.

In this example, the more complicated models — the higher-order polynomials,
with more terms and parameters — were not actually fitting the generalizable features
of the data. Instead, they were fitting the sampling noise, the accidents which don’t
repeat. That is, the more complicated models over-fit the data. In terms of our earlier
notation, ⌘ is bigger for the more flexible models. The model which does best here is
the quadratic, because the true regression function happens to be of that form. The
more powerful, more flexible, higher-order polynomials were able to get closer to
the training data, but that just meant matching the noise better. In terms of the bias-
variance decomposition, the bias shrinks with the model order, but the variance of
estimation grows.

Notice that the models of order 0 and order 1 also do worse than the quadratic
model — their problem is not over-fitting but under-fitting; they would do better if
they were more flexible. Plots of generalization error like this usually have a mini-
mum. If we have a choice of models — if we need to do model selection — we would
like to find the minimum. Even if we do not have a choice of models, we might like
to know how big the gap between our in-sample error and our generalization error
is likely to be.

There is nothing special about polynomials here. All of the same lessons apply
to variable selection in linear regression, to k-nearest neighbors (where we need to
choose k), to kernel regression (where we need to choose the bandwidth), and to
other methods we’ll see later. In every case, there is going to be a minimum for the
generalization error curve, which we’d like to find.

(A minimum with respect to what, though? In Figure 3.5, the horizontal axis is
the model order, which here is the number of parameters (minus one). More gener-
ally, however, what we care about is some measure of how complex the model space
is, which is not necessarily the same thing as the number of parameters. What’s more
relevant is how flexible the class of models is, how many different functions it can
approximate. Linear polynomials can approximate a smaller set of functions than
quadratics can, so the latter are more complex, or have higher capacity. More ad-
vanced learning theory has a number of ways of quantifying this, but the details get
pretty arcane, and we will just use the concept of complexity or capacity informally.)

3.4 Cross-Validation
The most straightforward way to find the generalization error would be to do what
I did above, and to use fresh, independent data from the same source — a testing or
validation data-set. Call this z0m , as opposed to our training data zn . We fit our model

to zn , and getc✓n . The loss of this on the validation data is

E
h

L(Z ,c✓n)
i
+ ⌘0m(
c✓n) (3.8)

where now the sampling noise on the validation set, ⌘0m , is independent of”✓m . So this
gives us an unbiased estimate of the generalization error, and, if m is large, a precise

04:00 Wednesday 21st January, 2015

71 3.4. CROSS-VALIDATION

A_vs_B <- sample(rep(c("A","B"),length.out=nrow(housing))
half_A <- which(A_vs_B=="A"); half_B <- which(A_vs_B=="B")
small_formula = "Median_house_value ~ Median_household_income"
large_formula = "Median_house_value ~ Median_household_income + Median_rooms"
small_formula <- as.formula(small_formula)
large_formula <- as.formula(large_formula)
(mAsmall <- lm(small_formula,data=housing,subset=half_A))
(mBsmall <- lm(small_formula,data=housing,subset=half_B))
(mAlarge <- lm(large_formula,data=housing,subset=half_A))
(mBlarge <- lm(large_formula,data=housing,subset=half_B))
in.sample.mse <- function(model) { mean(residuals(model)^2) }
in.sample.mse(mAsmall); in.sample.mse(mAlarge)
in.sample.mse(mBsmall); in.sample.mse(mBlarge)
new.sample.mse <- function(model,rows) {

test <- housing[rows,]
predictions <- predict(model,newdata=test)
return(mean((test$Median_house_value - predictions)^2))

}
new.sample.mse(mAsmall,half_B); new.sample.mse(mBsmall,half_A)
new.sample.mse(mBlarge,half_A); new.sample.mse(mAlarge,half_B)

Code Example 1: Code used to generate the numbers in Figure 3.6. (Code used to
display values from the data frames omitted.)

one. If we need to select one model from among many, we can pick the one which
does best on the validation data, with confidence that we are not just over-fitting.

