
19:55 Thursday 22nd January, 2015
Copyright c�Cosma Rohilla Shalizi; do not distribute without permission

updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Chapter 4

Using Nonparametric
Smoothing in Regression

Having spent long enough running down linear regression, and thought through
evaluating predictive models, it is time to turn to constructive alternatives, which are
(also) based on smoothing.

Recall the basic kind of smoothing we are interested in: we have a response vari-
able Y , some input variables which we bind up into a vector X , and a collection of
data values, (x1, y1), (x2, y2), . . . xn , yn). By “smoothing”, I mean that predictions are
going to be weighted averages of the observed responses in the training data:

br (x) =
nX

i=1

yi w(x, xi , h) (4.1)

Most smoothing methods have a control setting, here written h, that says how
much to smooth. With k nearest neighbors, for instance, the weights are 1/k if xi
is one of the k-nearest points to x, and w = 0 otherwise, so large k means that each
prediction is an average over many training points. Similarly with kernel regression,
where the degree of smoothing is controlled by the bandwidth.

Why do we want to do this? How do we pick how much smoothing to do?

4.1 How Much Should We Smooth?
When we smooth very little (h ! 0), then we can match very small, fine-grained or
sharp aspects of the true regression function, if there are such. That is, less smoothing
leads to less bias. At the same time, less smoothing means that each of our predictions
is going to be an average over (in effect) fewer observations, making the prediction
noisier. Smoothing less increases the variance of our estimate. Since

(total error) = (noise)+ (bias)2+ (variance) (4.2)

78

79 4.1. HOW MUCH SHOULD WE SMOOTH?

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Smoothing

G
en

er
al

iz
at

io
n

er
ro

r

curve(2*x^4,from=0,to=1,lty=2,xlab="Smoothing",ylab="Generalization error")
curve(0.12+x-x,lty=3,add=TRUE)
curve(1/(10*x),lty=4,add=TRUE)
curve(0.12+2*x^4+1/(10*x),add=TRUE)

Figure 4.1: Decomposition of the generalization error of smoothing: the total er-
ror (solid) equals process noise (dotted) plus approximation error from smoothing
(=squared bias, dashed) and estimation variance (dot-and-dash). The numerical values
here are arbitrary, but the functional forms (squared bias / h4, variance / n�1h�1)
are representative of kernel regression (Eq. 4.12.

(Eq. 1.26), if we plot the different components of error as a function of h, we typically
get something that looks like Figure 4.1. Because changing the amount of smooth-
ing has opposite effects on the bias and the variance, there is an optimal amount of
smoothing, where we can’t reduce one source of error without increasing the other.
We therefore want to find that optimal amount of smoothing, which is where cross-
validation comes in.

You should note, at this point, that the optimal amount of smoothing depends
on the real regression curve, our smoothing method, and how much data we have.
This is because the variance contribution generally shrinks as we get more data.1 If
we get more data, we go from Figure 4.1 to Figure 4.2. The minimum of the over-all
error curve has shifted to the left, and we should smooth less.

Strictly speaking, parameters are properties of the data-generating process alone,
so the optimal amount of smoothing is not really a parameter. If you do think of it as
a parameter, you have the problem of why the “true” value changes as you get more
data. It’s better thought of as a setting or control variable in the smoothing method,
to be adjusted as convenient.

1Sometimes bias changes as well. Noise does not (why?).

19:55 Thursday 22nd January, 2015

4.1. HOW MUCH SHOULD WE SMOOTH? 80

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Smoothing

G
en

er
al

iz
at

io
n

er
ro

r

curve(2*x^4,from=0,to=1,lty=2,xlab="Smoothing",ylab="Generalization error")
curve(0.12+x-x,lty=3,add=TRUE)
curve(1/(10*x),lty=4,add=TRUE,col="grey")
curve(0.12+2*x^2+1/(10*x),add=TRUE,col="grey")
curve(1/(30*x),lty=4,add=TRUE)
curve(0.12+2*x^4+1/(30*x),add=TRUE)

Figure 4.2: Consequences of adding more data to the components of error: noise
(dotted) and bias (dashed) are unchanged, but the new variance curve (dotted and
dashed, black) is to the left of the old (greyed), so the new over-all error curve (solid
black) is lower, and has its minimum at a smaller amount of smoothing than the old
(solid grey).

19:55 Thursday 22nd January, 2015

81 4.2. ADAPTING TO UNKNOWN ROUGHNESS

4.2 Adapting to Unknown Roughness

Figure 4.3, which graphs two functions, f and g . Both are “smooth” functions in the
mathematical sense2. We could Taylor-expand both functions to approximate their
values anywhere, just from knowing enough derivatives at one point x0.3 If instead
of knowing the derivatives at x0 we have the values of the functions at a sequence of
points x1, x2, . . . xn , we could use interpolation to fill out the rest of the curve. Quan-
titatively, however, f (x) is less smooth than g (x) — it changes much more rapidly,
with many reversals of direction. For the same degree of accuracy in the interpola-
tion f (·) needs more, and more closely spaced, training points xi than does g (·).

Now suppose that we don’t get to actually get to see f (x) and g (x), but rather
just f (x)+✏ and g (x)+⌘, where ✏ and ⌘ are noise. (To keep things simple I’ll assume
they’re constant-variance, IID Gaussian noises, say with � = 0.15.) The data now
look something like Figure 4.4. Can we recover the curves?

As remarked in Chapter 1, if we had many measurements at the same x, then
we could find the expectation value by averaging: the regression function r (x) =
E[Y |X = x], so with multiple observations at xi , the mean of the corresponding yi
would (by the law of large numbers) converge on r (x). Generally, however, we have
at most one measurement per value of x, so simple averaging won’t work. Even if we
just confine ourselves to the xi where we have observations, the mean-squared error
will always be �2, the noise variance. However, our estimate would be unbiased.

Smoothing methods try to use multiple measurements at points xi which are near
the point of interest x. If the regression function is smooth, as we’re assuming it is,
r (xi) will be close to r (x). Remember that the mean-squared error is the sum of bias
(squared) and variance. Averaging values at xi 6= x is going to introduce bias, but
averaging independent terms together also reduces variance. If smoothing gets rid of
more variance than it adds bias, we come out ahead.

Here’s a little math to see it. Let’s assume that we can do a first-order Taylor
expansion (Figure C.1), so

r (xi)⇡ r (x)+ (xi � x)r 0(x) (4.3)

and

yi ⇡ r (x)+ (xi � x)r 0(x)+ ✏i (4.4)

Now we average: to keep the notation simple, abbreviate the weight w(xi , x, h) by

2They are “C1”: not just continuous, but with continuous derivatives to all orders.
3See App. C for a refresher on Taylor expansions and Taylor series.

