01:20 Friday 20t February, 2015

Copyright ®Cosma Rohilla Shalizi; do not distribute without permission
updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Chapter 12

Logistic Regression

12.1 Modeling Conditional Probabilities

So far, we either looked at estimating the conditional expectations of continuous
variables (as in regression), or at estimating distributions. There are many situations
where however we are interested in input-output relationships, as in regression, but
the output variable is discrete rather than continuous. In particular there are many
situations where we have binary outcomes (it snows in Pittsburgh on a given day, or
it doesn’t; this squirrel carries plague, or it doesn’t; this loan will be paid back, or
it won’t; this person will get heart disease in the next five years, or they won’t). In
addition to the binary outcome, we have some input variables, which may or may
not be continuous. How could we model and analyze such data?

We could try to come up with a rule which guesses the binary output from the
input variables. This is called classification, and is an important topic in statistics
and machine learning. However, guessing “yes” or “no” is pretty crude — especially
if there is no perfect rule. (Why should there be a perfect rule?) Something which
takes noise into account, and doesn’t just give a binary answer, will often be useful.
In short, we want probabilities — which means we need to fit a stochastic model.

What would be nice, in fact, would be to have conditional distribution of the
response Y, given the input variables, Pr(Y'|X). This would tell us about how precise
our predictions should be. If our model says that there’s a 51% chance of snow and it
doesn’t snow, that’s better than if it had said there was a 99% chance of snow (though
even a 99% chance is not a sure thing). We will see, in Chapter 16, general approaches
to estimating conditional probabilities non-parametrically, which can use the kernels
for discrete variables from Chapter 4. While there are a lot of merits to this approach,
it does involve coming up with a model for the joint distribution of outputs Y and
inputs X, which can be quite time-consuming.

Let’s pick one of the classes and call it “1” and the other “0”. (It doesn’t mat-
ter which is which.) Then Y becomes an indicator variable, and you can convince
yourself that Pr(Y =1) = E[Y]. Similarly, Pr(Y =1|X =x) = E[Y|X =x]. (In
a phrase, “conditional probability is the conditional expectation of the indicator”.)

227

12.2. LOGISTIC REGRESSION 228

This helps us because by this point we know all about estimating conditional ex-
pectations. The most straightforward thing for us to do at this point would be to
pick out our favorite smoother and estimate the regression function for the indicator
variable; this will be an estimate of the conditional probability function.

There are two reasons not to just plunge ahead with that idea. One is that proba-
bilities must be between 0 and 1, but our smoothers will not necessarily respect that,
even if all the observed y, they get are either 0 or 1. The other is that we might be
better off making more use of the fact that we are trying to estimate probabilities, by
more explicitly modeling the probability.

Assume that Pr(Y = 1|X = x) = p(x;0), for some function p parameterized by
0. parameterized function 8, and further assume that observations are independent
of each other. The the (conditional) likelihood function is

[TPe(v =y =x) =] [(01— ples O™ (12.0)
=1

i=1

Recall that in a sequence of Bernoulli trials y,,...y,, where there is a constant
probability of success p, the likelihood is

n

[Tra=p) (12.2)

i=1

As you learned in basic statistics, this likelihood is maximized when p = p =n~' 377 y,.
If each trial had its own success probability p;, this likelihood becomes

[12— p) (12.3)
=1

Without some constraints, estimating the “inhomogeneous Bernoulli” model by max-
imum likelihood doesn’t work; we’d get p;, = 1 when y;, = 1, p; =0 when y, =0,
and learn nothing. If on the other hand we assume that the p; aren’t just arbitrary
numbers but are linked together, if we model the probabilities, those constraints give
non-trivial parameter estimates, and let us generalize. In the kind of model we are
talking about, the constraint, p; = p(x;;6), tells us that p; must be the same when-
ever x; is the same, and if p is a continuous function, then similar values of x; must
lead to similar values of p;. Assuming p is known (up to parameters), the likelihood
is a function of #, and we can estimate & by maximizing the likelihood. This chapter
will be about this approach.

12.2 Logistic Regression

To sum up: we have a binary output variable Y, and we want to model the condi-
tional probability Pr(Y = 1|X = x) as a function of x; any unknown parameters in
the function are to be estimated by maximum likelihood. By now, it will not surprise
you to learn that statisticians have approach this problem by asking themselves “how
can we use linear regression to solve this?”

01:20 Friday 20th February, 2015

229 12.2. LOGISTIC REGRESSION

1. The most obvious idea is to let p(x) be a linear function of x. Every increment
of a component of x would add or subtract so much to the probability. The
conceptual problem here is that p must be between 0 and 1, and linear func-
tions are unbounded. Moreover, in many situations we empirically see “dimin-
ishing returns” — changing p by the same amount requires a bigger change in
x when p is already large (or small) than when p is close to 1/2. Linear models
can’t do this.

2. The next most obvious idea is to let log p(x) be a linear function of x, so that
changing an input variable multiplies the probability by a fixed amount. The
problem is that logarithms are unbounded in only one direction, and linear
functions are not.

3. Finally, the easiest modification of log p which has an unbounded range is the
logistic (or logit) transformation, log %. We can make this a linear func-
tion of x without fear of nonsensical results. (Of course the results could still
happen to be wrong, but they’re not guaranteed to be wrong.)

This last alternative is logistic regression.
Formally, the logistic regression model is that

p(x)

log———
1—17

=LBo+x-f (12.4)

Solving for p, this gives

elgo"'x'ﬁ 1
1+e Botxff 1+ e~ (Botx)

p(x;)= (12.5)

Notice that the over-all specification is a lot easier to grasp in terms of the transformed
probability that in terms of the untransformed probability.!

To minimize the mis-classification rate, we should predict Y =1 when p > 0.5
and Y =0 when p < 0.5 (Exercise 1). This means guessing 1 whenever S, +x - [is
non-negative, and 0 otherwise. So logistic regression gives us a linear classifier. The
decision boundary separating the two predicted classes is the solution of S,+x- 8 =
0, which is a point if x is one dimensional, a line if it is two dimensional, etc. One can
show (exercise!) that the distance from the decision boundary is B, /|| 8||+x- B/ Z|l-
Logistic regression not only says where the boundary between the classes is, but also
says (via Eq. 12.5) that the class probabilities depend on distance from the boundary,
in a particular way, and that they go towards the extremes (0 and 1) more rapidly
when || B|| is larger. It’s these statements about probabilities which make logistic
regression more than just a classifier. It makes stronger, more detailed predictions,
and can be fit in a different way; but those strong predictions could be wrong.

Using logistic regression to predict class probabilities is a modeling choice, just
like it’s a modeling choice to predict quantitative variables with linear regression.

