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Chapter 8

Splines

8.1 Smoothing by Penalizing Curve Flexibility
Let’s go back to the problem of smoothing one-dimensional data. We have data points
(x1, y1), (x2, y2), . . . (xn , yn), and we want to find a good approximation r̂ (x) to the true
conditional expectation or regression function r (x). Previously, we controlled how
smooth we made r̂ indirectly, through the bandwidth of our kernels. But why not
be more direct, and control smoothness itself?

A natural way to do this is to minimize the spline objective function

L (m,�)⌘ 1
n

nX
i=1

(yi �m(xi ))
2+�
Z
(m00(x))2d x (8.1)

The first term here is just the mean squared error of using the curve m(x) to predict
y. We know and like this; it is an old friend.

The second term, however, is something new for us. m00 is the second derivative
of m with respect to x — it would be zero if m were linear, so this measures the
curvature of m at x. The sign of m00 says whether the curvature is concave or convex,
but we don’t care about that so we square it. We then integrate this over all x to say
how curved m is, on average. Finally, we multiply by � and add that to the MSE.
This is adding a penalty to the MSE criterion — given two functions with the same
MSE, we prefer the one with less average curvature. We will accept changes in m that
increase the MSE by 1 unit if they also reduce the average curvature by at least �.

The curve or function which solves this minimization problem,

r̂� = argmin
m
L (m,�) (8.2)

is called a smoothing spline, or spline curve. The name “spline” comes from a
simple tool used by craftsmen to draw smooth curves, which was a thin strip of a
flexible material like a soft wood; you pin it in place at particular points, called knots,
and let it bend between them. (When the gas company dug up my front yard and my
neighbor’s driveway, the contractors who put everything back used a plywood board
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8.1. SMOOTHING BY PENALIZING CURVE FLEXIBILITY 170

Figure 8.1: A wooden spline used to create a smooth, curved border for a paved area
(Shadyside, Pittsburgh, October 2014).

to give a smooth, curved edge to the new driveway. That board was a spline, and the
knots were pairs of metal stakes on either side of the board. Figure 8.1 shows the
spline after concrete was poured on one side of it.) Bending the spline takes energy
— the stiffer the material, the more energy has to go into bending it through the
same shape, and so the material makes a straighter curve between given points. For
smoothing splines, using a stiffer material corresponds to increasing �.

It is possible to show (§8.6 below) that all solutions to Eq. 8.1, no matter what
the data might be, are piecewise cubic polynomials which are continuous and have
continuous first and second derivatives — i.e., not only is r̂ continuous, so are r̂ 0
and r̂ 00. The boundaries between the pieces sit at the original data points. By analogy
with the craftman’s spline, the boundary points are called the knots of the smoothing
spline. The function is continuous beyond the largest and smallest data points, but it
is always linear in those regions.1

I will also assert, without proof, that, with enough pieces, such piecewise cubic
polynomials can approximate any well-behaved function arbitrarily closely. Finally,
smoothing splines are linear smoothers, in the sense of Chapter 1: predicted values
are linear combinations of the training-set response values yi — see Eq. 8.21 below.

8.1.1 The Meaning of the Splines
Look back to the optimization problem. As �!1, any curvature at all becomes in-
finitely costly, and only linear functions are allowed. But we know how to minimize
mean squared error with linear functions, that’s OLS. So we understand that limit.

On the other hand, as �! 0, we decide that we don’t care about curvature. In
that case, we can always come up with a function which just interpolates between
the data points, an interpolation spline passing exactly through each point. More
specifically, of the infinitely many functions which interpolate between those points,
we pick the one with the minimum average curvature.

1Can you explain why it is linear outside the data range, in terms of the optimization problem?
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171 8.2. COMPUTATIONAL EXAMPLE: SPLINES FOR STOCK RETURNS

At intermediate values of �, r̂� becomes a function which compromises between
having low curvature, and bending to approach all the data points closely (on aver-
age). The larger we make �, the more curvature is penalized. There is a bias-variance
trade-off here. As � grows, the spline becomes less sensitive to the data, with lower
variance to its predictions but more bias. As � shrinks, so does bias, but variance
grows. For consistency, we want to let �! 0 as n!1, just as, with kernel smooth-
ing, we let the bandwidth h! 0 while n!1.

We can also think of the smoothing spline as the function which minimizes the
mean squared error, subject to a constraint on the average curvature. This turns
on a general corresponds between penalized optimization and optimization under
constraints, which is explored in Appendix E. The short version is that each level
of � corresponds to imposing a cap on how much curvature the function is allowed
to have, on average, and the spline we fit with that � is the MSE-minimizing curve
subject to that constraint.2 As we get more data, we have more information about
the true regression function and can relax the constraint (let � shrink) without losing
reliable estimation.