19:55 Thursday 22nd January, 2015

4.2. ADAPTING TO UNKNOWN ROUGHNESS 82

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0
.0

0
.5

1
.0

x

f(
x
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.4

0
.8

1
.2

x

g
(x
)

par(mfcol=c(2,1))
true.f <- function(x) {sin(x)*cos(20*x)}
true.g <- function(x) {log(x+1)}
curve(true.f(x),from=0,to=3,xlab="x",ylab=expression(f(x)))
curve(true.g(x),from=0,to=3,xlab="x",ylab=expression(g(x)))

Figure 4.3: Two curves for the running example. Above, f (x); below, g (x). (As it
happens, f (x) = sin x cos20x, and g (x) = log x + 1, but that doesn’t really matter.)

19:55 Thursday 22nd January, 2015

83 4.2. ADAPTING TO UNKNOWN ROUGHNESS

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

1.
0

x

f(x
)+

ε

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

g(
x)
+
η

x = runif(300,0,3)
yf = true.f(x)+rnorm(length(x),0,0.15)
yg = true.g(x)+rnorm(length(x),0,0.15)
par(mfcol=c(2,1))
plot(x,yf,xlab="x",ylab=expression(f(x)+epsilon))
curve(true.f(x),col="grey",add=TRUE)
plot(x,yg,xlab="x",ylab=expression(g(x)+eta))
curve(true.g(x),col="grey",add=TRUE)

Figure 4.4: The curves of Fig. 4.3 (in grey), plus IID Gaussian noise with mean 0 and
standard deviation 0.15. The two curves are sampled at the same x values, but with
different noise realizations.

19:55 Thursday 22nd January, 2015

4.2. ADAPTING TO UNKNOWN ROUGHNESS 84

just wi .

br (x) =
nX

i=1

yi wi (4.5)

=
nX

i=1

(r (x)+ (xi � x)r 0(x)+ ✏i)wi (4.6)

= r (x)+
nX

i=1

wi✏i + r 0(x)
nX

i=1

wi (xi � x) (4.7)

br (x)� r (x) =
nX

i=1

wi✏i + r 0(x)
nX

i=1

wi (xi � x) (4.8)

E
î
(br (x)� r (x))2

ó
= �2

nX
i=1

w2
i +E

2
64

r 0(x)
nX

i=1

wi (xi � x)

!2
3
75 (4.9)

(Remember that:
P

wi = 1; E
⇥
✏i
⇤
= 0; ✏ is uncorrelated with everything; and

Var
⇥
✏i
⇤
= �2.)

The first term on the final right-hand side is an estimation variance, which will
tend to shrink as n grows. (If we just do a simple global mean, wi = 1/n for all i ,
so we get �2/n, just like in baby stats.) The second term, an expectation, on the
other hand, is bias, which grows as xi gets further from x, and as the magnitudes of
the derivatives grow, i.e., its growth varies with how smooth or wiggly the regression
function is. For smoothing to work, wi had better shrink as xi � x and r 0(x) grow.4
Finally, all else being equal, wi should also shrink with n, so that the over-all size of
the sum shrinks as we get more data.

To illustrate, let’s try to estimate f (1.6) and g (1.6) from the noisy observations.
We’ll try a simple approach, just averaging all values of f (xi) + ✏i and g (xi) + ⌘i for
1.5< xi < 1.7 with equal weights. For f , this gives 0.46, while f (1.6) = 0.83. For g ,
this gives 0.91, with g (1.6) = 0.95. (See figure 4.5.) The same window size creates a
much larger bias with the rougher, more rapidly changing f than with the smoother,
more slowly changing g . Varying the size of the averaging window will change the
amount of error, and it will change it in different ways for the two functions.

If one does a more careful second-order Taylor expansion like that leading to Eq.
4.9, specifically for kernel regression, one can show that the bias at x is

E
⇥

r̂ (x)� r (x)|X1 = x1, . . .Xn = xn
⇤
= h2

ñ
1
2

r 00(x)+
r 0(x) f 0(x)

f (x)

ô
�2

K+o(h2) (4.10)

where f is the density of x, and �2
K =

R
u2K(u)d u, the variance of the probability

density corresponding to the kernel5. The r 00 term just comes from the second-order
part of the Taylor expansion. To see where the r 0 f 0 term comes from, imagine first

4The higher derivatives of r also matter, since we should really keep more than just the first term in
the Taylor expansion. The details get messy, but Eq. 4.12 below gives the upshot for kernel smoothing.

5If you are not familiar with the “order” symbols O and o, see Appendix B.

19:55 Thursday 22nd January, 2015

85 4.2. ADAPTING TO UNKNOWN ROUGHNESS

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

1.
0

x

f(x
)+

ε

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

g(
x)
+
η

par(mfcol=c(2,1))

x.focus <- 1.6; x.lo <- x.focus-0.1; x.hi <- x.focus+0.1

colors=ifelse((x<x.hi)&(x>x.lo),"black","grey")

plot(x,yf,xlab="x",ylab=expression(f(x)+epsilon),col=colors)

curve(true.f(x),col="grey",add=TRUE)

points(x.focus,mean(yf[(x<x.hi)&(x>x.lo)]),pch=18,cex=2)

plot(x,yg,xlab="x",ylab=expression(g(x)+eta),col=colors)

curve(true.g(x),col="grey",add=TRUE)

points(x.focus,mean(yg[(x<x.hi)&(x>x.lo)]),pch=18,cex=2)

Figure 4.5: Relationship between smoothing and function roughness. In both panels
we estimate the value of the regression function at x = 1.6 by averaging observations
where 1.5 < xi < 1.7 (black points, others are “ghosted” in grey). The location of
the average in shown by the large black diamond. This works poorly for the rough
function f (x) in the upper panel (the bias is large), but much better for the smoother
function in the lower panel (the bias is small).