The problem with this approach is that we absolutely, positively, cannot use any
of the validation data in estimating the model. Since collecting data is expensive —
it takes time, effort, and usually money, organization, effort and skill — this means
getting a validation data set is expensive, and we often won’t have that luxury.

3.4.1 Data-set Splitting

The next logical step, however, is to realize that we don’t strictly need a separate
validation set. We can just take our data and split it ourselves into training and testing
sets. If we divide the data into two parts at random, we ensure that they have (as
much as possible) the same distribution, and that they are independent of each other.
Then we can act just as though we had a real validation set. Fitting to one part of
the data, and evaluating on the other, gives us an unbiased estimate of generalization
error. Of course it doesn’t matter which half of the data is used to train and which
half is used to test, so we can do it both ways and average.

Figure 3.6 illustrates the idea with a bit of the data and linear models from §31,
and Code Example 1 shows the code used to make Figure 3.6. [[TODO: Turn figure to por-

trait mode, make everything
bigger, space out, add arrows
to guide eye through data
flow]]

04:00 Wednesday 21st January, 2015

3.4. CROSS-VALIDATION 72

Median_house_value Median_household_income Median_rooms
1 909600 111667 6.0
2 748700 66094 4.6
3 773600 87306 5.0
4 579200 62386 4.5

.
10605 253400 71638 6.6

(A)

Median_house_value Median_household_income Median_rooms
2 748700 66094 4.6
3 773600 87306 5.0
5 480800 55658 4.8
6 460800 38646 4.3

.
10605 253400 71638 6.6

(B)

Median_house_value Median_household_income Median_rooms
1 909600 111667 6.0
4 579200 62386 4.5
7 473500 52837 4.3
8 439300 59091 4.4

.
10604 209500 56667 6.0

(A)
€�intercept

Ÿ�income
ÿ�rooms MSE

Income only (2.74± 0.56)⇥ 104 5.252± 0.085 NA 2.62⇥ 1010

Income + Rooms (4.772± 0.093)⇥ 105 7.748± 0.081 (�1.125± 0.020)⇥ 105 1.66⇥ 1010

(B)
€�intercept

Ÿ�income
ÿ�rooms MSE

Income only (3.99± .55)⇥ 104 4.99± 0.8 NA 2.59⇥ 1010

Income + Rooms (5.040± 0.089)⇥ 105 7.609± 0.079 (�1.162± 0.020)⇥ 105 1.56⇥ 1010

MSE(A! B) MSE(B!A) average
Income only 2.60⇥ 1010 2.62⇥ 1010 2.61⇥ 1010

Income + Rooms 1.56⇥ 1010 1.67⇥ 1010 1.61⇥ 1010

Figure 3.6: Example of data-set splitting. The top table shows three columns and
seven rows of the housing-price data used in §31. This is then randomly split into
two equally sized parts (tables in the next row). I estimate a linear model which
predicts house value from income alone, and another model which predicts from
income and the median number of rooms, on each half (parameter estimates and
in-sample MSEs in the third row). The fourth row shows the performance of each
estimate on the other half of the data, and the average for each of the two models.
Note that the larger model always has a lower in-sample error, whether or not it is
really better, so the in-sample MSEs provide no evidence that we should use the larger
model. Having a lower score under data-set splitting, however, is evidence that the
larger model generalizes better. (For R commands used to get these numbers, see
Code Example 1.) — Can you explain why the coefficient on the number of rooms
is negative?

04:00 Wednesday 21st January, 2015

73 3.4. CROSS-VALIDATION

3.4.2 k-Fold Cross-Validation (CV)
The problem with data-set splitting is that, while it’s an unbiased estimate of the risk,
it is often a very noisy one. If we split the data evenly, then the test set has n/2
data points — we’ve cut in half the number of sample points we’re averaging over. It
would be nice if we could reduce that noise somewhat, especially if we are going to
use this for model selection.