'Unless you’ve taken thermodynamics or physical chemistry, in which case you recognize that this is
the Boltzmann distribution for a system with two states, which differ in energy by B, +x - 3.

01:20 Friday 20*" February, 2015

12.2. LOGISTIC REGRESSION 230
x <- matrix(runif (n=50*2,min=-1,max=1),ncol=2)
par (mfrow=c(2,2))
plot.logistic.sim(x,beta.0=-0.1,beta=c(-0.2,0.2))
y.1 <- plot.logistic.sim(x,beta.0=-0.5,beta=c(-1,1))
plot.logistic.sim(x,beta.0=-2.5,beta=c(-5,5))
plot.logistic.sim(x,beta.0=-2.5e2,beta=c(-5e2,5e2))
@ - . ° - AT
+ + % + + —
- +* + + - +
o | - - _ o | F + Z
<) o F > <) s >
++ + - ++ + -
2 24 *- - - - 7
+ P - =~
© v + 0 = - _
S 1+ + - e
-+ - H -
o 7% b2 o =% -
-1 * + T - -1 - - T
[T T T T T I T T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X4 X4
e e
= by K _ = +, A _
+ <% + ++
rey + + _ 0 + - _
s, * - s, * -
“+ - - - o+ - - _
2 24t - - 2 24 T - -
¥ = - _ + = - _
i - - 0 _ -
OI -1 + /- OI — = =
o |== - = _ e |7 = - =
T T T T T Th T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

X4

X4

FIGURE 12.1: Effects of scaling logistic regression parameters. Values of x, and x, are the same
in all plots (~ Unif(—1, 1) for both coordinates), but labels were generated randomly from logistic
regressions with B, = —0.1, B = (—0.2,0.2) (top left); from B, = —0.5, B = (—1,1) (top right);
from B, = =2.5, B = (=5,5) (bottom left); and from B, = 2.5 x 10%, B = (=5 x 10%,5 x
10%). Notice how as the parameters get increased in constant ratio to each other, we approach a
deterministic relation between Y and x, with a linear boundary berween the classes. (We save one
set of the random binary responses for use later, as the imaginatively-named y . 1.)

01:20 Friday 20th February, 2015

231 12.2. LOGISTIC REGRESSION

T

|

sim.logistic <- function(x, beta.0,beta,bind=FALSE) {
require(faraway) # For accessible logit and inverse-logit functions
linear.parts <- beta.O0+(x)*)%beta)
y <- rbinom(nrow(x),size=1,prob=ilogit(linear.parts))
if (bind) { return(cbind(x,y)) } else { return(y) }

plot.logistic.sim <- function(x, beta.0, beta, n.grid=50,
labcex=0.3, col="grey", ...) {
grid.seq <- seq(from=-1,to=1,length.out=n.grid)
plot.grid <- as.matrix(expand.grid(grid.seq,grid.seq))
require(faraway)
p <- matrix(ilogit(beta.0 + (plot.grid %x*J}, beta)),nrow=n.grid)
contour (x=grid.seq,y=grid.seq,z=p, xlab=expression(x[1]),

ylab=expression(x[2]) ,main="",labcex=labcex,col=col)
y <- sim.logistic(x,beta.0,beta,bind=FALSE)
points(x[,1],x[,2],pch=ifelse(y==1,"+","-"),col=ifelse(y==1,"blue","red")
invisible(y)

}

CODE EXAMPLE 28: Code to simulate binary responses from a logistic regression model, and ro
plot a 2D logistic regression’s probability contours and simulated binary values. (How would you
modify this to take the responses from a data frame?

In neither case is the appropriateness of the model guaranteed by the gods, nature,
mathematical necessity, etc. We begin by positing the model, to get something to
work with, and we end (if we know what we’re doing) by checking whether it really
does match the data, or whether it has systematic flaws.

Logistic regression is one of the most commonly used tools for applied statistics
and discrete data analysis. There are basically four reasons for this.

1. Tradition.

2. In addition to the heuristic approach above, the quantity log p/(1— p) plays
an important role in the analysis of contingency tables (the “log 0odds”). Classi-
fication is a bit like having a contingency table with two columns (classes) and
infinitely many rows (values of x). With a finite contingency table, we can es-
timate the log-odds for each row empirically, by just taking counts in the table.
With 1nﬁn1tely many rows, we need some sort of interpolation scheme; logistic
regression is linear interpolation for the log-odds.

3. It’s closely related to “exponential family” distributions, where the probabil-
ity of some vector v is proportional to exp B, + Z;”:lfj(v)ﬁj. If one of the
components of v is binary, and the functions f; are all the identity function,

then we get a logistic regression. Exponential families arise in many contexts
in statistical theory (and in physws') so there are lots of problems which can
be turned into logistic regression.

01:20 Friday 20*" February, 2015

12.3. NUMERICAL OPTIMIZATION OF THE LIKELIHOOD 232

4. It often works surprisingly well as a classifier. But, many simple techniques of-
ten work surprisingly well as classifiers, and this doesn’t really testify to logistic
regression getting the probabilities right.

12.2.1 Likelihood Function for Logistic Regression

Because logistic regression predicts probabilities, rather than just classes, we can fit it
using likelihood. For each training data-point, we have a vector of features, x;, and
an observed class, y;. The probability of that class was either p,ify, =1,0r 1 — p, if
y; = 0. The likelihood is then

L(Bo B) = [p(x:y (1 = p(x:)™ (12.6)
i=1
(I could substitute in the actual equation for p, but things will be clearer in a moment

if I don’t.) The log-likelihood turns products into sums:

n

{(BofB) = Zj’ilogl’(xi)‘l‘(l_J’i>10g(1_17<xi)> (12.7)
< & p(x;)
= ;10g<1—p<xi>)+§yilogm (12.8)

= Dlog (1= p(e) + 3 0(Po+ 5 H) 129)

= Z—log(1+eﬁ°+xl‘ﬁ)+Zn]yi(ﬂo+xi-ﬁ> (12.10)
=1

1=1

where in the next-to-last step we finally use equation 12.4.

Typically, to find the maximum likelihood estimates we’d differentiate the log
likelihood with respect to the parameters, set the derivatives equal to zero, and solve.
To start that, take the derivative with respect to one component of 3, say 3.

al " 1 ”
_ = _ Bty
= e X+ X (12.11)
p; =14 elotiB ! ;y !

n

Z(J’i — (%380, 8)) Xij (12.12)

1=1

We are not going to be able to set this to zero and solve exactly. (That’s a transcenden-
tal equation, and there is no closed-form solution.) We can however approximately
solve it numerically.