It will not surprise you to learn that we select � by cross-validation. Ordinary
k-fold CV is entirely possible, but leave-one-out CV works quite well for splines. In
fact, the default in most spline software is either leave-one-out CV, or an even faster
approximation called “generalized cross-validation” or GCV. The details of how to
rapidly compute the LOOCV or GCV scores are not especially important for us,
but can be found, if you want them, in many books, such as Simonoff (1996, §5.6.3).

[[ATTN: Worth including
formulas after all?]]

8.2 Computational Example: Splines for Stock Returns
The default R function for fitting a smoothing spline is smooth.spline:

smooth.spline(x, y, cv=FALSE)

where x should be a vector of values for input variable, y is a vector of values for
the response (in the same order), and the switch cv controls whether to pick � by
generalized cross-validation (the default) or by leave-one-out cross-validation. The
object which smooth.spline returns has an $x component, re-arranged in increasing
order, a $y component of fitted values, a $yin component of original values, etc. See
help(smooth.spline) for more.

As a concrete illustration, Figure 8.2 looks at the daily logarithmic returns3 of the
S&P 500 stock index, on 5542 consecutive trading days, from 9 February 1993 to 9

2The slightly longer version: Consider minimizing the MSE (not the penalized MSE), but only over
functions m where

R
(m00(x))2d x is at most some maximum level C . �would then be the Lagrange multi-

plier enforcing the constraint. The constrained but unpenalized optimization is equivalent to the penalized
but unconstrained one. In economics, � would be called the “shadow price” of average curvature in units
of MSE, the rate at which we’d be willing to pay to have the constraint level C marginally increased.

3For a financial asset whose price on day t is pt and which pays a dividend on that day of dt , the log-
returns on t are log (pt + dt )/pt�1. Financiers and other professional gamblers care more about the log
returns than about the price change, pt � pt�1, because the log returns give the rate of profit (or loss) on
investment. We are using a price series which is adjusted to incorporate dividend (and related) payments.
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8.2. COMPUTATIONAL EXAMPLE: SPLINES FOR STOCK RETURNS 172

February 20154.

require(pdfetch)
sp <- pdfetch_YAHOO("SPY", fields="adjclose",

from=as.Date("1993-02-09"), to=as.Date("2015-02-09"))
sp <- diff(log(sp))
# need to drop the initial NA which makes difficulties later
sp <- sp[-1]

We want to use the log-returns on one day to predict what they will be on the next.
The horizontal axis in the figure shows the log-returns for each of 2527 days t , and
the vertical axis shows the corresponding log-return for the succeeding day t + 1. A
linear model fitted to this data displays a slope of �0.0642 (grey line in the figure).
Fitting a smoothing spline with cross-validation selects � = 0.0127, and the black
curve:

> sp.today <- head(sp,-1)
> sp.tomorrow <- tail(sp,-1)
> coefficients(lm(sp.tomorrow ~ sp.today))

(Intercept) sp.today
0.0003708103 -0.0641670375

> sp.spline <- smooth.spline(x=sp.today,y=sp.tomorrow,cv=TRUE)
Warning message:
In smooth.spline(x = sp.today, y = sp.tomorrow, cv = TRUE) :

cross-validation with non-unique ’x’ values seems doubtful
> sp.spline
Call:
smooth.spline(x = sp.today, y = sp.tomorrow, cv = TRUE)

Smoothing Parameter spar= 1.341553 lambda= 0.0127315 (11 iterations)
Equivalent Degrees of Freedom (Df): 5.883203
Penalized Criterion: 0.7812831
PRESS: 0.000142811
> sp.spline$lambda
[1] 0.0127315

(PRESS is the “prediction sum of squares”, i.e., the sum of the squared leave-one-out
prediction errors. Also, the warning about cross-validation, while well-intentioned,
is caused here by there being just two days with log-returns of zero.) This is the curve
shown in black in the figure. The blue curves are for large values of �, and clearly
approach the linear regression; the red curves are for smaller values of �.

