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Chapter 19

Factor Analysis

19.1 From PCA to Factor Analysis

Let’s sum up PCA. We start with n different p-dimensional vectors as our data, i.e.,
each observation as p numerical variables. We want to reduce the number of dimen-
sions to something more manageable, say q . The principal components of the data
are the q orthogonal directions of greatest variance in the original p-dimensional
space; they can be found by taking the top q eigenvectors of the sample covariance
matrix. Principal components analysis summarizes the data vectors by projecting
them on to the principal components.

All of this is purely an algebraic undertaking; it involves no probabilistic assump-
tions whatsoever. It also supports no statistical inferences — saying nothing about
the population or stochastic process which made the data, it just summarizes the
data. How can we add some probability, and so some statistics? And what does that
let us do?

Start with some notation. X is our data matrix, with n rows for the different
observations and p columns for the different variables, so Xi j is the value of variable
j in observation i . Each principal component is a vector of length p, and there are
p of them, so we can stack them together into a p ⇥ p matrix, say w. Finally, each
data vector has a projection on to each principal component, which we collect into
an n⇥ p matrix F. Then

X = Fw (19.1)
[n⇥ p] = [n⇥ p][p ⇥ p]

where I’ve checked the dimensions of the matrices underneath. This is an exact equa-
tion involving no noise, approximation or error, but it’s kind of useless; we’ve re-
placed p-dimensional vectors in X with p-dimensional vectors in F. If we keep only
to q < p largest principal components, that corresponds to dropping columns from
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19.1. FROM PCA TO FACTOR ANALYSIS 376

F and rows from w. Let’s say that the truncated matrices are Fq and wq . Then

X ⇡ Fqwq (19.2)

[n⇥ p] = [n⇥ q][q ⇥ p]

The error of approximation — the difference between the left- and right- hand-sides
of Eq. 19.2 — will get smaller as we increase q . (The line below the equation is a
sanity-check that the matrices are the right size, which they are. Also, at this point
the subscript qs get too annoying, so I’ll drop them.) We can of course make the two
sides match exactly by adding an error or residual term on the right:

X= Fw+ ✏ (19.3)

where ✏ has to be an n⇥ p matrix.
Now, Eq. 19.3 should look more or less familiar to you from regression. On

the left-hand side we have a measured outcome variable (X), and on the right-hand
side we have a systematic prediction term (Fw) plus a residual (✏). Let’s run with
this analogy, and start treating ✏ as noise, as a random variable which has got some
distribution, rather than whatever arithmetic says is needed to balance the two sides.
(This move is the difference between just drawing a straight line through a scatter
plot, and inferring a linear regression.) Then X will also be a random variable. When
we want to talk about the random variable which goes in the i th column of X, we’ll
call it Xi .

What about F? Well, in the analogy it corresponds to the independent variables
in the regression, which ordinarily we treat as fixed rather than random, but that’s
because we actually get to observe them; here we don’t, so it will make sense to
treat F, too, as random. Now that they are random variables, we say that we have
q factors, rather than components, that F is the matrix of factor scores and w is
the matrix of factor loadings. The variables in X are called observable or manifest
variables, those in F are hidden or latent. (Technically ✏ is also latent.)

Before we can actually do much with this model, we need to say more about the
distributions of these random variables. The traditional choices are as follows.

1. All of the observable random variables Xi have mean zero and variance 1.

2. All of the latent factors have mean zero and variance 1.

3. The noise terms ✏ all have mean zero.

4. The factors are uncorrelated across individuals (rows of F) and across variables
(columns).

5. The noise terms are uncorrelated across individuals, and across observable vari-
ables.

6. The noise terms are uncorrelated with the factor variables.
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377 19.2. THE GRAPHICAL MODEL

Item (1) isn’t restrictive, because we can always center and standardize our data. Item
(2) isn’t restrictive either — we could always center and standardize the factor vari-
ables without really changing anything. Item (3) actually follows from (1) and (2).
The substantive assumptions — the ones which will give us predictive power but
could also go wrong, and so really define the factor model — are the others, about
lack of correlation. Where do they come from?