12.3 Numerical Optimization of the Likelihood

While our likelihood isn’t nice enough that we have an explicit expression for the
maximum (the way we do in OLS or WLS), it is a pretty well-behaved function,

01:20 Friday 20th February, 2015

233 12.3. NUMERICAL OPTIMIZATION OF THE LIKELIHOOD

and one which is amenable to lots of the usual numerical methods for optimization
(see Appendix F). In particular, like most log-likelihood functions, it’s suitable for an
application of Newton’s method. Briefly (see Appendix F.1.2 for details), Newton’s
method starts with an initial guess about the optimal parameters, and then calculates
the gradient of the log-likelihood with respect to those parameters. It then adds an
amount proportional to the gradient to the parameters, moving up the surface of the
log-likelihood function. The size of the step in the gradient direction is dictated by
the second derivatives — it takes bigger steps when the second derivatives are small
(so the gradient is a good guide to what the function looks like), and small steps when
the curvature is large.

12.3.1 Iteratively Re-Weighted Least Squares

This discussion of Newton’s method is quite general, and therefore abstract. In the
particular case of logistic regression, we can make everything look much more like a
good old fashioned statistics problem.

Logistic regression, after all, is a linear model for a transformation of the proba-
bility. Let’s call this transformation g:

g(p)=log (12.13)

1-p
So the model is
gp)=Lo+x-B (12.14)

and Y|X = x ~ Binom(1, g (B, +x- 3)). It seems that what we should want to do is
take g(y) and regress it linearly on x. Of course, the variance of Y, according to the
model, is going to change depending on x — it will be (g7'(By+x-8))(1— g~ (B, +
x - 3)) — so we really ought to do a weighted linear regression, with weights inversely
proportional to that variance. Since writing g~'(8,+ x -) is getting annoying, let’s
abbreviate it by p(x) or just p, and let’s abbreviate that variance as V(p).

The problem is that y is either 0 or 1, so g(y) is either —oo or +oco. We will evade
this by using Taylor expansion.

g0~ g(p)+(—p)g'(p)=2 (12.15)

The right hand side, z will be our effective response variable, which we will regress
on x. To see why this should give us the right coefficients, substitute for g(p) in the
definition of z,

z = Botx-B+-p)(p) (12.16)

and notice that, if we’ve got the coefficients right, E[Y|X = x] = p, so (y — p) should
be mean-zero noise. In other words, when we have the right coefficients, z is a linear
function of x plus mean-zero noise. (This is our excuse for throwing away the rest of
the Taylor expansion, even though we know the discarded terms are infinitely large!)
That noise doesn’t have constant variance, but we can work it out,

Var[ZIX =x]=Var [(V = p)g' (DX =x] = (¢ (0P V(p), (12.17)

01:20 Friday 20*" February, 2015

12.4. GENERALIZED LINEAR AND ADDITIVE MODELS 234

and so use that variance in weighted least squares to recover 3.

Notice that z and the weights both involve the parameters of our logistic regres-
sion, through p(x). So having done this once, we should really use the new param-
eters to update z and the weights, and do it again. Eventually, we come to a fixed
point, where the parameter estimates no longer change. This loop — start with a
guess about the parameters, use it to calculate the z; and their weights, regress on
the x; to get new parameters, and repeat — is known as iterative reweighted least
squares (IRLS or IRWLS), iterative weighted least squares IWLS), etc.

The treatment above is rather heuristic?, but it turns out to be equivalent to using
Newton’s method, only with the expected second derivative of the log likelihood,
instead of its actual value. This takes a reasonable amount of algebra to show, so
we’ll skip it (but see Exercise 3)°. Since, with a large number of observations, the
observed second derivative should be close to the expected second derivative, this is
only a small approximation.

12.4 Generalized Linear and Additive Models

Logistic regression is part of a broader family of generalized linear models (GLMs),
where the conditional distribution of the response falls in some parametric family,
and the parameters are set by the linear predictor. Ordinary, least-squares regression
is the case where response is Gaussian, with mean equal to the linear predictor, and
constant variance. Logistic regression is the case where the response is binomial, with
n equal to the number of data-points with the given x (usually but not always 1), and
p is given by Equation 12.5. Changing the relationship between the parameters and
the linear predictor is called changing the link function. For computational reasons,
the link function is actually the function you apply to the mean response to get back
the linear predictor, rather than the other way around — (12.4) rather than (12.5).
There are thus other forms of binomial regression besides logistic regression.* There
is also Poisson regression (appropriate when the data are counts without any upper
limit), gamma regression, etc.; we will say more about these in Chapter 13.

In R, any standard GLM can be fit using the (base) glm function, whose syn-
tax is very similar to that of Im. The major wrinkle is that, of course, you need
to specify the family of probability distributions to use, by the family option —
family=binomial defaults to logistic regression. (See help(glm) for the gory de-
tails on how to do, say, probit regression.) All of these are fit by the same sort of
numerical likelthood maximization.

2That is, mathematically incorrect.

3The two key points are as follows. First, the gradient of the log-likelihood turns out to be the sum
of the z;x;. (Cf. Eq. 12.12.) Second, take a single Bernoulli observation with success probability p. The
log-likelihood is Y log p+(1—Y")log 1 — p. The first derivative with respect to p is Y /p—(1—=Y)/(1-p),
and the second derivative is —Y/p? — (1 — Y)/(1 — p)?. Taking expectations of the second derivative
gives —1/p — 1/(1 — p) = —1/p(1 — p). In other words, V(p) = —1/E [¢"']. Using weights inversely
proportional to the variance thus turns out to be equivalent to dividing by the expected second derivative.
But gradient divided by second derivative is the increment we use in Newton’s method, QED.

*My experience is that these tend to give similar error rates as classifiers, but have rather different
guesses about the underlying probabilities.

01:20 Friday 20th February, 2015

235 12.5. MODEL CHECKING

Perfect Classification One caution about using maximum likelihood to fit logistic
regression is that it can seem to work badly when the training data can be linearly
separated. The reason is that, to make the likelihood large, p(x;) should be large
when y; = 1, and p should be small when y; = 0. If 3,3, is a set of parameters
which perfectly classifies the training data, then ¢ 8, ¢ 3 is too, for any ¢ > 1, but in a
logistic regression the second set of parameters will have more extreme probabilities,
and so a higher likelihood. For linearly separable data, then, there is no parameter
vector which maximizes the likelihood, since ¢ can always be increased by making
the vector larger but keeping it pointed in the same direction.
You should, of course, be so lucky as to have this problem.

12.4.1 Generalized Additive Models

A natural step beyond generalized linear models is generalized additive models
(GAMs), where instead of making the transformed mean response a linear function
of the inputs, we make it an additive function of the inputs. This means combining
a function for fitting additive models with likelihood maximization. This is actually
done in R with the same gam function we used for additive models (hence the name).
We will look at how this works in some detail in Chapter 13. For now, the basic idea
is that the iteratively re-weighted least squares procedure of §12.3.1 doesn’t really re-
quire the model for the log odds to be linear. We get a GAM when we fit an additive
model to the z;; we could even fit an arbitrary non-parametric model, like a kernel
regression, though that’s not very common.