19:55 Thursday 22nd January, 2015

4.2. ADAPTING TO UNKNOWN ROUGHNESS 86

0.01 0.02 0.05 0.10 0.20 0.50 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Radius of averaging window

A
bs

ol
ut

e
va

lu
e

of
 e

rr
or

loc_ave_err <- function(h,y,y0) {abs(y0-mean(y[(x.focus-h < x) & (x.focus+h>x)]))}

yf0=true.f(x.focus); yg0=true.g(x.focus)

f.LAE = sapply(1:100/100,loc_ave_err,y=yf,y0=yf0)

g.LAE = sapply(1:100/100,loc_ave_err,y=yg,y0=yg0)

plot(1:100/100,f.LAE,xlab="Radius of averaging window",ylim=c(0,1.1),

ylab="Absolute value of error",type="l",log="x")

lines(1:100/100,g.LAE,lty="dashed")

abline(h=0.15,col="grey")

Figure 4.6: Error of estimating f (1.6) (solid line) and g (1.6) (dashed) from averaging
observed values at 1.6� h < x < 1.6+ h, for different radii h. The grey is � , the
standard deviation of the noise — how can the estimation error be smaller than that?

19:55 Thursday 22nd January, 2015

87 4.2. ADAPTING TO UNKNOWN ROUGHNESS

that x is a mode of the distribution, so f 0(x) = 0. As h shrinks, only training points
where Xi is very close to x will have any weight in r̂ (x), and their distribution will
be roughly symmetric around x (at least once h is sufficiently small). So, at mode,
E
⇥

w(Xi , x, h)(Xi � x) r̂ (x)
⇤ ⇡ 0. Away from a mode, there will tend to be more

training points on one side or the other of x, depending on the sign of f 0(x), and this
induces a bias. The tricky part of the analysis is concluding that the bias has exactly
the form given above.6

One can also work out the variance of the kernel regression estimate,

Var
⇥

r̂ (x)|X1 = x1, . . .Xn = xn
⇤
=
�2(x)R(K)

nh f (x)
+ o((nh)�1) (4.11)

where R(K) =
R

K2(u)d u. Roughly speaking, the width of the region where the
kernel puts non-trivial weight is about h, so there will be about nh f (x) training
points available to estimate r̂ (x). Each of these has a yi value, equal to r (x) plus
noise of variance �2(x). The final factor of R(K) accounts for the average weight.

Putting the bias together with the variance, we get an expression for the mean
squared error of the kernel regression at x:

M SE(x) = �2(x)+h4
ñ

1
2

r 00(x)+
r 0(x) f 0(x)

f (x)

ô2

(�2
K)

2+
�2(x)R(K)

nh f (x)
+o(h4)+o(1/nh)

(4.12)
Eq. 4.12 tells us that, in principle, there is a single optimal choice of bandwidth h, an
optimal degree of smoothing. We could find it by taking Eq. 4.12, differentiating with
respect to the bandwidth, and setting everything to zero (neglecting the o terms):

0 = 4h3
ñ

1
2

r 00(x)+
r 0(x) f 0(x)

f (x)

ô2

(�2
K)

2� �
2(x)R(K)
nh2 f (x)

(4.13)

h =

0
BB@n

4 f (x)(�2
K)

2
h

1
2 r 00(x)+ r 0(x) f 0(x)

f (x)

i2

�2(x)R(K)

1
CCA

�1/5

(4.14)

Of course, this expression for the optimal h involves the unknown derivatives r 0(x)
and r 00(x), plus the unknown density f (x) and its unknown derivative f 0(x). But
if we knew the derivative of the regression function, we would basically know the
function itself (just integrate), so we seem to be in a vicious circle, where we need to
know the function before we can learn it.7

One way of expressing this is to talk about how well a smoothing procedure
would work, if an Oracle were to tell us the derivatives, or (to cut to the chase) the
optimal bandwidth hopt. Since most of us do not have access to such oracles, we

6Exercise 1 sketches the demonstration for the special case of the uniform (“boxcar”) kernel.
7You may be wondering why I keep talking about the optimal bandwidth, when Eq. 4.14 makes it

seem that the bandwidth should vary with x. One can go through pretty much the same sort of analysis
in terms of the expected values of the derivatives, and the qualitative conclusions will be the same, but the
notational overhead is even worse. Alternatively, there are techniques for variable-bandwidth smoothing.

19:55 Thursday 22nd January, 2015

4.2. ADAPTING TO UNKNOWN ROUGHNESS 88

need to estimate hopt. Once we have this estimate, bh, then we get out weights and
our predictions, and so a certain mean-squared error. Basically, our MSE will be the
Oracle’s MSE, plus an extra term which depends on how far bh is to hopt, and how
sensitive the smoother is to the choice of bandwidth.

What would be really nice would be an adaptive procedure, one where our actual
MSE, using bh, approaches the Oracle’s MSE, which it gets from hopt. This would
mean that, in effect, we are figuring out how rough the underlying regression function
is, and so how much smoothing to do, rather than having to guess or be told. An
adaptive procedure, if we can find one, is a partial8 substitute for prior knowledge.

4.2.1 Bandwidth Selection by Cross-Validation
The most straight-forward way to pick a bandwidth, and one which generally man-
ages to be adaptive, is in fact cross-validation; k-fold CV is usually somewhat better
than leave-one-out, but the latter often works acceptably too. The usual procedure is
to come up with an initial grid of candidate bandwidths, and then use cross-validation
to estimate how well each one of them would generalize. The one with the lowest
error under cross-validation is then used to fit the regression curve to the whole data9.

Code Example 3 shows how it would work in R, with a one predictor variable,
borrowing the npreg function from the np library (Hayfield and Racine, 2008).10

The return value has three parts. The first is the actual best bandwidth. The
second is a vector which gives the cross-validated mean-squared mean-squared errors
of all the different bandwidths in the vector bandwidths. The third component is an
array which gives the MSE for each bandwidth on each fold. It can be useful to know
things like whether the difference between the CV score of the best bandwidth and
the runner-up is bigger than their fold-to-fold variability.

Figure 4.7 plots the CV estimate of the (root) mean-squared error versus band-
width for our two curves. Figure 4.8 shows the data, the actual regression functions
and the estimated curves with the CV-selected bandwidths. This illustrates why pick-
ing the bandwidth by cross-validation works: the curve of CV error against band-
width is actually a pretty good approximation to the true curve of generalization
error (which would look like Figure 4.1), so optimizing the CV error is close to opti-
mizing the generalization error.

Notice, by the way, in Figure 4.7, that the rougher curve is more sensitive to the
choice of bandwidth, and that the smoother curve always has a lower mean-squared
error. Also notice that, at the minimum, one of the cross-validation estimates of
generalization error is smaller than the true system noise level; this shows that cross-
validation doesn’t completely correct for optimism11.

8Only partial, because we’d always do better if the Oracle would just tell us hopt.
9Since the optimal bandwidth is / n�1/5, and the training sets in cross-validation are smaller than the

whole data set, one might adjust the bandwidth proportionally. However, if n is small enough that this
makes a big difference, the sheer noise in bandwidth estimation usually overwhelms this.