One solution to this, which is pretty much the industry standard, is what’s called
k-fold cross-validation. Pick a small integer k, usually 5 or 10, and divide the data at
random into k equally-sized subsets. (The subsets are often called “folds”.) Take the
first subset and make it the test set; fit the models to the rest of the data, and evaluate
their predictions on the test set. Now make the second subset the test set and the rest
of the training sets. Repeat until each subset has been the test set. At the end, average
the performance across test sets. (This is the same as data-set splitting if k = 2.) This
is the cross-validated estimate of generalization error for each model. Model selection
then picks the model with the smallest estimated risk.7 Code Example 2 performs
k-fold cross-validation for linear models specified by formulae.

The reason cross-validation works is that it uses the existing data to simulate the
process of generalizing to new data. If the full sample is large, then even the smaller
portion of it in the testing data is, with high probability, fairly representative of the
data-generating process. Randomly dividing the data into training and test sets makes
it very unlikely that the division is rigged to favor any one model class, over and above
what it would do on real new data. Of course the original data set is never perfectly
representative of the full data, and a smaller testing set is even less representative,
so this isn’t ideal, but the approximation is often quite good. It is especially good at
getting the relative order of different models right, that is, at controlling over-fitting.8

Cross-validation is probably the most widely-used method for model selection,
and for picking control settings, in modern statistics. There are circumstances where
it can fail — especially if you give it too many models to pick among — but it’s the
first thought of seasoned practitioners, and it should be your first thought, too. The
assignments to come will make you very familiar with it.

3.4.3 Leave-one-out Cross-Validation
Suppose we did k-fold cross-validation, but with k = n. Our testing sets would
then consist of single points, and each point would be used in testing once. This is
called leave-one-out cross-validation. It actually came before k-fold cross-validation,
and has two advantages. First, it doesn’t require any random number generation, or
keeping track of which data point is in which subset. Second, and more importantly,
because we are only testing on one data point, it’s often possible to find what the

7A closely related procedure, sometimes also called “k-fold CV”, is to pick 1/k of the data points at
random to be the test set (using the rest as a training set), and then pick an independent 1/k of the data
points as the test set, etc., repeating k times and averaging. The differences are subtle, but what’s described
in the main text makes sure that each point is used in the test set just once.

8The cross-validation score for the selected model still tends to be somewhat over-optimistic, because
it’s still picking the luckiest model — though the influence of luck is much attenuated. Tibshirani and
Tibshirani (2009) provides a simple correction.

04:00 Wednesday 21st January, 2015

3.4. CROSS-VALIDATION 74

cv.lm <- function(data, formulae, nfolds=5) {
data <- na.omit(data)
formulae <- sapply(formulae, as.formula)
response.name <- function(formula) { all.vars(formula)[1] }
responses <- sapply(formulae, response.name)
names(responses) <- as.character(formulae)
n <- nrow(data)
fold.labels <- sample(rep(1:nfolds, length.out=n))
mses <- matrix(NA, nrow=nfolds, ncol=length(formulae))
colnames <- as.character(formulae)
for (fold in 1:nfolds) {

test.rows <- which(fold.labels == fold)
train <- data[-test.rows,]
test <- data[test.rows,]
for (form in 1:length(formulae)) {

current.model <- lm(formula=formulae[[form]], data=train)
predictions <- predict(current.model, newdata=test)
test.responses <- test[,responses[form]]
mses[fold, form] <- mean((test.responses - predictions)^2)

}
}
return(colMeans(mses))

}

Code Example 2: Function to do k-fold cross-validation on linear models, given as a
vector (or list) of model formulae. Note that this only returns the CV MSE, not the
parameter estimates on each fold. See online for comments.

04:00 Wednesday 21st January, 2015

75 3.5. WARNINGS

prediction on the left-out point would be by doing calculations on a model fit to the
whole data. This means that we only have to fit each model once, rather than k times,
which can be a big savings of computing time.