Remember what the model looks like:

X= Fw+ ✏ (19.4)

All of the systematic patterns in the observations X should come from the first term
on the right-hand side. The residual term ✏ should, if the model is working, be un-
predictable noise. Items (3) through (5) express a very strong form of this idea. In
particular it’s vital that the noise be uncorrelated with the factor scores.

19.1.1 Preserving correlations

There is another route from PCA to the factor model, which many people like but
which I find less compelling; it starts by changing the objectives.

PCA aims to minimize the mean-squared distance from the data to their projects,
or what comes to the same thing, to preserve variance. But it doesn’t preserve corre-
lations. That is, the correlations of the features of the image vectors are not the same
as the correlations among the features of the original vectors (unless q = p, and we’re
not really doing any data reduction). We might value those correlations, however,
and want to preserve them, rather than the than trying to approximate the actual
data.1 That is, we might ask for a set of vectors whose image in the feature space
will have the same correlation matrix as the original vectors, or as close to the same
correlation matrix as possible while still reducing the number of dimensions. This
leads to the factor model we’ve already reached, as we’ll see.

19.2 The Graphical Model
It’s common to represent factor models visually, as in Figure 19.1. This is an example
of a graphical model, in which the nodes or vertices of the graph represent random
variables, and the edges of the graph represent direct statistical dependencies between
the variables. The figure shows the observables or features in square boxes, to indicate
that they are manifest variables we can actual measure; above them are the factors,
drawn in round bubbles to show that we don’t get to see them. The fact that there
are no direct linkages between the factors shows that they are independent of one
another. From below we have the noise terms, one to an observable.

1Why? Well, originally the answer was that the correlation coefficient had just been invented, and
was about the only way people had of measuring relationships between variables. Since then it’s been
propagated by statistics courses where it is the only way people are taught to measure relationships. The
great statistician John Tukey once wrote “Does anyone know when the correlation coefficient is useful, as
opposed to when it is used? If so, why not tell us?” (Tukey, 1954, p. 721).

22:20 Tuesday 31st March, 2015



19.2. THE GRAPHICAL MODEL 378

F1

X1

0.87

X2

-0.75

F2

0.34

X3

0.13

X4

0.20

F3

0.73 0.10

X5

0.15

X6

0.45

E1 E2 E3 E4 E5 E6

FIGURE 19.1: Graphical model form of a factor model. Circles stand for the unobserved variables
(factors above, noises below), boxes for the observed features. Edges indicate non-zero coefficients
— entries in the factor loading matrix w, or specific variances  i . Arrows representing entries in
w are decorated with those entries. Note that it is common to omit the noise variables in such
diagrams, with the implicit understanding that every variable with an incoming arrow also has
an incoming noise term.

Notice that not every observable is connected to every factor: this depicts the fact
that some entries in w are zero. In the figure, for instance, X1 has an arrow only from
F1 and not the other factors; this means that while w11 = 0.87, w21 = w31 = 0.

Drawn this way, one sees how the factor model is generative — how it gives us
a recipe for producing new data. In this case, it’s: draw new, independent values for
the factor scores F1, F2, . . . Fq ; add these up with weights from w; and then add on the
final noises ✏1,✏2, . . .✏p . If the model is right, this is a procedure for generating new,
synthetic data with the same characteristics as the real data. In fact, it’s a story about
how the real data came to be — that there really are some latent variables (the factor
scores) which linearly cause the observables to have the values they do.
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379 19.2. THE GRAPHICAL MODEL

19.2.1 Observables Are Correlated Through the Factors
One of the most important consequences of the factor model is that observable vari-
ables are correlated with each other solely because they are correlated with the hidden
factors. To see how this works, take X1 and X2 from the diagram, and let’s calculate
their covariance. (Since they both have variance 1, this is the same as their correla-
tion.)