10The package has methods for automatically selecting bandwidth by cross-validation — see §4.6 below.
11Tibshirani and Tibshirani (2009) gives a fairly straightforward way to adjust the estimate of the gen-

eralization error for the selected model or bandwidth, but that doesn’t influence the choice of the best
bandwidth.

19:55 Thursday 22nd January, 2015

89 4.2. ADAPTING TO UNKNOWN ROUGHNESS

cv_bws_npreg <- function(x,y,bandwidths=(1:50)/50,nfolds=10) {
require(np)
n <- length(x)
stopifnot(n> 1, length(y) == n)
stopifnot(length(bandwidths) > 1)
stopifnot(nfolds > 0, nfolds==trunc(nfolds))

fold_MSEs <- matrix(0,nrow=nfolds,ncol=length(bandwidths))
colnames(fold_MSEs) = bandwidths

case.folds <- sample(rep(1:nfolds,length.out=n))
for (fold in 1:nfolds) {

train.rows = which(case.folds!=fold)
x.train = x[train.rows]
y.train = y[train.rows]
x.test = x[-train.rows]
y.test = y[-train.rows]
for (bw in bandwidths) {

fit <- npreg(txdat=x.train,tydat=y.train,
exdat=x.test,eydat=y.test,bws=bw)

fold_MSEs[fold,paste(bw)] <- fit$MSE
}

}
CV_MSEs = colMeans(fold_MSEs)
best.bw = bandwidths[which.min(CV_MSEs)]
return(list(best.bw=best.bw,CV_MSEs=CV_MSEs,fold_MSEs=fold_MSEs))

}

Code Example 3: Cross-validation for univariate kernel regression (see online for
comments). The colnames trick: component names have to be character strings;
other data types will be coerced into characters when we assign them to be names.
Later, when we want to refer to a bandwidth column by its name, we wrap the name
in another coercing function, such as paste. — The vector of default bandwidths is
only for illustration; it should not be used blindly on data, or in homework.

19:55 Thursday 22nd January, 2015

4.2. ADAPTING TO UNKNOWN ROUGHNESS 90

0.005 0.010 0.020 0.050 0.100 0.200 0.500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Bandwidth

R
oo

t C
V

 M
S

E

fbws <- cv_bws_npreg(x,yf,bandwidths=(1:100)/200)
gbws <- cv_bws_npreg(x,yg,bandwidths=(1:100)/200)
plot(1:100/200,sqrt(fbws$CV_MSEs),xlab="Bandwidth",

ylab="Root CV MSE",type="l",ylim=c(0,0.6),log="x")
lines(1:100/200,sqrt(gbws$CV_MSEs),lty="dashed")
abline(h=0.15,col="grey")

Figure 4.7: Cross-validated estimate of the (root) mean-squard error as a function of
the bandwidth (solid curve, f (x) data; dashed, g (x) data; grey line, true noise �).
Notice that the rougher curve is more sensitive to the choice of bandwidth, and that
the smoother curve is more predictable at every choice of bandwidth. CV selects
bandwidths of 0.020 for f and 0.055 for g .

19:55 Thursday 22nd January, 2015

91 4.2. ADAPTING TO UNKNOWN ROUGHNESS

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

1.
0

x

f(x
)+

ε

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

g(
x)
+
η

x.ord=order(x)

par(mfcol=c(2,1))

plot(x,yf,xlab="x",ylab=expression(f(x)+epsilon))

fhat <- npreg(bws=fbws$best.bw,txdat=x,tydat=yf)

lines(x[x.ord],fitted(fhat)[x.ord],lwd=4)

curve(true.f(x),col="grey",add=TRUE,lwd=2)

plot(x,yg,xlab="x",ylab=expression(g(x)+eta))

ghat <- npreg(bws=fbws$best.bw,txdat=x,tydat=yg)

lines(x[x.ord],fitted(ghat)[x.ord],lwd=4)

curve(true.g(x),col="grey",add=TRUE,lwd=2)

Figure 4.8: Data from the running examples (circles), true regression functions (grey)
and kernel estimates of regression functions with CV-selected bandwidths (black). R
NOTES: The x values aren’t sorted, so we need to put them in order before drawing lines con-
necting the fitted values; then we need to put the fitted values in the same order. Alternately,
we could have used predict on the sorted values, as in §4.3.

19:55 Thursday 22nd January, 2015

4.2. ADAPTING TO UNKNOWN ROUGHNESS 92

We still need to come up with an initial set of candidate bandwidths. For reasons
which will drop out of the math in Chapter 16, it’s often reasonable to start around
1.06sX /n1/5, where sX is the sample standard deviation of X . However, it is hard to
be very precise about this, and good results often require some honest trial and error.

4.2.2 Convergence of Kernel Smoothing and Bandwidth Scaling
Go back to Eq. 4.12 for the mean squared error of kernel regression. As we said, it in-
volves some unknown constants, but we can bury them inside big-O order symbols,
which also absorb the little-o remainder terms:

M SE(h) = �2(x)+O(h4)+O(1/nh) (4.15)

The �2(x) term is going to be there no matter what, so let’s look at the excess risk
over and above the intrinsic noise:

M SE(h)��2(x) =O(h4)+O(1/nh) (4.16)

That is, the (squared) bias from the kernel’s only approximately getting the curve
is proportional to the fourth power of the bandwidth, but the variance is inversely
proportional to the product of sample size and bandwidth. If we kept h constant and
just let n !1, we’d get rid of the variance, but we’d be left with the bias. To get
the MSE to go to zero, we need to let the bandwidth h change with n — call it hn .
Specifically, suppose hn ! 0 as n !1, but nhn !1. Then, by Eq. 4.16, the risk
(generalization error) of kernel smoothing is approaching that of the ideal predictor.

What is the best bandwidth? We saw in Eq. 4.14 that it is (up to constants)

hopt =O(n�1/5) (4.17)

If we put this bandwidth into Eq. 4.16, we get

M SE(h)��2(x) =O
⇣Ä

n�1/5
ä4⌘
+O

⇣
n�1
Ä

n�1/5
ä�1⌘

=O
Ä

n�4/5
ä
+O

Ä
n�4/5

ä
=O

Ä
n�4/5

ä

(4.18)
That is, the excess prediction error of kernel smoothing over and above the system
noise goes to zero as 1/n0.8. Notice, by the way, that the contributions of bias and
variance to the generalization error are both of the same order, n�0.8.