The spline can also be used for prediction. For instance, if we want to know what
the return to expect following a day when the log return was +0.01,

> predict(sp.spline,x=0.01)

4This uses the handy pdfetch library, which downloads data from such public domain sources as the
Federal Reserve, Yahoo Finance, etc.
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plot(as.vector(sp.today),as.vector(sp.tomorrow),xlab="Today’s log-return",
ylab="Tomorrow’s log-return",pch=16,cex=0.5,col="grey")

abline(lm(sp.tomorrow ~ sp.today),col="darkgrey")
sp.spline <- smooth.spline(x=sp.today,y=sp.tomorrow,cv=TRUE)
lines(sp.spline)
lines(smooth.spline(sp.today,sp.tomorrow,spar=1.5),col="blue")
lines(smooth.spline(sp.today,sp.tomorrow,spar=2),col="blue",lty=2)
lines(smooth.spline(sp.today,sp.tomorrow,spar=1.1),col="red")
lines(smooth.spline(sp.today,sp.tomorrow,spar=0.5),col="red",lty=2)

Figure 8.2: The S& P 500 log-returns data (grey dots), with the OLS linear regres-
sion (dark grey line), the spline selected by cross-validation (solid black, �= 0.0127),
some more smoothed splines (blue, � = 0.178 and 727) and some less smooth
splines (red, � = 2.88 ⇥ 10�4 and 1.06 ⇥ 10�8). Incoveniently, smooth.spline
does not let us control � directly, but rather a somewhat complicated but basi-
cally exponential transformation of it called spar. (See help(smooth.spline) for
the gory details.) The equivalent � can be extracted from the return value, e.g.,
smooth.spline(sp.today,sp.tomorrow,spar=2)$lambda.
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8.2. COMPUTATIONAL EXAMPLE: SPLINES FOR STOCK RETURNS 174

$x
[1] 0.01
$y
[1] 0.0001959963

i.e., a very slightly negative log-return.

R Syntax Note: The syntax for predictwith smooth.spline spline differs slightly
from the syntax for predict with lm or np. The latter two want a newdata argument,
which should be a data-frame with column names matching those in the formula
used to fit the model. The predict function for smooth.spline, though, just wants
a vector called x. Also, while predict for lm or np returns a vector of predictions,
predict for smooth.spline returns a list with an x component (in increasing order)
and a y component, which is the sort of thing that can be put directly into points or
lines for plotting.[[ATTN: Other spline pack-

ages with more uniform inter-
face? Or just use GAM?]] 8.2.1 Confidence Bands for Splines

Continuing the example, the smoothing spline selected by cross-validation has a neg-
ative slope everywhere, like the regression line, but it’s asymmetric — the slope is
more negative to the left, and then levels off towards the regression line. (See Figure
8.2 again.) Is this real, or might the asymmetry be a sampling artifact?

We’ll investigate by finding confidence bands for the spline, much as we did for
kernel regression in Chapter 6 and Problem Set 51, problem 5. Again, we need to
bootstrap, and we can do it either by resampling the residuals or resampling whole
data points. Let’s take the latter approach, which assumes less about the data. We’ll
need a simulator:

sp.frame <- data.frame(today=sp.today,tomorrow=sp.tomorrow)
sp.resampler <- function() {

n <- nrow(sp.frame)
resample.rows <- sample(1:n,size=n,replace=TRUE)
return(sp.frame[resample.rows,])

}

This treats the points in the scatterplot as a complete population, and then draws a
sample from them, with replacement, just as large as the original5. We’ll also need
an estimator. What we want to do is get a whole bunch of spline curves, one on
each simulated data set. But since the values of the input variable will change from
one simulation to another, to make everything comparable we’ll evaluate each spline
function on a fixed grid of points, that runs along the range of the data.

# Set up a grid of evenly-spaced points on which to evaluate the spline
grid.300 <- seq(from=min(sp.today),to=max(sp.today),length.out=300)

sp.spline.estimator <- function(data,eval.grid=grid.300) {
5§28.5 covers more refined ideas about bootstrapping time series.
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175 8.2. COMPUTATIONAL EXAMPLE: SPLINES FOR STOCK RETURNS

# Fit spline to data, with cross-validation to pick lambda
fit <- smooth.spline(x=data[,1],y=data[,2],cv=TRUE)
# Do the prediction on the grid and return the predicted values
return(predict(fit,x=eval.grid)$y) # We only want the predicted values

}

This sets the number of evaluation points to 300, which is large enough to give visu-
ally smooth curves, but not so large as to be computationally unwieldly.