Cov[X1,X2] = E[X1X2]�E[X1]E[X2] (19.5)
= E[X1X2] (19.6)
= E[(F1w11+ F2w21+ ✏1)(F1w12+ F2w22+ ✏2)] (19.7)

= E
î

F 2
1 w11w12+ F1F2(w11w22+w21w12)+ F 2

2 w21w22

ó

+E[✏1✏2]+E[✏1(F1w12+ F2w22)]
+E[✏2(F1w11+ F2w21)] (19.8)

Since the noise terms are uncorrelated with the factor scores, and the noise terms for
different variables are uncorrelated with each other, all the terms containing ✏s have
expectation zero. Also, F1 and F2 are uncorrelated, so

Cov[X1,X2] = E
î

F 2
1

ó
w11w12+E

î
F 2

2

ó
w21w22 (19.9)

= w11w12+w21w22 (19.10)

using the fact that the factors are scaled to have variance 1. This says that the covari-
ance between X1 and X2 is what they have from both correlating with F1, plus what
they have from both correlating with F2; if we had more factors we would add on
w31w32+w41w42+ . . . out to wq1wq2. And of course this would apply as well to any
other pair of observable variables. So the general form is

Cov
î

Xi ,Xj

ó
=

qX
k=1

wki wk j (19.11)

so long as i 6= j .
The jargon says that observable i loads on factor k when wki 6= 0. If two observ-

ables do not load on to any of the same factors, if they do not share any common
factors, then they will be independent. If we could condition on (“control for”) the
factors, all of the observables would be conditionally independent.

Graphically, we draw an arrow from a factor node to an observable node if and
only if the observable loads on the factor. So then we can just see that two observables
are correlated if they both have in-coming arrows from the same factors. (To find
the actual correlation, we multiply the weights on all the edges connecting the two
observable nodes to the common factors; that’s Eq. 19.11.) Conversely, even though
the factors are marginally independent of each other, if two factors both send arrows
to the same observable, then they are dependent conditional on that observable.2

2To see that this makes sense, suppose that X1 = F1w11 + F2w21 + ✏1. If we know the value of X1, we
know what F1, F2 and ✏1 have to add up to, so they are conditionally dependent.
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19.2. THE GRAPHICAL MODEL 380

19.2.2 Geometry: Approximation by Linear Subspaces
Each observation we take is a vector in a p-dimensional space; the factor model says
that these vectors have certain geometric relations to each other — that the data has
a certain shape. To see what that is, pretend for right now that we can turn off the
noise terms ✏. The loading matrix w is a q ⇥ p matrix, so each row of w is a vector
in p-dimensional space; call these vectors ~w1, ~w2, . . . ~wq . Without the noise, our ob-
servable vectors would be linear combinations of these vectors (with the factor scores
saying how much each vector contributes to the combination). Since the factors are
orthogonal to each other, we know that they span a q -dimensional sub-space of the
p-dimensional space — a line if q = 1, a plane if q = 2, in general a linear subspace. If
the factor model is true and we turn off noise, we would find all the data lying exactly
on this subspace. Of course, with noise we expect that the data vectors will be scat-
tered around the subspace; how close depends on the variance of the noise. (Figure
19.2.) But this is still a rather specific prediction about the shape of the data.

A weaker prediction than “the data lie on a low-dimensional linear subspace in the
high-dimensional space” is “the data lie on some low-dimensional surface, possibly
curved, in the high-dimensional space”; there are techniques for trying to recover
such surfaces. Chapter 20 introduces two such techniques, but this is a broad and
still-growing area.
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n <- 20; library(scatterplot3d)
f <- matrix(sort(rnorm(n)),ncol=1); w <- matrix(c(0.5,0.2,-0.1),nrow=1)
fw <- f %*% w; x <- fw + matrix(rnorm(n*3,sd=c(.15,.05,.09)),ncol=3,byrow=TRUE)
s3d <- scatterplot3d(x,xlab=expression(x^1),ylab=expression(x^2),

zlab=expression(x^3),pch=16)
s3d$points3d(matrix(seq(from=min(f)-1,to=max(f)+1,length.out=2),ncol=1)%*%w,

col="red",type="l")
s3d$points3d(fw,col="red",pch=16)
for (i in 1:nrow(x)) {

s3d$points3d(x=c(x[i,1],fw[i,1]),y=c(x[i,2],fw[i,2]),z=c(x[i,3],fw[i,3]),
col="grey",type="l") }

FIGURE 19.2: Geometry of factor models: Black dots are observed vectors ~X in p = 3 dimensions.
These were generated from the q = 1 dimensional factor scores ~F by taking ~F w (red dots) and
adding independent noise (grey lines). The q-dimensional subspace along which all values of ~F w
must fall is also shown in red. (See also exercise 3.)
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19.3. ROOTS OF FACTOR ANALYSIS IN CAUSAL DISCOVERY 382

19.3 Roots of Factor Analysis in Causal Discovery
The roots of factor analysis go back to work by Charles Spearman just over a century
ago (Spearman, 1904); he was trying to discover the hidden structure of human intel-
ligence. His observation was that schoolchildren’s grades in different subjects were
all correlated with each other. He went beyond this to observe a particular pattern
of correlations, which he thought he could explain as follows: the reason grades in
math, English, history, etc., are all correlated is performance in these subjects is all
correlated with something else, a general or common factor, which he named “general
intelligence”, for which the natural symbol was of course g or G.