GAMs can be used to check GLMs in much the same way that smoothers can be
used to check parametric regressions: fit a GAM and a GLM to the same data, then
simulate from the GLM, and re-fit both models to the simulated data. Repeated many
times, this gives a distribution for how much better the GAM will seem to fit than
the GLM does, even when the GLM is true. You can then read a p-value off of this
distribution. This is illustrated in §12.6 below.

12.5 Model Checking

The validity of the logistic regression model is no more a fact of mathematics or
nature than is the validity of the linear regression model. Both are sometimes con-
venient assumptions, but neither is guaranteed to be correct, nor even some sort of
generally-correct default. In either case, if we want to use the model, the proper sci-
entific (and statistical) procedure is to check the validity of the modeling assumptions.

12.5.1 Residuals

In your linear models course, you learned a lot of checks based on the residuals of the
model (see Chapter 2). Many of these ideas translates to logistic regression, but we
need to re-define residuals. Sometimes people work with the “response” residuals,

yi = p(x:) (12.18)

01:20 Friday 20*" February, 2015

12.5. MODEL CHECKING 236

which should have mean zero (why?), but are heteroskedastic even when the model
is true (why?). Others work with standardized or Pearson residuals,

yi = p(x:)
V(p(x)
and there are yet other notions of residuals for logistic models. Still, both the re-

sponse and the Pearson residuals should be unpredictable from the covariates, and
the latter should have constant variance.

(12.19)

12.5.2 Non-parametric Alternatives

Chapter 10 discussed how non-parametric regression models can be used to check
whether parametric regressions are well-specified. The same ideas apply to logistic
regressions, with the minor modification that in place of the difference in MSEs, one
should use the difference in log-likelihoods, or (what comes to the same thing, up
to a factor of 2) the difference in deviances. The use of generalized additive models
(§12.4.1) as the alternative model class is illustrated in §12.6 below.

12.5.3 Calibration

Because logistic regression predicts actual probabilities, we can check its predictions in
a more stringent way than an ordinary regression, which just tells us the mean value
of Y, but is otherwise silent about its distribution. If we’ve got a model which tells
us that the probability of rain on a certain class of days is 50%, it had better rain on
half of those days, or there model is just wrong about the probability of rain. More
generally, we’ll say that the model is calibrated (or well-calibrated) when

Pr(Y=1|p(X)=p)=p (12.20)

That is, the actual probabilities should match the predicted probabilities. If we have a
large sample, by the law of large numbers, observed relative frequencies will converge
on true probabilities. Thus, the observed relative frequencies should be close to the
predicted probabilities, or else the model is making systematic mistakes.

In practice, each case may have its own unique predicted probability p, so it might
not be possible to accumulate many cases with the same p and check the relative
frequency among those cases. When that happens, one option is to look at all the
cases where the predicted probability is in some small range [p, p + €); the observed
relative frequency had them better be in that range too. §12.7 below illustrates some
of the relevant calculations.

A second option is to use what is called a proper scoring rule, which is a function
of the outcome variables and the predicted probabilities that attains its minimum
when, and only when, the predicted are calibrated. For binary outcomes, one proper
scoring rule (historically the oldest) is the Brier score,

> = pi) (12.21)

i=1

01:20 Friday 20th February, 2015

237 12.6. A TOY EXAMPLE

Another however is simply the (normalized) negative log-likelihood,
—n'> y;log p;+(1—y;)log1— p, (12.22)
=1

Of course, proper scoring rules are better evaluated out-of-sample, or, failing that,
through cross-validation, than in-sample. Even an in-sample evaluation is better than
nothing, however, which is too often what happens.

12.6 A Toy Example

Here’s a worked R example, using the data from the upper right panel of Figure 12.1.

The 50 x 2 matrix x holds the input variables (the coordinates are independently and
uniformly distributed on [—1,1]), and y. 1 the corresponding class labels, themselves
generated from a logistic regression with S, =—0.5, 8 =(—1,1).

df <- data.frame(y=y.1,x1=x[,1],x2=x[,2])

(logr <- glm(y ~ x1 + x2, data=df, family="binomial"))

##

Call: glm(formula =y ~ xl1 + x2, family = "binomial", data = df)
##

Coefficients:

(Intercept) x1 x2
-0.677 -1.579 1.556
##

Degrees of Freedom: 49 Total (i.e. Null); 47 Residual
Null Deviance: 65.3
Residual Deviance: 53.3 AIC: 59.3

The deviance of a model fitted by maximum likelihood is twice the difference
between its log likelihood and the maximum log likelihood for a saturated model,
i.e., a model with one parameter per observation. Hopefully, the saturated model
can give a perfect fit.”> Here the saturated model would assign probablhty 1 to the

observed outcomes®, and the logarlthm of 1 1s zero, so D = 2/ (IBO, ,5 The null
deviance is what’s achievable by using just a constant bias 3 and setting the rest of
S to 0. The fitted model definitely improves on that.”

5The factor of two is so that the deviance will have a y? distribution. Specifically, if the model with p
parameters is right, the deviance will have a y? distribution with 7 — p degrees of freedom. See Appendix
G for the connection between log likelihood ratios and y? distributions.

®This is not possible when there are multiple observations with the same input features, but different
classes.

7 AIC is of course the Akaike information criterion, —2{ +2p, with p being the number of parameters
(here, p = 3). (Some people divide this through by 7.) AIC has some truly devoted adherents, especially
among non-statisticians, but I have been deliberately ignoring it and will continue to do so. Basically, to the
extent AIC succeeds, it works as fast, large-sample approximation to doing leave-one-out cross-validation.
Claeskens and Hjort (2008) is a thorough, modern treatment of AIC and related model-selection crite-
ria from a statistical viewpoint; see especially §2.9 for the connection between AIC and leave-one-out.