Now put these together to get confidence bands:

sp.spline.cis <- function(B,alpha,eval.grid=grid.300) {
spline.main <- sp.spline.estimator(sp.frame,eval.grid=eval.grid)
# Draw B boottrap samples, fit the spline to each

# Result has length(eval.grid) rows and B columns
spline.boots <- replicate(B,

sp.spline.estimator(sp.resampler(),eval.grid=eval.grid))
cis.lower <- 2*spline.main - apply(spline.boots,1,quantile,probs=1-alpha/2)
cis.upper <- 2*spline.main - apply(spline.boots,1,quantile,probs=alpha/2)
return(list(main.curve=spline.main,lower.ci=cis.lower,upper.ci=cis.upper,

x=eval.grid))
}

The return value here is a list which includes the original fitted curve, the lower and
upper confidence limits, and the points at which all the functions were evaluated.

Figure 8.3 shows the resulting 95% confidence limits, based on B=1000 bootstrap
replications. (Doing all the bootstrapping took 45 seconds on my laptop.) These
are pretty clearly asymmetric in the same way as the curve fit to the whole data, but
notice how wide they are, and how they get wider the further we go from the center
of the distribution in either direction.
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sp.cis <- sp.spline.cis(B=1000,alpha=0.05)
plot(as.vector(sp.today),as.vector(sp.tomorrow),xlab="Today’s log-return",

ylab="Tomorrow’s log-return",pch=16,cex=0.5,col="grey")
abline(lm(sp.tomorrow ~ sp.today),col="darkgrey")
lines(x=sp.cis$x,y=sp.cis$main.curve,lwd=2)
lines(x=sp.cis$x,y=sp.cis$lower.ci)
lines(x=sp.cis$x,y=sp.cis$upper.ci)

Figure 8.3: Bootstrapped pointwise confidence band for the smoothing spline of the
S & P 500 data, as in Figure 8.2. The 95% confidence limits around the main spline
estimate are based on 1000 bootstrap re-samplings of the data points in the scatterplot.
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177 8.3. BASIS FUNCTIONS AND DEGREES OF FREEDOM

8.3 Basis Functions and Degrees of Freedom

8.3.1 Basis Functions
Splines, I said, are piecewise cubic polynomials. To see how to fit them, let’s think
about how to fit a global cubic polynomial. We would define four basis functions,

B1(x) = 1 (8.3)
B2(x) = x (8.4)
B3(x) = x2 (8.5)
B4(x) = x3 (8.6)

with the hypothesis being that the regression function is a weight sum of these,

r (x) =
4X

j=1

� j B j (x) (8.7)

That is, the regression would be linear in the transformed variable B1(x), . . .B4(x),
even though it is nonlinear in x.

To estimate the coefficients of the cubic polynomial, we would apply each basis
function to each data point xi and gather the results in an n⇥ 4 matrix B,

Bi j = Bj (xi ) (8.8)

Then we would do OLS using the B matrix in place of the usual data matrix x:

�̂= (BT B)�1BT y (8.9)

Since splines are piecewise cubics, things proceed similarly, but we need to be a
little more careful in defining the basis functions. Recall that we have n values of the
input variable x, x1, x2, . . . xn . For the rest of this section, I will assume that these are
in increasing order, because it simplifies the notation. These n “knots” define n + 1
pieces or segments n � 1 of them between the knots, one from �1 to x1, and one
from xn to +1. A third-order polynomial on each segment would seem to need a
constant, linear, quadratic and cubic term per segment. So the segment running from
xi to xi+1 would need the basis functions

1(xi ,xi+1)(x), (x � xi )1(xi ,xi+1)(x), (x � xi )
21(xi ,xi+1)(x), (x � xi )

31(xi ,xi+1)(x) (8.10)

where as usual the indicator function 1(xi ,xi+1)(x) is 1 if x 2 (xi , xi+1) and 0 otherwise.
This makes it seem like we need 4(n+ 1) = 4n+ 4 basis functions.

However, we know from linear algebra that the number of basis vectors we need
is equal to the number of dimensions of the vector space. The number of adjustable
coefficients for an arbitrary piecewise cubic with n + 1 segments is indeed 4n + 4,
but splines are constrained to be smooth. The spline must be continuous, which
means that at each xi , the value of the cubic from the left, defined on (xi�1, xi ), must
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8.3. BASIS FUNCTIONS AND DEGREES OF FREEDOM 178

match the value of the cubic from the right, defined on (xi , xi+1). This gives us one
constraint per data point, reducing the number of adjustable coefficients to at most
3n+4. Since the first and second derivatives are also continuous, we are down to just
n+4 coefficients. Finally, we know that the spline function is linear outside the range
of the data, i.e., on (�1, x1) and on (xn ,1), lowering the number of coefficients to
n. There are no more constraints, so we end up needing only n basis functions. And
in fact, from linear algebra, any set of n piecewise cubic functions which are linearly
independent6 can be used as a basis. One common choice is

B1(x) = 1 (8.11)
B2(x) = x (8.12)

Bi+2(x) =
(x � xi )3+� (x � xn)3+

xn � xi
� (x � xn�1)3+� (x � xn)3+

xn � xn�1
(8.13)

where (a)+ = a if a > 0, and = 0 otherwise. This rather unintuitive-looking basis has
the nice property that the second and third derivatives of each Bj are zero outside the
interval (x1, xn).