The drawback to leave-one-out CV is subtle but often decisive. Since each training
set has n � 1 points, any two training sets must share n � 2 points. The models fit
to those training sets tend to be strongly correlated with each other. Even though
we are averaging n out-of-sample forecasts, those are correlated forecasts, so we are
not really averaging away all that much noise. With k-fold CV, on the other hand,
the fraction of data shared between any two training sets is just k�2

k�1 , not n�2
n�1 , so even

though the number of terms being averaged is smaller, they are less correlated.
There are situations where this issue doesn’t really matter, or where it’s over-

whelmed by leave-one-out’s advantages in speed and simplicity, so there is certainly
still a place for it, but one subordinate to k-fold CV.9 [[TODO: Appendix on

AIC?]]

3.5 Warnings
Some caveats are in order.

1. All of these model selection methods aim at getting models which will gen-
eralize well to new data, if it follows the same distribution as old data. Gener-
alizing well even when distributions change is a much harder and much less
well-understood problem (Quiñonero-Candela et al., 2009). It is particularly
troublesome for a lot of applications involving large numbers of human be-
ings, because society keeps changing all the time — it’s natural for the variables
to vary, but the relationships between variables also change. (That’s history.)

2. All the model selection methods we have discussed aim at getting models which
predict well. This is not necessarily the same as getting the true theory of the
world. Presumably the true theory will also predict well, but the converse does
not necessarily follow. We will see examples later where false but low-capacity
models, because they have such low variance of estimation, actually out-predict
correctly specified models.

3.5.1 Parameter Interpretation
The last item is worth elaborating on. In many situations, it is very natural to want
to attach some substantive, real-world meaning to the parameters of our statistical
model, or at least to some of them. I have mentioned examples above like astronomy,
and it is easy to come up with many others from the natural sciences. This is also ex-
tremely common in the social sciences. It is fair to say that this is much less carefully
attended to than it should be.

9At this point, it may be appropriate to say a few words about the Akaike information criterion, or
AIC. AIC also tries to estimate how well a model will generalize to new data. One can show that, under
standard assumptions, as the sample size gets large, leave-one-out CV actually gives the same estimate as
AIC (Claeskens and Hjort, 2008, §2.9). However, there do not seem to be any situations where AIC works
where leave-one-out CV does not work at least as well. So AIC should really be understood as a very fast,
but often very crude, approximation to the more accurate cross-validation.

04:00 Wednesday 21st January, 2015

3.5. WARNINGS 76

To take just one example, consider the paper “Luther and Suleyman” by Prof.
Murat Iyigun (Iyigun, 2008). The major idea of the paper is to try to help explain
why the Protestant Reformation was not wiped out during the European wars of
religion (or alternately, why the Protestants did not crush all the Catholic powers),
leading western Europe to have a mixture of religions, with profound consequences.
Iyigun’s contention is that all of the Christians were so busy fighting the Ottoman
Turks, or perhaps so afraid of what might happen if they did not, that conflicts among
the European Christians were suppressed. To quote his abstract:

at the turn of the sixteenth century, Ottoman conquests lowered the
number of all newly initiated conflicts among the Europeans roughly
by 25 percent, while they dampened all longer-running feuds by more
than 15 percent. The Ottomans’ military activities influenced the length
of intra-European feuds too, with each Ottoman-European military en-
gagement shortening the duration of intra-European conflicts by more
than 50 percent.

To back this up, and provide those quantitative figures, Prof. Iyigun estimates linear
regression models, of the form10

Yt =�0+�1Xt +�2Zt +�3Ut + ✏t (3.9)

where Yt is “the number of violent conflicts initiated among or within continental
European countries at time t”11, Xt is “the number of conflicts in which the Ottoman
Empire confronted European powers at time t”, Zt is “the count at time t of the
newly initiated number of Ottoman conflicts with others and its own domestic civil
discords”, Ut is control variables reflecting things like the availability of harvests to
feed armies, and ✏t is Gaussian noise.