Is this fast or small? We can compare it to what would happen with a parametric
model, say with parameter ✓. (For linear regression, ✓ would be the vector of slopes
and the intercept.) The optimal value of the parameter, ✓0, minimizes the mean-
squared error. At ✓0, the parametric model has MSE

M SE(✓0) = �
2(x)+ b (x,✓0) (4.19)

where b is the bias of the parametric model; this is zero when the parametric model
is true12. Since ✓0 is unknown and must be estimated, one typically has b✓ � ✓0 =

12When the model is wrong, the optimal parameter value ✓0 is often called the pseudo-truth.

19:55 Thursday 22nd January, 2015

93 4.3. KERNEL REGRESSION WITH MULTIPLE INPUTS

O(1/
p

n). Because the error is minimized at ✓0, the first derivatives of M SE at ✓0
are 0. Doing a second-order Taylor expansion of the parametric model contributes
an error O((b✓�✓0)2), so altogether

M SE(b✓)��2(x) = b (x,✓0)+O(1/n) (4.20)

This means parametric models converge more quickly (n�1 goes to zero faster than
n�0.8), but they typically converge to the wrong answer (b 2 > 0). Kernel smoothing
converges more slowly, but always converges to the right answer13.

This doesn’t change much if we use cross-validation. Writing ‘hCV for the band-
width picked by cross-validation, it turns out (Simonoff, 1996, ch. 5) that

‘hCV � hopt

hopt
� 1=O(n�1/10) (4.21)

Given this, one concludes (Exercise 2) that the MSE of using ‘hCV is also O(n�4/5).

4.2.3 Summary on Kernel Smoothing in 1D
Suppose that X and Y are both one-dimensional, and the true regression function
r (x) = E[Y |X = x] is continuous and has first and second derivatives14. Suppose
that the noise around the true regression function is uncorrelated between different
observations. Then the bias of kernel smoothing, when the kernel has bandwidth h,
is O(h2), and the variance, after n samples, is O(1/nh). The optimal bandwidth is
O(n�1/5), and the excess mean squared error of using this bandwidth is O(n�4/5). If
the bandwidth is selected by cross-validation, the excess risk is still O(n�4/5).

4.3 Kernel Regression with Multiple Inputs
For the most part, when I’ve been writing out kernel regression I have been treating
the input variable x as a scalar. There’s no reason to insist on this, however; it could
equally well be a vector. If we want to enforce that in the notation, say by writing
~x = (x1, x2, . . . xd), then the kernel regression of y on ~x would just be

r̂ (~x) =
nX

i=1

yi
K(~x � ~xi)Pn
j=1 K(~x � ~xj)

(4.22)

In fact, if we want to predict a vector, we’d just substitute ~yi for yi above.

13It is natural to wonder if one couldn’t do better than kernel smoothing’s O(n�4/5)while still having no
asymptotic bias. Resolving this is very difficult, but the answer turns out to be “no” in the following sense
(Wasserman, 2006). Any curve-fitting method which can learn arbitrary smooth regression functions will
have some curves where it cannot converge any faster than O(n�4/5). (In the jargon, that is the minimax
rate.) Methods which converge faster than this for some kinds of curves have to converge more slowly for
others. So this is the best rate we can hope for on truly unknown curves.

14Or can be approximated to arbitrarily closely by such functions.

19:55 Thursday 22nd January, 2015

4.4. INTERPRETING SMOOTHERS: PLOTS 94

To make this work, we need kernel functions for vectors. For scalars, I said that
any probability density function would work so long as it had mean zero, and a finite,
strictly positive (not 0 or1) variance. The same conditions carry over: any distribu-
tion over vectors can be used as a multivariate kernel, provided it has mean zero, and
the variance matrix is finite and strictly positive15. In practice, the overwhelmingly
most common and practical choice is to use product kernels16.

A product kernel simply uses a different kernel for each component, and then
multiplies them together:

K(~x � ~xi) =K1(x
1� x1

i)K2(x
2� x2

i) . . .Kd (x
d � xd

i) (4.23)

Now we just need to pick a bandwidth for each kernel, which in general should not
be equal — say ~h = (h1, h2, . . . hd). Instead of having a one-dimensional error curve,
as in Figure 4.1 or 4.2, we will have a d -dimensional error surface, but we can still use
cross-validation to find the vector of bandwidths that generalizes best. We generally
can’t, unfortunately, break the problem up into somehow picking the best bandwidth
for each variable without considering the others. This makes it slower to select good
bandwidths in multivariate problems, but still often feasible.

(We can actually turn the need to select bandwidths together to our advantage. If
one or more of the variables are irrelevant to our prediction given the others, cross-
validation will tend to give them the maximum possible bandwidth, and smooth
away their influence. In Chapter 16, we’ll look at formal tests based on this idea.)

Kernel regression will recover almost any regression function. This is true even
when the true regression function involves lots of interactions among the input vari-
ables, perhaps in complicated forms that would be very hard to express in linear re-
gression. For instance, Figure 4.9 shows a contour plot of a reasonably complicated
regression surface, at least if one were to write it as polynomials in x1 and x2, which
would be the usual approach. Figure 4.11 shows the estimate we get with a product of
Gaussian kernels and only 1000 noisy data points. It’s not perfect, of course (in par-
ticular the estimated contours aren’t as perfectly smooth and round as the true ones),
but the important thing is that we got this without having to know, and describe
in Cartesian coordinates, the type of shape we were looking for. Kernel smoothing
discovered the right general form.

There are limits to these abilities of kernel smoothers; the biggest one is that
they require more and more data as the number of predictor variables increases. We
will see later (Chapter 9) exactly how much data is required, generalizing the kind of
analysis done §4.2.2, and some of the compromises this can force us into.

4.4 Interpreting Smoothers: Plots
In a linear regression without interactions, it is fairly easy to interpret the coefficients.
The expected response changes by �i for a one-unit change in the i th input variable.

15Remember that for a matrix v to be “strictly positive”, it must be the case that for any vector ~a,
~a · v~a > 0. Covariance matrices are automatically non-negative, so we’re just ruling out the case of some
weird direction along which the distribution has zero variance.

16People do sometimes use multivariate Gaussians; we’ll glance at this in Chapter 15.

19:55 Thursday 22nd January, 2015

95 4.4. INTERPRETING SMOOTHERS: PLOTS

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1
2

3

0.2

0.4

0.6

0.8

x1
x2

y

x1.points <- seq(-3,3,length.out=100)

x2.points <- x1.points

x12grid <- expand.grid(x1=x1.points,x2=x2.points)

y <- matrix(0,nrow=100,ncol=100)

y <- outer(x1.points,x2.points,f)

library(lattice)

wireframe(y~x12grid$x1*x12grid$x2,scales=list(arrows=FALSE),

xlab=expression(x^1),ylab=expression(x^2),zlab="y")

Figure 4.9: An example of a regression surface that would be very hard to learn by
piling together interaction terms in a linear regression framework. (Can you guess
what the mystery function f is?) — wireframe is from the graphics library lattice.