Now that we have our basis functions, we can once again write the spline as a
weighted sum of them,

m(x) =
mX

j=1

� j B j (x) (8.14)

and put together the matrix B where Bi j = Bj (xi ). We can write the spline objective
function in terms of the basis functions,

nL = (y�B�)T (y�B�)+ n��T⌦� (8.15)

where the matrix ⌦ encodes information about the curvature of the basis functions:

⌦ j k =
Z

B 00j (x)B
00
k (x)d x (8.16)

Notice that only the quadratic and cubic basis functions will make non-zero contri-
butions to ⌦. With the choice of basis above, the second derivatives are non-zero on,
at most, the interval (x1, xn), so each of the integrals in ⌦ is going to be finite. This
is something we (or, realistically, R) can calculate once, no matter what � is. Now we
can find the smoothing spline by differentiating with respect to �:

0 = �2BT y+ 2BT B�̂+ 2n�⌦�̂ (8.17)

BT y =
Ä
BT B+ n�⌦
ä
�̂ (8.18)

�̂ =
Ä
BT B+ n�⌦
ä�1

BT y (8.19)

6Recall that vectors ~v1, ~v2, . . . ~vd are linearly independent when there is no way to write any one of the
vectors as a weighted sum of the others. The same definition applies to functions.
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179 8.3. BASIS FUNCTIONS AND DEGREES OF FREEDOM

Notice, incidentally, that we can now show splines are linear smoothers:

ŷ = m̂(x) = B�̂ (8.20)

= B
Ä
BT B+ n�⌦
ä�1

BT y (8.21)

Once again, if this were ordinary linear regression, the OLS estimate of the coef-
ficients would be (xT x)�1xT y. In comparison to that, we’ve made two changes. First,
we’ve substituted the basis function matrix B for the original matrix of independent
variables, x — a change we’d have made already for plain polynomial regression. Sec-
ond, the “denominator” is not xT x, but BT B+ n�⌦. Since xT x is n times the co-
variance matrix of the independent variables, we are taking the covariance matrix of
the spline basis functions and adding some extra covariance — how much depends
on the shapes of the functions (through ⌦) and how much smoothing we want to do
(through �). The larger we make �, the less the actual data matters to the fit.

In addition to explaining how splines can be fit quickly (do some matrix arith-
metic), this illustrates two important tricks. One, which we won’t explore further
here, is to turn a nonlinear regression problem into one which is linear in another
set of basis functions. This is like using not just one transformation of the input vari-
ables, but a whole library of them, and letting the data decide which transformations
are important. There remains the issue of selecting the basis functions, which can be
quite tricky. In addition to the spline basis7, most choices are various sorts of waves —
sine and cosine waves of different frequencies, various wave-forms of limited spatial
extent (“wavelets”), etc. The ideal is to chose a function basis where only a few non-
zero coefficients would need to be estimated, but this requires some understanding
of the data. . .

The other trick is that of stabilizing an unstable estimation problem by adding a
penalty term. This reduces variance at the cost of introducing some bias. Exercise 2
explores this idea.

8.3.2 Degrees of Freedom

You may have noticed that we haven’t, so far, talked about the degrees of freedom of
our regression models. This is one of those concepts which is much more important
for linear regression than elsewhere, but it does still have its uses, and this is a good
place to explain how it’s calculated for more general models.

First, though, we need to recall how it works for linear regression. We’ll start
with an n⇥ p data matrix of predictor variables x, and an n⇥1 column matrix of re-
sponse values y. The ordinary least squares estimate of the p-dimensional coefficient
vector � is

�̂=
Ä
xT x
ä�1

xT y (8.22)

7Or, really, bases; there are multiple sets of basis functions for the splines, just like there are multiple
sets of basis vectors for the plane. If you see the phrase “B splines”, it refers to a particular choice of spline
basis functions.
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8.3. BASIS FUNCTIONS AND DEGREES OF FREEDOM 180

This implies, in turn, that we can write the fitted values in terms of x and y:

ŷ = x�̂ (8.23)

=
⇣

x
Ä
xT x
ä�1

xT
⌘

y (8.24)

= hy (8.25)

where h is the n⇥n matrix, where hi j says how much of each observed yj contributes
to each fitted ŷi . This is called the influence matrix, or less formally the hat matrix.