[[TODO: AIC appendix]]

01:20 Friday 20*" February, 2015

12.6. A TOY EXAMPLE 238

If we’re interested in inferential statistics on the estimated model, we can see those

with summary, as with 1m:

summary (logr,digits=2,signif.stars=FALSE)

H#
##
##
H#
##
##
##
##
##
##
##
##
H#
##
##
H#
##
##
H#
##
##
H#
##

Call:
glm(formula = y ~ x1 + x2, family = "binomial", data = df)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.778 -0.838 -0.513 0.992 1.817

Coefficients:
Estimate Std. Error z value Pr(>|zl|)
(Intercept) -0.677 0.343 -1.97 0.049 x*
x1 -1.579 0.613 -2.57 0.010 =*
x2 1.556 0.635 2.45 0.014 x*
Signif. codes: O '*¥x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 65.342 on 49 degrees of freedom
Residual deviance: 53.265 on 47 degrees of freedom
AIC: 59.26

Number of Fisher Scoring iterations: 4

The fitted values of the logistic regression are the class probabilities; this next line

gives us the (in-sample) mis-classification rate.

mean(ifelse(fitted(logr)<0.5,0,1) != df$y)

##

[1] 0.26

An error rate of 26 % may sound bad, but notice from the contour lines in Fig-

ure 12.1 that lots of the probabilities are near 0.5, meaning that the classes are just
genuinely hard to predict.

To see how well the logistic regression assumption holds up, let’s compare this to

a GAM. We’ll use the same package for estimating the GAM, mgcv, that we used to
fit the additive models in Chapter 9.

library (mgcv)

##
##

Loading required package: nlme
This is mgcv 1.7-28. For overview type ’help("mgcv-package")’.

(gam.1 <- gam(y~s(x1)+s(x2),data=df,family="binomial"))

##
##

Family: binomial

01:20 Friday 20th February, 2015

239 12.6. A TOY EXAMPLE

Simulate a fitted logistic regression and return a new data frame
Inputs: data frame (df), fitted model (mdl)
Outputs: new data frame
Presumes: df contains columns with names for the covariates of mdl
simulate.from.logr <- function(df, mdl) {

probs <- predict(mdl,newdata=df,type="response")

df$y <- rbinom(n=nrow(x),size=1,prob=probs)

return(df)
}

CODE EXAMPLE 29: Code for simulating from an estimated logistic regression model. By default
(type="1ink"), predict for logistic regressions returns predictions for the log odds; changing the
type to "response" returns a probability.

Link function: logit

##

Formula:

##y ~ s(xl) + s(x2)
##

Estimated degrees of freedom:
1 1 total = 3

#i#

UBRE score: 0.1853

This fits a GAM to the same data, using spline smoothing of both input variables.
(Figure 12.2 shows the partial response functions.) The (in-sample) deviance is

signif (gam.1$deviance,3)
[1] 53.3

which is lower than the logistic regression, so the GAM gives the data higher
likelihood. We expect this; the question is whether the difference is significant, or
within the range of what we should expect when logistic regression is valid. To test
this, we need to simulate from the logistic regression model.

Now we simulate from our fitted model, and re-fit both the logistic regression

and the GAM.

Simulate from an estimated logistic model, and refit both the logistic
regression and a generalized additive model
Hard-codes the formula; better code would be more flexible
Inputs: data frame with covariates (df), fitted logistic model (mdl)
Output: difference in deviances
Presumes: df has columns names x.1 and x.2.
delta.deviance.sim <- function (df,mdl) {
sim.df <- simulate.from.logr(df,mdl)
GLM.dev <- glm(y~x1+x2,data=sim.df,family="binomial")$deviance
GAM.dev <- gam(y~s(x1)+s(x2),data=sim.df,family="binomial")$deviance

01:20 Friday 20t February, 2015

12.6. A TOY EXAMPLE 240

plot(gam.1,residuals=TRUE,pages=0)

L ‘H Wi 1 \H‘H [T \H} LI I‘

-1.0 -0.5 0.0 0.5 1.0

s(x2,1)
0
L

L ‘IH Il \I‘HHH\ I‘HH 11 \‘\ H\IH\HI‘

-1.0 05 0.0 0.5 1.0

x2

FIGURE 12.2: Partial response functions estimated when we fit a GAM to the data simulated from
a logistic regression. Notice that the vertical axes are on the logit scale.

01:20 Friday 20th February, 2015

241 12.6. A TOY EXAMPLE
return(GLM.dev - GAM.dev)

Notice that in this simulation we are not generating new X values. The logistic
regression and the GAM are both models for the response conditional on the inputs,
and are agnostic about how the inputs are distributed, or even whether it’s meaning-
ful to talk about their distribution.

Finally, we repeat the simulation a bunch of times, and see where the observed
difference in deviances falls in the sampling distribution.

(delta.dev.observed <- logr$deviance - gam.l$deviance)
[1] 7.723e-05

delta.dev <- replicate(100,delta.deviance.sim(df,logr))
mean(delta.dev.observed > delta.dev)

[1] 0.26

In other words, the amount by which a GAM fits the data better than logistic
regression is pretty near the middle of the null distribution. Since the example data
really did come from a logistic regression, this is a relief.

01:20 Friday 20*" February, 2015

12.6. A TOY EXAMPLE 242

hist(delta.dev, main="",
xlab="Amount by which GAM fits better than logistic regression")
abline(v=delta.dev.observed,col="grey",lwd=4)

o _
[e¢]
o _]
©

>

(&)

c

[}

s 9

(5}

;

T
o
A
o -

[I I I I I 1
0 10 20 30 40 50 60

Amount by which GAM fits better than logistic regression

FIGURE 12.3: Sampling distribution for the difference in deviance berween a GAM and a logistic
regression, on data generated from a logistic regression. The observed difference in deviances is
shown by the grey vertical line.

01:20 Friday 20th February, 2015

243 12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS

12.7 Weather Forecasting in Snoqualmie Falls

For our worked data example, we are going to build a simple weather forecaster.
Our data consist of daily records, from the beginning of 1948 to the end of 1983,
of precipitation at Snoqualmie Falls, Washington (Figure 12.4)3. Each row of the
data file is a different year; each column records, for that day of the year, the day’s
precipitation (rain or snow), in units of 1 inch. Because of leap-days, there are 366
columns, with the last column having an NA value for three out of four years.

Read in the whole data set as one big vector, skipping the first line of
the file (header information)
snoqualmie <- scan("http://www.stat.washington.edu/peter/book.data/setl",skip=1)
Create a two-column data frame, today's precipitation vs. tomorrow's
snoq <- data.frame(tomorrow=c(tail(snoqualmie,-1),NA),
today=snoqualmie)
Make the data more comprehensible by adding years and days within each year
First, what years are we talking about?
years <- 1948:1983
How many days to each year?
days.per.year <- rep(c(366,365,365,365),length.out=length(years))
Add a "year" column
snog$year <- rep(years, times=days.per.year)
Add a day-within-the-year column
snoq$day <- rep(c(1:366,1:365,1:365,1:365) ,times=length(years)/4)
Trim the last row to get rid of the NA
snoq <- snoq[-nrow(snoq),]

What we want to do is predict tomorrow’s weather from today’s. This would be
of interest if we lived in Snoqualmie Falls, or if we operated one of the local hydro-
electric power plants, or the tourist attraction of the Falls themselves. Examining the
distribution of the data (Figures 12.5 and 12.6) shows that there is a big spike in the
distribution at zero precipitation, and that days of no precipitation can follow days of
any amount of precipitation but seem to be less common after heavy precipitation.