Put in a form like Eq. 19.4, Spearman’s model becomes

X= ✏+Gw (19.12)

where G is an n⇥ 1 matrix (i.e., a row vector) and w is a 1⇥ p matrix (i.e., a column
vector). The correlation between feature i and G is just wi ⌘ w1i , and, if i 6= j ,

vi j ⌘Cov
î

Xi ,Xj

ó
= wi wj (19.13)

where I have introduced vi j as a short-hand for the covariance.
Up to this point, this is all so much positing and assertion and hypothesis. What

Spearman did next, though, was to observe that this hypothesis carried a very strong
implication about the ratios of correlation coefficients. Pick any four distinct features,
i , j , k , l . Then, if the model (19.12) is true,

vi j/vk j

vi l/vk l
=

wi wj/wk wj

wi wl/wk wl
(19.14)

=
wi/wk

wi/wk
(19.15)

= 1 (19.16)

The relationship
vi j vk l = vi l vk j (19.17)

is called the “tetrad equation”, and we will meet it again later when we consider meth-
ods for causal discovery in Part III. In Spearman’s model, this is one tetrad equation
for every set of four distinct variables.

Spearman found that the tetrad equations held in his data on school grades (to a
good approximation), and concluded that a single general factor of intelligence must
exist3. This was, of course, logically fallacious.

Later work, using large batteries of different kinds of intelligence tests, showed
that the tetrad equations do not hold in general, or more exactly that departures
from them are too big to explain away as sampling noise. (Recall that the equations
are about the true correlations between the variables, but we only get to see sample

3Actually, the equations didn’t hold when music was one of the grades, so Spearman argued musical
ability did not load on general intelligence.
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383 19.4. ESTIMATION

correlations, which are always a little off.) The response, done in an ad hoc way
by Spearman and his followers, and then more systematically by Thurstone, was to
introduce multiple factors. This breaks the tetrad equation, but still accounts for the
correlations among features by saying that features are really directly correlated with
factors, and uncorrelated conditional on the factor scores. Thurstone’s form of factor
analysis is basically the one people still use — there have been refinements, of course,
but it’s mostly still his method.

19.4 Estimation
The factor model introduces a whole bunch of new variables to explain the observ-
ables: the factor scores F, the factor loadings or weights w, and the observable-specific
variances  i . The factor scores are specific to each individual, and individuals by as-
sumption are independent, so we can’t expect them to really generalize. But the
loadings w are, supposedly, characteristic of the population. So it would be nice if we
could separate estimating the population parameters from estimating the attributes
of individuals; here’s how.

Since the variables are centered, we can write the covariance matrix in terms of
the data frames:

v= E
 1

n
XT X

�
(19.18)

(This is the true, population covariance matrix on the left.) But the factor model tells
us that

X= Fw+ ✏ (19.19)

This involves the factor scores F, but reember that when we looked at the correlations
between individual variables, those went away, so let’s substitute Eq. 19.19 into Eq.
19.18 and see what happens:

E
 1

n
XT X

�
(19.20)

=
1
n

E
î
(✏T +wT FT )(Fw+ ✏)

ó
(19.21)

=
1
n

Ä
E
î
✏T ✏
ó
+wT E

î
FT ✏

ó
+E

î
✏T F

ó
w+wT E

î
FT F

ó
w
ä

(19.22)

=  + 0+ 0+
1
n

wT nIw (19.23)

=  +wT w (19.24)

Behold:
v= +wT w (19.25)

The individual-specific variables F have gone away, leaving only population parame-
ters on both sides of the equation.
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19.4. ESTIMATION 384

19.4.1 Degrees of Freedom
It only takes a bit of playing with Eq. 19.25 to realize that we are in trouble. Like any
matrix equation, it represents a system of equations. How many equations in how
many unknowns? Naively, we’d say that we have p2 equations (one for each element
of the matrix v), and p + pq unknowns (one for each diagonal element of  , plus
one for each element of w). If there are more equations than unknowns, then there
is generally no solution; if there are fewer equations than unknowns, then there are
generally infinitely many solutions. Either way, solving for w seems hopeless (unless
q = p � 1, in which case it’s not very helpful). What to do?