Notice that h depends only on the predictor variables in x; the observed response
values in y don’t matter. If we change around y, the fitted values ŷ will also change,
but only within the limits allowed by h. There are n independent coordinates along
which y can change, so we say the data have n degrees of freedom. Once x and so
h are fixed, however, ŷ has to lie in an (n � p)-dimensional hyper-plane in this n-
dimensional space. There are only n � p independent coordinates along which the
fitted values can move. Hence we say that the residual degrees of freedom are n� p,
and p degrees of freedom are captured by the linear regression.

The algebraic expression of this fact is that, for a linear regression, the trace of h
is always p:[[TODO: Add 2nd way of ex-

plaining this]]
trh = tr
⇣

x
Ä
xT x
ä�1

xT
⌘

(8.26)

= tr
⇣

xT x
Ä
xT x
ä�1⌘

(8.27)

= tr Ip = p (8.28)

since for any matrices a,b, tr (ab) = tr (ba), and xT x is a p ⇥ p matrix8.
For the general class of linear smoothers (Chapter 1), at an arbitrary point x the

predicted value of y is a weighted (linear) combination of the observed values,

r̂ (x) =
nX

j=1

ŵ(x, xj )yj (8.29)

In particular,

ŷi = r̂ (xi ) =
nX

j=1

ŵ(xi , xj )yj (8.30)

and so we can write
ŷ= hy (8.31)

where now, in the general case, hi j = ŵ(xi , xj ). We still call h the hat or influence
matrix. For a kernel smoother, this can be directly calculated from the kernels, but
for a spline we need to use Eq. 8.21.

By analogy with Eq. 8.28, we define the effective degrees of freedom of a linear
smoother to be trh. Many of the formulas you learned for linear regression, e.g.,
dividing the residual sum of squares by n� p to get an unbiased estimate of the noise
variance, continue to hold approximately for linear smoothers with the effective de-
grees of freedom in place of p.[[ATTN: Step through the

calculations?]] 8This assumes that xT x has an inverse. Can you work out what happens when it does not?
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8.4 Splines in Multiple Dimensions
Suppose we have two input variables, x and z, and a single response y. How could
we do a spline fit?

One approach is to generalize the spline optimization problem so that we penal-
ize the curvature of the spline surface (no longer a curve). The appropriate penalized
least-squares objective function to minimize is

L (m,�) =
nX

i=1

(yi �m(xi , zi ))
2+�
Z 2
4
Ç
@ 2m

d x2

å2
+ 2
Ç
@ 2m
d xd z

å2
+
Ç
@ 2m

d z2

å23
5d xd z

(8.32)
The solution is called a thin-plate spline. This is appropriate when the two input
variables x and z should be treated more or less symmetrically9.

An alternative is use the spline basis functions from section 8.3. We write

m(x) =
M1X
j=1

M2X
k=1

� j k Bj (x)Bk (z) (8.33)

Doing all possible multiplications of one set of numbers or functions with another
is said to give their outer product or tensor product, so this is known as a tensor
product spline or tensor spline. We have to chose the number of terms to include
for each variable (M1 and M2), since using n for each would give n2 basis functions,
and fitting n2 coefficients to n data points is asking for trouble.

8.5 Smoothing Splines versus Kernel Regression
For one input variable and one output variable, smoothing splines can basically do
everything which kernel regression can do10. The advantages of splines are their com-
putational speed and (once we’ve calculated the basis functions) simplicity, as well as
the clarity of controlling curvature directly. Kernels however are easier to program
(if slower to run), easier to analyze mathematically11, and extend more straightfor-
wardly to multiple variables, and to combinations of discrete and continuous vari-
ables.

8.6 Some of the Math Behind Splines
2015 students: This section
definitely optionalAbove, I claimed that a solution to the optimization problem Eq. 8.1 exists, and is

a continuous, piecewise-cubic polynomial, with continuous first and second deriva-
9Generalizations to more than two input variables are conceptually straightforward — just keep adding

up more partial derivatives — but the book-keeping gets annoying.
10In fact, there is a technical sense in which, for large n, splines act like a kernel regression with a specific

non-Gaussian kernel, and a bandwidth which varies over the data, being smaller in high-density regions.
See Simonoff (1996, §5.6.2), or, for more details, Silverman (1984).