19:55 Thursday 22nd January, 2015

4.4. INTERPRETING SMOOTHERS: PLOTS 96

-2
-1

0
1

2

-2

-1

0

1
2

0.0

0.2

0.4

0.6

0.8

1.0

x1
x2

y

x1.noise <- runif(1000,min=-3,max=3)

x2.noise <- runif(1000,min=-3,max=3)

y.noise <- f(x1.noise,x2.noise)+rnorm(1000,0,0.05)

noise <- data.frame(y=y.noise,x1=x1.noise,x2=x2.noise)

cloud(z~x*y,data=noise,col="black",scales=list(arrows=FALSE),

xlab=expression(x^1),ylab=expression(x^2),zlab="y")

Figure 4.10: 1000 points sampled from the surface in Figure 4.9, plus independent
Gaussian noise (s.d. = 0.05).

19:55 Thursday 22nd January, 2015

97 4.4. INTERPRETING SMOOTHERS: PLOTS

-3
-2

-1
0

1
2

3

-3

-2

-1

0

1
2

3

0.0

0.2

0.4

0.6

0.8

x1
x2

y

noise.np <- npreg(y~x1+x2,data=noise)

y.out <- matrix(0,100,100)

y.out <- predict(noise.np,newdata=x12grid)

wireframe(y.out~x12grid$x1*x12grid$x2,scales=list(arrows=FALSE),

xlab=expression(x^1),ylab=expression(x^2),zlab="y")

Figure 4.11: Gaussian kernel regression of the points in Figure 4.10. Notice that
the estimated function will make predictions at arbitrary points, not just the places
where there was training data.

19:55 Thursday 22nd January, 2015

4.5. AVERAGE PREDICTIVE COMPARISONS 98

The coefficients are also the derivatives of the expected response with respect to the
inputs. And it is easy to draw pictures of how the output changes as the inputs are
varied, though the pictures are somewhat boring (straight lines or planes).

As soon as we introduce interactions, all this becomes harder, even for parametric
regression. If there is an interaction between two components of the input, say x1 and
x2, then we can’t talk about the change in the expected response for a one-unit change
in x1 without saying what x2 is. We might average over x2 values, and we’ll see next
time a reasonable way of doing this, but the flat statement “increasing x1 by one unit
increases the response by �1” is just false, no matter what number we fill in for �1.
Likewise for derivatives; we’ll come back to them next time as well.

What about pictures? With only two input variables, we can make wireframe
plots like Figure 4.11, or contour or level plots, which will show the predictions for
different combinations of the two variables. But what if we want to look at one
variable at a time, or there are more than two input variables?

A reasonable way to produce a curve for each input variable is to set all the oth-
ers to some “typical” value, like their means or medians, and to then plot the pre-
dicted response as a function of the one remaining variable of interest (Figure 4.12).
Of course, when there are interactions, changing the values of the other inputs will
change the response to the input of interest, so it’s a good idea to produce a couple of
curves, possibly super-imposed (Figure 4.12 again).

If there are three or more input variables, we can look at the interactions of any
two of them, taken together, by fixing the others and making three-dimensional or
contour plots, along the same principles.

The fact that smoothers don’t give us a simple story about how each input is
associated with the response may seem like a disadvantage compared to using linear
regression. Whether it really is a disadvantage depends on whether there really is a
simple story to be told, and/or how much big a lie you are prepared to tell in order
to keep your story simple.

4.5 Average Predictive Comparisons
Suppose we have a linear regression model

Y =�1X1+�2X2+ ✏ (4.24)

and we want to know how much Y changes, on average, for a one-unit increase in
X1. The answer, as you know very well, is just �1:

[�1(X1+ 1)+�2X2]� [�1X1+�2X2] =�1 (4.25)

This is an interpretation of the regression coefficients which you are very used to
giving. But it fails as soon as we have interactions:

Y =�1X1+�2X2+�3X1X2+ ✏ (4.26)

Now the effect of increasing X1 by 1 is

[�1(X1+1)+�2X2+�3(X1+1)X2]�[�1X1+�2X2+�3X1X2] =�1+�3X2 (4.27)

19:55 Thursday 22nd January, 2015

99 4.5. AVERAGE PREDICTIVE COMPARISONS

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

y

new.frame <- data.frame(x=seq(-3,3,length.out=300),y=median(y.noise))
plot(new.frame$x,predict(noise.np,newdata=new.frame),

type="l",xlab=expression(x^1),ylab="y",ylim=c(0,1.0))
new.frame$y <- quantile(y.noise,0.25)
lines(new.frame$x,predict(noise.np,newdata=new.frame),lty=2)
new.frame$y <- quantile(y.noise,0.75)
lines(new.frame$x,predict(noise.np,newdata=new.frame),lty=3)

Figure 4.12: Predicted mean response as function of the first input coordinate x1 for
the example data, evaluated with the second coordinate x2 set to the median (solid),
its 25th percentile (dashed) and its 75th percentile (dotted). Note that the changing
shape of the partial response curve indicates an interaction between the two inputs.
Also, note that the model can make predictions at arbitrary coordinates, whether or
not there were any training points there.

19:55 Thursday 22nd January, 2015

4.5. AVERAGE PREDICTIVE COMPARISONS 100

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

curve(exp(7*x)/(1+exp(7*x)),from=-5,to=5,ylab="y")

Figure 4.13: The function of Eq. 4.28, with �= 7.

The right answer to “how much does the response change when X1 is increased by
one unit?” depends on the value of X2; it’s certainly not just “�1”.

We also can’t give just a single answer if there are nonlinearities. Suppose that the
true regression function is this:

Y =
e�X

1+ e�X
+ ✏ (4.28)

which looks like Figure 4.13, setting � = 7 (for luck). Moving x from �4 to �3
increases the response by 7.57⇥ 10�10, but the increase in the response from x =�1
to x = 0 is 0.499. Functions like this are very common in psychology, medicine
(dose-response curves for drugs), biology, etc., and yet we cannot sensibly talk about
the response to a one-unit increase in x. (We will come back to curves which look
like this in Chapter 12.)