The qualitative idea here, about the influence of the Ottoman Empire on the
European wars of religion, has been suggested by quite a few historians before12. The
point of this paper is to support this rigorously, and make it precise. That support
and precision requires Eq. 3.9 to be an accurate depiction of at least part of the process
which lead European powers to fight wars of religion. Prof. Iyigun, after all, wants to
be able to interpret a negative estimate of�1 as saying that fighting off the Ottomans
kept Christians from fighting each other. If Eq. 3.9 is inaccurate, if the model is badly
mis-specified, however, �1 becomes the best approximation to the truth within a
systematically wrong model, and the support for claims like “Ottoman conquests
lowered the number of all newly initiated conflicts among the Europeans roughly by
25 percent” drains away.

To back up the use of Eq. 3.9, Prof. Iyigun looks at a range of slightly different
linear-model specifications (e.g., regress the number of intra-Christian conflicts in
year t on the number of Ottoman attacks in year t�1), and slightly different methods
of estimating the parameters. What he does not do is look at the other implications
of the model: that residuals should be (at least approximately) Gaussian, that they

10His Eq. 1 on pp. 1473; I have modified the notation to match mine.
11In one part of the paper; he uses other dependent variables elsewhere.
12See §1–2 of Iyigun (2008), and MacCulloch (2004, passim).

04:00 Wednesday 21st January, 2015

77 3.6. FURTHER READING

should be unpredictable from the regressor variables. He does not look at whether
the relationships he thinks are linear really are linear (see Chapters 4, 9, and 10). He
does not try to simulate his model and look at whether the patterns of European
wars it produces resemble actual history (see Chapter 5). He does not try to check
whether he has a model which really supports causal inference, though he has a causal
question (see Part III).

I do not say any of this to denigrate Prof. Iyigun. His paper is actually much better
than most quantitative work in the social sciences. This is reflected by the fact that it
was published in the Quarterly Journal of Economics, one of the most prestigious, and
rigorously-reviewed, journals in the field. The point is that by the end of this course,
you will have the tools to do better.

3.6 Further Reading
Some comparatively easy starting points on statistical learning theory are Kearns
and Vazirani (1994), Cristianini and Shawe-Taylor (2000) and Mohri et al. (2012).
At a more advanced level, look at the tutorial papers by Bousquet et al. (2004); von
Luxburg and Schölkopf (2008), or the textbooks by Vidyasagar (2003) and by An-
thony and Bartlett (1999) (the latter is much more general than its title suggests), or
read the book by Vapnik (2000) (one of the founders). Hastie et al. (2009), while in-
valuable, is much more oriented towards models and practical methods than towards
learning theory.

Cross-validation goes back in statistical practice for many decades, though often
as a very informal tool. One of the first important papers on the subject was Stone
(1974), goes over the earlier history. Arlot and Celisse (2010) is a good recent review.

On model selection in general, the best recent summary is the book by Claeskens
and Hjort (2008); it is more theoretically demanding than this book, but includes
many real-data examples.

White (1994) is a thorough treatment of parameter estimation in models which
may be mis-specified, and some general tests for mis-specification. It also briefly dis-
cusses the interpretation of parameters in mis-specified models. That very important
topic deserves a more in-depth treatment, but I don’t know of one.

3.7 Exercises
1. Suppose that one of our model classes contains the true and correct model, but

we also consider more complicated and flexible model classes. Does the bias-
variance trade-off mean that we will over-shoot the true model, and always go
for something more flexible, when we have enough data? (This would mean
there was such a thing as too much data to be reliable.)

2. Derive the formula for the generalization risk in the situation depicted in Fig-
ure 3.1, as given by the true.risk function in the code for that figure. In
particular, explain to yourself where the constants 0.52 and 1/12 come from.

04:00 Wednesday 21st January, 2015