11Most of the bias-variance analysis for kernel regression can be done with basic calculus, as we did in
Chapter 4. The corresponding analysis for splines requires working in infinite-dimensional function spaces
called “Hilbert spaces”. It’s a pretty theory, if you like that sort of thing.
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8.6. SOME OF THE MATH BEHIND SPLINES 182

tives, with pieces at the xi , and linear outside the range of the xi . I do not know of
any truly elementary way of showing this, but I will sketch here how it’s established,
if you’re interested.

Eq. 8.1 asks us to find the function which minimizes a certain integral. Even the
MSE can be brought inside the integral, using Dirac delta functions:

L =
Z 2
4�(m00(x))2+ 1

n

nX
i=1

(yi �m(xi ))
2�(x � xi )

3
5d x (8.34)

In what follows, without loss of generality, assume that the xi are ordered, so x1 <
x2 < . . . xi < xi+1 < . . . xn . With some loss of generality but a great gain in simplicity,
assume none of the xi are equal, so we can make those inequalities strict.

The subject which deals with maximizing or minimizing integrals of functions is
the calculus of variations12, and one of its basic tricks is to write the integrand as a
function of x, the function, and its derivatives:

L =
Z

L(x, m, m0, m00)d x (8.35)

where, in our case,

L= �(m00(x))2+
1
n

nX
i=1

(yi �m(xi ))
2�(x � xi ) (8.36)

This sets us up to use a general theorem of the calculus of variations, to the effect
that any function which solves the original “variational” problem must also solve L’s
Euler-Lagrange equation:

@ L
@ m
� d

d x
@ L

@ m0
+

d 2

d x2

@ L

@ m00

�����
m=m̂

= 0 (8.37)

In our case, the Euler-Lagrange equation reads

� 2
n

nX
i=1

(yi � m̂(xi ))�(x � xi )+ 2�
d 2

d x2 m̂00(x) = 0 (8.38)

Remembering that m̂00(x) = d 2m̂/d x2,

d 4

d x4 m̂(x) =
1

n�

nX
i=1

(yi � m̂(xi ))�(x � xi ) (8.39)

The right-hand side is zero at any point x other than one of the xi , so the fourth
derivative has to be zero in between the xi . This in turn means that the function

12In addition to its uses in statistics, the calculus of variations also shows up in physics (“what is the path
of least action?”), control theory (“what is the cheapest route to the objective?”) and stochastic processes
(“what is the most probable trajectory?”). Gershenfeld (1999, ch. 4) is a good starting point.
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183 8.7. FURTHER READING

must be piecewise cubic. Now fix an xi , and pick any two points which bracket it,
but are both greater than xi�1 and less than xi+1; call them l and u. Integrate our
Euler-Lagrange equation from l to u:
Z u

l

d 4

d x4 m̂(x)d x =
Z u

l

1
n�

nX
i=1

(yi � m̂(xi ))�(x � xi ) (8.40)

m̂000(u)� m̂000(l ) =
yi � m̂(xi )

n�
(8.41)

That is, the third derivative makes a jump when we move across xi , though (since the
fourth derivative is zero), it doesn’t matter which pair of points above and below xi
we compare third derivatives at. Integrating the equation again,

m̂00(u)� m̂00(l ) = (u � l )
yi � m̂(xi )

n�
(8.42)

Letting u and l approach xi from either side, so u � l ! 0, we see that m̂00 makes
no jump at xi . Repeating this trick twice more, we conclude the same about m̂0 and
m̂ itself. In other words, m̂ must be continuous, with continuous first and second
derivatives, and a third derivative that is constant on each (xi , xi+1) interval. Since
the fourth derivative is zero on those intervals (and undefined at the xi ), the function
must be a piecewise cubic, with the piece boundaries at the xi , and continuity (up to
the second derivative) across pieces.

To see that the optimal function must be linear below x1 and above xn , suppose
that it wasn’t. Clearly, though, we could reduce the curvature as much as we want
in those regions, without altering the value of the function at the boundary, or even
its first derivative there. This would yield a better function, i.e., one with a lower
value of L , since the MSE would be unchanged and the average curvature would
be smaller. Taking this to the limit, then, the function must be linear outside the
observed data range.

We have now shown13 that the optimal function m̂, if it exists, must have all the
properties I claimed for it. We have not shown either that there is a solution, or that
a solution is unique if it does exist. However, we can use the fact that solutions, if
there are any, are piecewise cubics obeying continuity conditions to set up a system
of equations to find their coefficients. In fact, we did so already in §8.3.1, where we
saw it’s a system of n independent linear equations in n unknowns. Such a thing does
indeed have a unique solution, here Eq. 8.19.