More generally, let’s say we are regressing Y on a vector ~X , and want to assess
the impact of one component of the input on Y . To keep the use of subscripts and
superscripts to a minimum, we’ll write ~X = (u, ~V), where u is the coordinate we’re
really interested in. (It doesn’t have to come first, of course.) We would like to know
how much the prediction changes as we change u,

E
î

Y |~X = (u (2), ~v)ó�E
î

Y |~X = (u (1), ~v)ó (4.29)

and the change in the response per unit change in u,

E
î

Y |~X = (u (2), ~v)ó�E
î

Y |~X = (u (1), ~v)ó

u (2)� u (1)
(4.30)

19:55 Thursday 22nd January, 2015

101 4.6. COMPUTATIONAL ADVICE: NPREG

Both of these, but especially the latter, are called the predictive comparison. Note
that both of them, as written, depend on u (1) (the starting value for the variable of
interest), on u (2) (the ending value), and on ~v (the other variables, held fixed during
this comparison). We have just seen that in a linear model without interactions, u (1),
u (2) and ~v all go away and leave us with the regression coefficient on u. In nonlinear
or interacting models, we can’t simplify so much.

Once we have estimated a regression model, we can chose our starting point,
ending point and context, and just plug in to Eq. 4.29 or Eq. 4.30. (Or problem 9 in
problem set 32.) But suppose we do want to boil this down into a single number for
each input variable — how might we go about this?

One good answer, which comes from Gelman and Pardoe (2007), is just to average
4.30 over the data17. More specifically, we have as our average predictive compari-
son for u Pn

i=1

Pn
j=1 (r̂ (uj , ~vi)� r̂ (ui , ~vi))sign(uj � ui)Pn
i=1

Pn
j=1 (uj � ui)sign(uj � ui)

(4.31)

where i and j run over data points, r̂ is our estimated regression function, and the
sign function is defined by sign(x) = +1 if x > 0, = 0 if x = 0, and =�1 if x < 0. We
use the sign function this way to make sure we are always looking at the consequences
of increasing u.

The average predictive comparison is a reasonable summary of how rapidly we
should expect the response to vary as u changes slightly. But we need to remember
that once the model is nonlinear or has interactions, it’s just not possible to boil the
whole the predictive relationship between u and y into one number. In particular,
the value of Eq. 4.31 is going to depend on the distribution of u (and possibly of v),
even when the regression function is unchanged. (See Exercise 3.)

4.6 Computational Advice: npreg
The homework will call for you to do nonparametric regression with the np package
— which we’ve already looked at a little. It’s a powerful bit of software, but it can
take a bit of getting used to. This section is not a substitute for reading Hayfield and
Racine (2008), but should get you started.

We’ll look at a synthetic-data example with four variables: a quantitative response
Y , two quantitative predictors X and Z , and a categorical predictor U , which can be
either “A” or “B”. The true model is

Y = ✏+ 20X 2+
⇢

Z if W =A
10eZ/(1+ eZ) if W = B (4.32)

with ✏⇠N (0,0.05). Code Example 4 generates some data from this model for us.
The basic function for fitting a kernel regression in np is npreg — conceptually,

it’s the equivalent of lm. Like lm, it takes a formula argument, which specifies the

17Actually, they propose something a bit more complicated, which takes into account the uncertainty
in our estimate of the regression function, via bootstrapping (Chapter 6).

19:55 Thursday 22nd January, 2015

4.6. COMPUTATIONAL ADVICE: NPREG 102

make.demo.df <- function(n) {
demo.func <- function(x,z,w)

20*x^2 + ifelse(w=="A",z,10*exp(z)/(1+exp(z))
}
x <- runif(n,-1,1)
z <- rnorm(n,0,10)
w <- sample(c("A","B"),size=n,replace=TRUE)
y <- demo.func(x,z,w)+rnorm(n,0,0.05)
return(data.frame(x=x,y=y,z=z,w=w))

}
demo.df <- make.demo.df(100)

Code Example 4: Generating data from Eq. 4.32.

model, and a data argument, which is a data frame containing the variables included
in the formula. The basic idea is to do something like this:

demo.np1 <- npreg(y ~ x + z, data=demo.df)

The variables on the right-hand side of the formula are the predictors; we use + to
separate them. Kernel regression will automatically include interactions between all
variables, so there is no special notation for interactions. Similarly, there is no point
in either including or excluding intercepts. If we wanted to transform either a predic-
tor variable or the response, as in lm, we can do so. Run like this, npreg will try to
determine the best bandwidths for the predictor variables, based on a sophisticated
combination of cross-validation and optimization.

Let’s look at the output of npreg:

> summary(demo.np1)
Regression Data: 100 training points, in 2 variable(s)

x z
Bandwidth(s): 0.1436012 4.951203
Kernel Regression Estimator: Local-Constant
Bandwidth Type: Fixed
Residual standard error: 3.832559
R-squared: 0.8703033
Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 2

The main things here are the bandwidths. We also see the root mean squared error
on the training data. Note that this is the in-sample root MSE; if we wanted the
in-sample MSE, we could do

> demo.np1$MSE
[1] 14.68851

(You can check that this is the square of the residual standard error above.) If we want
the cross-validated MSE used to pick the bandwidths, that’s

19:55 Thursday 22nd January, 2015

103 4.6. COMPUTATIONAL ADVICE: NPREG

x

-0.5

0.0

0.5

z

-20

-10

0

10
20
30

y

0

10

20

30

[theta= 40, phi= 10]

plot(demo.np1,theta=40,view="fixed")

Figure 4.14: Plot of the kernel regression with just two predictor variables. (See
help(npplot) for plotting options.

> demo.np1bwsfval
[1] 25.41536

The fitted and residuals functions work on these objects just like they do in lm
objects, while the coefficients and confint functions do not. (Why?)

The predict function also works like it does for lm, expecting a data frame con-
taining columns whose names match those in the formula used to fit the model:

> predict(demo.np1, newdata=data.frame(x=-1,z=5))
[1] 21.45737

With two predictor variables, there is a nice three-dimensional default plot (Figure
4.14).