These facts suggest that “no precipitation” is a special sort of event which would
be worth predicting in its own right (as opposed to just being when the precipitation
happens to be zero), so we will attempt to do so with logistic regression. Specifically,
the input variable X; will be the amount of precipitation on the i day, and the
response Y; will be the indicator variable for whether there was any precipitation on
day i +1—thatis, Y; =11f X, >0,anY; =01if X ; =0. We expect from Figure
12.6, as well as common experience, that the coefficient on X should be positive.’

The estimation is straightforward:

81 learned of this data set from Guttorp (1995); the data file is available from http://www.stat.
washington.edu/peter/stoch.mod.data.html. Prof. Guttorp formatted it so that each year was a dif-
ferent row, which is rather inconvenient for our purposes; see http://www.stat.cmu.edu/~cshalizi/
ADAfaEPoV/snoqualmie.R for the commands used to reshape it.

9This does not attempt to model how much precipitation there will be tomorrow, if there is any. We
could make that a separate model, if we can get this part right.

01:20 Friday 20*" February, 2015

12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS 244

FIGURE 12.4: Snogqualmie Falls, ~ Washington, on a low-precipitation day.
Photo by Jeannine Hall Gailey, from http://myblog.webbish6.com/2011/07/
17-years-and-hoping-for-another-17.html. [/TODO: Get permission for photo

usel]]

01:20 Friday 20th February, 2015

245 12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS

hist (snoqualmie,n=50,probability=TRUE,xlab="Precipitation (1/100 inch)")
rug(snoqualmie, col="grey")

Histogram of snoqualmie

Density
0.03 0.04 0.05 0.06
| | | |

0.02
|

0.01
|

-

| I I I 1
0 100 200 300 400

0.00
|

Precipitation (1/100 inch)

FIGURE 12.5: Histogram of the amount of daily precipitation at Snoqualmie Falls

01:20 Friday 20*" February, 2015

12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS 246

plot (tomorrow~today,data=snoq,
xlab="Precipitation today (1/100 inch)",
ylab="Precipitation tomorrow (1/100 inch)",cex=0.1)
rug(snogq$today,side=1,col="grey")
rug(snoq$tomorrow,side=2,col="grey")

o
O_
<

—_

e

[$]

£

o

& 8 |

= ™

=

z

2

)

=

)

IS

S o
2 38 4
c «
s}

=

©

=

2

[$]

o

o

o o
S -
=

o — . -

0 100 200 300 400

Precipitation today (1/100 inch)

FIGURE 12.6: Scatterplot showing relationship berween amount of precipitation on successive days.
Notice that days of no precipitation can follow days of any amount of precipitation, but seem to be
more common when there is little or no precipitation to start with.

01:20 Friday 20th February, 2015

247 12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS

snoq.logistic <- glm((tomorrow > 0) ~ today, data=snoq, family=binomial)

To see what came from the fitting, run summary:

print (summary(snoq.logistic) ,digits=3,signif.stars=FALSE)

##

Call:

glm(formula = (tomorrow > 0) ~ today, family = binomial, data = snoq)
##

Deviance Residuals:

Min 1Q Median 3Q Max

-4.525 -0.999 0.167 1.170 1.367

#it

Coefficients:

#i#t Estimate Std. Error z value Pr(>|zl|)
(Intercept) -0.43520 0.02163 -20.1 <2e-16
today 0.04523 0.00131 34.6 <2e-16
#it

(Dispersion parameter for binomial family taken to be 1)
##

H# Null deviance: 18191 on 13147 degrees of freedom
Residual deviance: 15896 on 13146 degrees of freedom
AIC: 15900

##

Number of Fisher Scoring iterations: 5

The coefficient on the amount of precipitation today is indeed positive, and (if we
can trust R’s assumptions) highly significant. There is also an intercept term, which
is slight positive, but not very significant. We can see what the intercept term means
by considering what happens when on days of no precipitation. The linear predictor
is then just the intercept, —0.435, and the predicted probability of precipitation is
0.393. That is, even when there is no precipitation today, it’s almost as likely as not
that there will be some precipitation tomorrow.

We can get a more global view of what the model is doing by plotting the data
and the predictions (Figure 12.7). This shows a steady increase in the probability of
precipitation tomorrow as the precipitation today increases, though with the leveling
off characteristic of logistic regression. The (approximate) 95% confidence limits for
the predicted probability are (on close inspection) asymmetric.

How well does this work? We can get a first sense of this by comparing it to
a simple nonparametric smoothing of the data. Remembering that when Y is bi-
nary, PrY =1|X =x = E[Y|X =x], we can use a smoothing spline to estimate
E[Y|X = x] (Figure 12.8). This would not be so great as a model — it ignores the
fact that the response is a binary event and we’re trying to estimate a probability,
the fact that the variance of Y therefore depends on its mean, etc. — but it’s at least
indicative.

10For western Washington State, this is plausible — but see below.

01:20 Friday 20*" February, 2015

12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS 248

plot ((tomorrow>0) “today,data=snoq,xlab="Precipitation today (1/100 inch)", ylab="Positive precip

rug(snoq$today,side=1,col="grey")

data.plot <- data.frame(today=(0:500))

pred.bands <- function(mdl,data,col="black",mult=1.96) {
preds <- predict(mdl,newdata=data,se.fit=TRUE)
lines(datal,1],ilogit (preds$fit),col=col)
lines(datal,1],ilogit(preds$fit+mult*preds$se.fit),col=col,lty="dashed")
lines(datal,1],ilogit (preds$fit-mult*preds$se.fit),col=col,lty="dashed")

}

pred.bands(snoq.logistic,data.plot)

e o—oe
=
Q _|
o
-~
2
(o]
c
S
E ©
e S T
c
2
=
©
=
ke
(6]
g <« |
g-o
=
=
8
o
N
o
o
)] O ————EEHTIRD
P @ 00 o)

I I I I I
0 100 200 300 400

Precipitation today (1/100 inch)
FIGURE 12.7: Data (dots), plus predicted probabilities (solid line) and approximate 95% confidence
intervals from the logistic regression model (dashed lines). Note that calculating standard errors for

predictions on the logit scale, and then transforming, is better practice than getting standard errors
directly on the probability scale.