8.7 Further Reading
There are good discussions of splines in Simonoff (1996, ch. 5), Hastie et al. (2009,
ch. 5) and Wasserman (2006, §5.5). Wood (2006, ch. 4) includes a thorough practical
treatment of splines as a preparation for additive models (see Chapter 9 below) and
generalized additive models (see Chapters 12–13). [[TODO: Mention alternative

of knot selection here?]]13For a very weak value of “shown”, admittedly.
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The first introduction of spline smoothing in the statistical literature seems to be
Whittaker (1922). (His “graduation” is more or less our “smoothing”.) He begins
with an “inverse probability” (we would now say “Bayesian”) argument for mini-
mizing Eq. 8.1 to find the most probable curve, based on the a priori hypothesis of
smooth Gaussian curves observed through Gaussian error, and gives tricks for fitting
splines more easily with the mathematical technology available in 1922.

The general optimization problem, and the use of the word “spline”, seems to
have its roots in numerical analysis in the early 1960s; those spline functions were
intended as ways of smoothly interpolating between given points. The connection to
statistical smoothing was made by Schoenberg (1964) (who knew about Whittaker’s
earlier work) and by Reinsch (1967) (who gave code). Splines were then developed
as a practical tool in statistics and in applied mathematics in the 1960s and 1970s.
Silverman (1985) is a still-readable and insightful summary of this work. The clas-
sic reference, by one of the inventors of splines as a useful statistical tool, is Wahba
(1990); it’s great if you already know what a Hilbert space is and how to navigate one.

In econometrics, spline smoothing a time series is called the “Hodrick-Prescott
filter”, after two economists who re-discovered the technique in 1981, along with a
fallacious argument that � should always take a particular value (1600, as it happens),
regardless of the data14. See Paige and Trindade (2010) for a (polite) discussion, and
demonstration of the advantages of cross-validation.

8.8 Exercises
1. The smooth.spline function lets you set the effective degrees of freedom ex-

plicitly. Write a function which chooses the number of degrees of freedom by
five-fold cross-validation.

2. When we can’t measure our predictor variables perfectly, it seems like a good
idea to try to include multiple measurements for each one of them. For in-
stance, if we were trying to predict grades in college from grades in high school,
we might include the student’s grade from each year separately, rather than sim-
ply averaging them. Multiple measurements of the same variable will however
tend to be strongly correlated, so this means that a linear regression will be
nearly multi-collinear. This in turn means that it will tend to have multiple,
mutually-canceling large coefficients. This makes it hard to interpret the re-
gression and hard to treat the predictions seriously. (See §2.1.1.)

One strategy for coping with this situation is to carefully select the variables
one uses in the regression. Another, however, is to add a penalty for large
coefficient values. For historical reasons, this second strategy is called ridge
regression, or Tikhonov regularization. Specifically, while the OLS estimate
is

b�OLS = argmin
�

1
n

nX
i=1

(yi � xi ·�)2 , (8.43)

14As it were: Hodrick and Prescott re-invented the wheel, and decided that it should be an octagon.
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the regularized or penalized estimate is

b�RR = argmin
�

2
4 1

n

nX
i=1

(yi � xi ·�)2
3
5+�

pX
j=1

�2
j (8.44)

(a) Show that the matrix form of the ridge-regression objective function is

n�1(y� x�)T (y� x�)+��T� (8.45)

(b) Show that the optimum is

b�RR = (x
T x+ n�I)�1xT y (8.46)

(This is where the name “ridge regression” comes from: we take xT x and
add a “ridge” along the diagonal of the matrix.)

(c) What happens as �! 0? As �!1? (For the latter, it may help to think
about the case of a one-dimensional X first.)

(d) Let Y = Z + ✏, with Z ⇠ U (�1,1) and ✏ ⇠ N (0,0.05). Generate 2000
draws from Z and Y . Now let Xi = 0.9Z + ⌘, with ⌘ ⇠ N (0,0.05), for
i 2 1 : 50. Generate corresponding Xi values. Using the first 1000 rows of
the data only, do ridge regression of Y on the Xi (not on Z), plotting the
50 coefficients as functions of �. Explain why ridge regression is called a
shrinkage estimator.

(e) Use cross-validation with the first 1000 rows to pick the optimal value of
�. Compare the out-of-sample performance you get with this penalty to
the out-of-sample performance of OLS.

For more on ridge regression, see Appendix E.6.1.
[[TODO: Improve connec-
tion of this exercise to ap-
pendix]]
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