Kernel functions can also be defined for categorical and ordered variables. These
can be included in the formula by wrapping the variable in factor() or ordered(),
respectively:

> (demo.np3 <- npreg(y~x+z+factor(w),data=demo.df))
Regression Data: 100 training points, in 3 variable(s)

x z factor(w)
Bandwidth(s): 0.08896624 2.617518 0.005083181
Kernel Regression Estimator: Local-Constant
Bandwidth Type: Fixed
Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 2
Unordered Categorical Kernel Type: Aitchison and Aitken

19:55 Thursday 22nd January, 2015

4.6. COMPUTATIONAL ADVICE: NPREG 104

No. Unordered Categorical Explanatory Vars.: 1

Again, there’s no point, or need, to indicate interactions. Including the extra variable,
not surprisingly, improves the cross-validated MSE:

> demo.np3bwsfval
[1] 6.535231

With three or more predictor variables, we’d need a four-dimensional plot, which is
hard. Instead, the default is to plot what happens as we sweep one variable with the
others held fixed (by default, at their medians; see help(npplot) for changing that),
as in Figure 4.15. We get something parabola-ish as we sweep X (which is right), and
something near a step function as we sweep Z (which is right when W = B), so we’re
not doing badly for estimating a fairly complicated function of three variables with
only 100 samples. We could also try fixing W at one value or another and making a
perspective plot — Figure 4.16.

The default optimization of bandwidths is extremely aggressive. It keeps adjust-
ing the bandwidths until the changes in the cross-validated MSE are very small, or
the changes in the bandwidths themselves are very small. The “tolerances” for what
count as “very small” are controlled by arguments to npreg called tol (for the band-
widths) and ftol (for the MSE), which default to about 10�8 and 10�7, respectively.
With a lot of data, or a lot of variables, this gets extremely slow. One can often make
npreg run much faster, with no real loss of accuracy, by adjusting these options. A
decent rule of thumb is to start with tol and ftol both at 0.01. One can use the
bandwidth found by this initial coarse search to start a more refined one, as follows:

> bigdemo.df <- make.demo.df(1e3)
> system.time(demo.np4 <- npreg(y~x+z+factor(w),data=bigdemo.df,tol=0.01,

ftol=0.01))
user system elapsed

75.694 0.331 77.144

In words, it took 77 seconds altogether for R to run npreg, mostly of which was
spent on our job, with just a little on background system tasks. The result of the run
is stored in demo.np4:

> demo.np4$bws
Regression Data (1000 observations, 3 variable(s)):

x z factor(w)
Bandwidth(s): 0.06236985 1.34041 1.070514e-18
Regression Type: Local-Constant
Bandwidth Selection Method: Least Squares Cross-Validation
Formula: y ~ x + z + factor(w)
Bandwidth Type: Fixed
Objective Function Value: 0.8699987 (achieved on multistart 3)
Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 2
Unordered Categorical Kernel Type: Aitchison and Aitken
No. Unordered Categorical Explanatory Vars.: 1

19:55 Thursday 22nd January, 2015

105 4.6. COMPUTATIONAL ADVICE: NPREG

-1.0 -0.5 0.0 0.5 1.0

0
5

10
15

20

x

 y

-20 -10 0 10 20 30

0
5

10
15

20

z

 y

A B

0
5

10
15

20

factor(w)

 y

plot(demo.np3)

Figure 4.15: Predictions of demo.np3 as each variable is swept over its range, with the
others held at their medians.

19:55 Thursday 22nd January, 2015

4.7. FURTHER READING 106

The bandwidths have all shrunk (as they should), and the cross-validated MSE is also
much smaller (0.87 versus 6.5 before). Figure 4.16 shows the estimated regression
surfaces for both values of the categorical variable.

The package also contains a function, npregbw, which takes a formula and a data
frame, and just optimizes the bandwidth. This is called automatically by npreg, and
many of the relevant option are documented in its help page. One can also use the
output of npregbw as an argument to npreg, in place of a formula.

4.7 Further Reading
Simonoff (1996) is a good practical introduction to kernel smoothing and related
methods. Wasserman (2006) provides more theory. Li and Racine (2007) is a de-
tailed treatment of nonparametric methods for econometric problems, overwhelm-
ing focused on kernel regression and kernel density estimation (which we’ll get to in
Chapter 16); Racine (2008) summarizes.

Kernel regression was introduced, independently, by Nadaraya (1964) and Watson
(1964); both were inspired by kernel density estimation.

4.8 Exercises
1. Suppose we use a uniform (“boxcar”) kernel extending over the region (�h/2, h/2).

Show that

E[r̂ (0)] = E

2
4r (X)

������
h
2
<X <

h
2

3
5 (4.33)

= r (0)+ r 0(0)E
2
4X

������
h
2
<X <

h
2

3
5 (4.34)

+
r 00(0)

2
E

2
4X 2

������
h
2
<X <

h
2

3
5+ o(h2)

Show that E
h

X
���� h

2 <X < h
2

i
=O(r 0(0) f 0(0)h2), and that E

h
X 2
���� h

2 <X < h
2

i
=

O(h2). Conclude that the over-all bias is O(h2).

2. Use Eqs. 4.21, 4.17 and 4.16 to show that the excess risk of the kernel smooth-
ing, when the bandwidth is selected by cross-validation, is also O(n�4/5).

3. Generate 1000 data points where X is uniformly distributed between �4 and
4, and Y = e7x/(1+ e7x) + ✏, with ✏ Gaussian and with variance 0.01. Use
non-parametric regression to estimate r̂ (x), and then use Eq. 4.31 to find the
average predictive comparison. Now re-run the simulation with X uniform on
the interval [0,0.5] and re-calculate the average predictive comparison. What
happened?

19:55 Thursday 22nd January, 2015

107 4.8. EXERCISES

x

-1.0
-0.5

0.0
0.5

1.0

z

-30
-20
-10
0
10
2030

y

-20

0

20

40

W=A

x

-1.0
-0.5

0.0
0.5

1.0

z

-30
-20
-10
0
10
2030

y

5
10

15

20

25

W=B

x.seq <- seq(from=-1,to=1,length.out=50)
z.seq <- seq(from=-30,to=30,length.out=50)
grid.A <- expand.grid(x=x.seq,z=z.seq,w="A")
grid.B <- expand.grid(x=x.seq,z=z.seq,w="B")
yhat.A <- predict(demo.np4,newdata=grid.A)
yhat.B <- predict(demo.np4,newdata=grid.B)
par(mfrow=c(1,2))
persp(x=x.seq,y=z.seq,z=matrix(yhat.A,nrow=50),theta=40,main="W=A",

xlab="x",ylab="z",zlab="y",ticktype="detailed")
persp(x=x.seq,y=z.seq,z=matrix(yhat.B,nrow=50),theta=40,main="W=B",

xlab="x",ylab="z",zlab="y",ticktype="detailed")

Figure 4.16: The regression surfaces learned for the demo function at the two dif-
ferent values of the categorical variable. Note that holding z fixed, we always see a
parabolic shape as we move along x (as we should), while whether we see a line or
something close to a step function at constant x depends on w, as it should.

19:55 Thursday 22nd January, 2015