01:20 Friday 20th February, 2015

249 12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS

plot ((tomorrow>0) “today,data=snoq,xlab="Precipitation today (1/100 inch)", ylab="Positive precipitation tomc
rug(snoq$today,side=1,col="grey")

data.plot <- data.frame(today=(0:500))

pred.bands(snoq.logistic,data.plot)

snoqg.spline <- smooth.spline(x=snoq$today,y=(snog$tomorrow>0))

lines(snoq.spline,col="red")

o | o
= e
«© _|
o

o

2

o

£

o

E o

e S T

C

i}

=

©

=

o

(8]

o <«

o o

o

=

=

3

o
N
o
o

T | WIS
S @ O © o)

I I I I I
0 100 200 300 400

Precipitation today (1/100 inch)

FIGURE 12.8: As Figure 12.7, plus a smoothing spline (red).

01:20 Friday 20*" February, 2015

12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS 250

The result starts out notably above the logistic regression, then levels out and
climbs much more slowly. It also has a bunch of dubious-looking wiggles, despite the
cross-validation.

We can try to do better by fitting a generalized additive model. In this case, with
only one predictor variable, this means using non-parametric smoothing to estimate
the log odds — we’re still using the logistic transformation, but only requiring that
the log odds change smoothly with X, not that they be linear in X . The result (Figure
12.9) is initially similar to the spline, but has some more exaggerated undulations, and
has confidence intervals. At the largest values of X, the latter span nearly the whole
range from 0 to 1, which is not unreasonable considering the sheer lack of data there.

Visually, the logistic regression curve is hardly ever within the confidence limits
of the non-parametric predictor. What can we say about the difference between the
two models more quantiatively?

Numerically, the deviance is 1.5896 x 10* for the logistic regression, and 1.5122 x
10* for the GAM. We can go through the testing procedure outlined in §12.6. We
need a simulator (which presumes that the logistic regression model is true), and we
need to calculate the difference in deviance on simulated data many times.

Simulate from the fitted logistic regression model for Snoqualmie

Presumes: fitted values of the model are probabilities.

snoq.sim <- function(model=snoq.logistic) {
fitted.probs=fitted(model)
return(rbinom(n=length(fitted.probs),size=1,prob=fitted.probs))

¥

A quick check of the simulator against the observed values:

summary (ifelse(snoq[,11>0,1,0))

Min. 1st Qu. Median Mean 3rd Qu. Max.
#it 0.000 0.000 1.000 0.526 1.000 1.000
summary (snoq.sim())

Min. 1st Qu. Median Mean 3rd Qu. Max.
##t 0.000 0.000 1.000 0.525 1.000 1.000

This suggests that the simulator is not acting crazily.
Now for the difference in deviances:

Simulate from fitted logistic regression, re-fit logistic regression and
GAM, calculate difference in deviances
diff.dev <- function(model=snoq.logistic,x=snoql[,"today"]) {

y.new <- snoq.sim(model)

GLM.dev <- glm(y.new ~
GAM.dev <- gam(y.new

return(GLM.dev-GAM.dev)

x,family=binomial)$deviance
s(x) ,family=binomial)$deviance

A single run of this takes about 0.6 seconds on my computer.
Finally, we calculate the distribution of difference in deviances under the null
(that the logistic regression is properly specified), and the corresponding p-value:

01:20 Friday 20th February, 2015

251 12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS

library(mgcv)

plot ((tomorrow>0) “today,data=snoq,xlab="Precipitation today (1/100 inch)", ylab="Positive precipitation tomc
rug(snoq$today,side=1,col="grey")

pred.bands(snoq.logistic,data.plot)

lines(snoq.spline,col="red")

snoq.gam <- gam((tomorrow>0) s(today),data=snoq,family=binomial)

pred.bands(snoq.gam,data.plot,"blue")

e e

©)

S t
-~ i
2 i
o |
5 E
IS l
c |
i} :
8 !
S :
o |
o <« !
o S |
° |
= !
.g
£ i

o | |

=} |

8 — CE————NNTCOIED G0 O © o) 'L

[[[I I
0 100 200 300 400

Precipitation today (1/100 inch)

FIGURE 12.9: As Figure 12.8, but with the addition of a generalized additive model (blue line) and
its confidence limits (dashed blue lines).

01:20 Friday 20*" February, 2015

12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS 252

diff.dev.obs <- snoq.logistic$deviance - snoq.gam$deviance
null.dist.of.diff.dev <- replicate(100,diff.dev())
p.value <- (1+sum(null.dist.of.diff.dev > diff.dev.obs))/(1+length(null.dist.of.diff.dev))

Using a thousand replicates takes about 67 seconds, or a bit over a minute; it gives
a p-value of < 1/101. (A longer run of 1000 replicates, not shown, gives a p-values of
<1073)

Having detected that there is a problem with the logistic model, we can ask where
it lies. We could just use the GAM, but it’s more interesting to try to diagnose what’s
going on.

In this respect Figure 12.9 is actually a little misleading, because it leads the eye
to emphasize the disagreement between the models at large X, when actually there
are very few data points there, and so even large differences in predicted probabili-
ties there contribute little to the over-all likelihood difference. What is actually more
important is what happens at X =0, which contains a very large number of observa-
tions (about 47% of all observations), and which we have reason to think is a special
value anyway.

Let’s try introducing a dummy variable for X = 0 into the logistic regression,
and see what happens. It will be convenient to augment the data frame with an extra
column, recording 1 whenever X = 0 and 0 otherwise.

snoq2 <- data.frame(snoq,dry=ifelse(snogq$today==0,1,0))
snoq2.logistic <- glm((tomorrow > 0) ~ today + dry,data=snoq2,family=binomial)
snoq2.gam <- gam((tomorrow > 0) ~ s(today) + dry,data=snoq2,family=binomial)

Notice that I allow the GAM to treat zero as a special value as well, by giving it
access to that dummy variable. In principle, with enough data it can decide whether
or not that is useful on its own, but since we have guessed that it is, we might as well
include it. The new GLM has a deviance of 1.4955 x 10*, lower than even the GAM
before, and the new GAM has a deviance of 1.4842 x 10*. I will leave repeating the
specification test as an exercise. Figure 12.10 shows the data and the two new models.
These are extremely close to each other at low percipitation, and diverge thereafter.
The new GAM is the smoothest model we’ve nonparametric model we’ve seen yet,
which suggests that before the it was being under-smoothed to help capture the special
value at zero.

Let’s turn now to looking at calibration. The actual fraction of no-precipitation
days which are followed by precipitation is

signif (mean(snog$tomorrow[snog$today==0]>0),3)
[1] 0.287

What does the new logistic model predict?
signif (predict(snoq2.logistic,
newdata=data.frame(today=0,dry=1) ,type="response"),3)

1
0.287

01:20 Friday 20th February, 2015

253 12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS

plot ((tomorrow>0) “today,data=snoq,xlab="Precipitation today (1/100 inch)",
ylab="Positive precipitation tomorrow?")

rug(snoq$today,side=1,col="grey")

data.plot=data.frame(data.plot,dry=ifelse(data.plot$today==0,1,0))

lines(snoq.spline,col="red")

pred.bands(snog2.logistic,data.plot)

pred.bands(snog2.gam,data.plot, "blue")

o]
©
g
o
2
=
2
©
2 S
c
s}
IS
s
(8]
o <«
S S
o
=
2
a
N
=}
o
S | C————CWEEOTED @0 O © O e
[[[I I
0 100 200 300 400

Precipitation today (1/100 inch)

FIGURE 12.10: As Figure 12.9, but allowing the two models to use a dummy variable indicating
when today is completely dry (X = 0).

01:20 Friday 20*" February, 2015

12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS 254

This should not be surprising — we’ve given the model a special parameter dedi-
cated to getting this one probability exactly right! The hope however is that this will
change the predictions made on days with precipitation so that they are better.

Looking at a histogram of fitted values (hist (fitted(snoq2.logistic))) shows
a gap in the distribution of predicted probabilities below 0.63, so we’ll look first at
days where the predicted probability is between 0.63 and 0.64.

signif (mean(snoq$tomorrow[(fitted(snoq2.logistic) >= 0.63) &
(fitted(snog2.logistic) < 0.64)] > 0),3)
[1] 0.526

Not bad — but a bit painful to write out. Let’s write a function:

frequency.vs.probability <- function(p.lower,p.upper=p.lower+0.01,
model=snoq2.logistic,events=(snoq$tomorrow>0)) {
fitted.probs <- fitted(model)
indices <- (fitted.probs >= p.lower) & (fitted.probs < p.upper)
ave.prob <- mean(fitted.probs[indices])
frequency <- mean(events[indices])
se <- sqrt(ave.prob*(l-ave.prob)/sum(indices))
return(c(frequency=frequency,ave.prob=ave.prob,se=se))

I have added a calculation of the average predicted probability, and a crude esti-
mate of the standard error we should expect if the observations really are binomial
with the predicted probabilities!!. Try the function out before doing anything rash:

frequency.vs.probability(0.63)
frequency ave.prob se
0.52603 0.63415 0.01586

This agrees with our previous calculation.
Now we can do this for a lot of probability brackets:

f.vs.p <- sapply(c(0.28,(63:100)/100) ,frequency.vs.probability)

This comes with some unfortunate R cruft, removable thus

f.vs.p <- data.frame(frequency=f.vs.p["frequency",],
ave.prob=f.vs.p["ave.prob",],se=f.vs.p["se",])

and we’re ready to plot (Figure 12.11). The observed frequencies are generally
reasonably near the predicted probabilities. While I wouldn’t want to say this was
the last word in weather forecasting'?, it’s surprisingly good for such a simple model.
I will leave calibration checking for the GAM as another exercise.

'This could be improved by averaging predicted variances for each point, but using probability ranges
of 0.01 makes it hardly worth the effort.

2There is an extensive discussion of this data in Guttorp (1995, ch. 2), including many significant re-
finements, such as dependence across multiple days.

01:20 Friday 20th February, 2015

255 12.7. WEATHER FORECASTING IN SNOQUALMIE FALLS

plot(frequency~ave.prob,data=f.vs.p,xlim=c(0,1),ylim=c(0,1),
xlab="Predicted probabilities",ylab="0bserved frequencies")

rug(fitted(snog2.logistic),col="grey")

abline(0,1,col="grey")

segments (x0=f .vs.p$ave.prob,y0=f.vs.p$ave.prob-1.96*f.vs.p$se,
yl=f.vs.p$ave.prob+1.96%f.vs.p$se)

1.0

0.8
]
(o]
—
(e}

]
[$] ©
& o 7
3
g 0
o
[0
>
5 < |
n o
Qo
o)
o
[aV]
8
o |
o
I I I I | [
0.0 0.2 0.4 0.6 0.8 1.0

Predicted probabilities

FIGURE 12.11: Calibration plot for the modified logistic regression model snoq2.logistic.
Points show the actual frequency of precipitation for each level of predicted probability. Vertical
lines are (approximate) 95% sampling intervals for the frequency, given the predicted probability
and the number of observations.

01:20 Friday 20*" February, 2015

12.8. LOGISTIC REGRESSION WITH MORE THAN TWO CLASSES 256

12.8 Logistic Regression with More Than Two Classes

If Y can take on more than two values, say k& of them, we can still use logistic regres-
sion. Instead of having one set of parameters 3, 3, each class ¢ in 0: (k—1) will have

its own offset ,Béc) and vector 8), and the predicted conditional probabilities will be

o5 +x- O
Pr(Y=clX=x)= (12.23)

hI o8 f

You can check that when there are only two classes (say, 0 and 1), equation 12.23
reduces to equation 12.5, with B, = B = 8 and 8 = S0 — BO). In fact, no matter
how many classes there are, we can always pick one of them, say ¢ = 0, and fix its
parameters at exactly zero, without any loss of generality (Exercise 2).

Calculation of the likelihood now proceeds as before (only with more book-
keeping), and so does maximum likelihood estimation.

12.9 Exercises

1. “We minimize the mis-classification rate by predicting whichever class is more
likely” Let Y (x) be our predicted class, either O or 1. Our error rate is then
Pr <Y #+ f’) Show that Pr <Y #+ f’) =E I:(Y -)})2] . Further show that
E [(Y VY| X = x:l =Pr(Y =1]X = x)(1—2Y(x))+ Y?(x). Conclude by
showing that if Pr(Y = 1]X = x) > 0.5, the risk of mis-classification is mini-
mized by taking ¥ = 1, that if Pr(Y = 1|X = x) < 0.5 the risk is minimized
by taking ¥ = 0, and that when Pr(Y = 1]X = x) = 0.5 both predictions are
equally risky.

2. A multiclass logistic regression, as in Eq. 12.23, has parameters ﬁg) and 3
for each class ¢. Show that we can always get the same predicted probabilities
by setting ﬂéc) =0, B = O.for any one class ¢, and adjusting the parameters
for the other classes appropriately.

3. Find the first and second derivatives of the log-likelthood for logistic regression
with one predictor variable. Explicitly write out the formula for doing one step
of Newton’s method. Explain how this relates to re-weighted least squares.

13Since we can arbitrarily chose which class’s parameters to “zero out” without affecting the predicted
probabilities, strictly speaking the model in Eq. 12.23 is unidentified. That is, different parameter settings
lead to exactly the same outcome, so we can’t use the data to tell which one is right. The usual response
here is to deal with this by a convention: we decide to zero out the parameters of the first class, and then
estimate the contrasting parameters for the others.

01:20 Friday 20th February, 2015