Well, first let’s do the book-keeping for degrees of freedom more carefully. The
observables variables are scaled to have standard deviation one, so the diagonal entries
of v are all 1. Moreover, any covariance matrix is symmetric, so we are left with only
p(p � 1)/2 degrees of freedom in v — only that many equations. On the other side,
scaling to standard deviation 1 means we don’t really need to solve separately for  
— it’s fixed as soon as we know what wT w is — which saves us p unknowns. Also,
the entries in w are not completely free to vary independently of each other, because
each row has to be orthogonal to every other row. (Look back at the notes on PCA.)
Since there are q rows, this gives is q(q � 1)/2 constraints on w — we can think of
these as either extra equations, or as reductions in the number of free parameters
(unknowns).4

Summarizing, we really have p(p�1)/2 degrees of freedom in v, and pq� q(q�
1)/2 degrees of freedom in w. If these two match, then there is (in general) a unique
solution which will give us w. But in general they will not be equal; then what? Let
us consider the two cases.

More unknowns (free parameters) than equations (constraints) This is fairly
straightforward: there is no unique solution to Eq. 19.25; instead there are infinitely
many solutions. It’s true that the loading matrix w does have to satisfy some con-
straints, that not just any w will work, so the data does give us some information, but
there is a continuum of different parameter settings which are all match the covari-
ance matrix perfectly. (Notice that we are working with the population parameters
here, so this isn’t an issue of having only a limited sample.) There is just no way to
use data to decide between these different parameters, to identify which one is right,
so we say the model is unidentifiable. Most software for factor analysis, include R’s
factanal function, will check for this and just refuse to fit a model with too many
factors relative to the number of observables.

More equations (constraints) than unknowns (free parameters) This is more in-
teresting. In general, systems of equations like this are overdetermined, meaning
that there is no way to satisfy all the constraints at once, and there isn’t even a single
solution. It’s just not possible to write an arbitrary covariance matrix v among, say,
seven variables in terms of, say, a one-factor model (as p(p�1)/2= 7(7�1)/2= 21>

4Notice that  +wT w is automatically symmetric, since  is diagonal, so we don’t need to impose any
extra constraints to get symmetry.
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7(1)�1(1�1)/2= 7= pq�q(q�1)/2). But it is possible for special covariance matri-
ces. In these situations, the factor model actually has testable implications for the data
— it says that only certain covariance matrices are possible and not others. For ex-
ample, we saw above that the one-fator model implies the tetrad equations must hold
among the observable covariances; the constraints on v for multiple-factor models
are similar in kind but more complicated algebraically. By testing these implications,
we can check whether or not the our favorite factor model is right.5

Now we don’t know the true, population covariance matrix v, but we can esti-
mate it from data, getting an estimate bv. The natural thing to do then is to equate this
with the parameters and try to solve for the latter:

bv= b + bwT bw (19.26)

The book-keeping for degrees of freedom here is the same as for Eq. 19.25. If q is too
large relative to p, the model is unidentifiable; if it is too small, the matrix equation
can only be solved if bv is of the right, restricted form, i.e., if the model is right. Of
course even if the model is right, the sample covariances are the true covariances plus
noise, so we shouldn’t expect to get an exact match, but we can try in various way to
minimize the discrepancy between the two sides of the equation.

19.4.2 A Clue from Spearman’s One-Factor Model
Remember that in Spearman’s model with a single general factor, the covariance be-
tween observables i and j in that model is the product of their factor weightings:

vi j = wi wj (19.27)

The exception is that vi i = w2
i + i , rather than w2

i . However, if we look at u= v� ,
that’s the same as v off the diagonal, and a little algebra shows that its diagonal entries
are, in fact, just w2

i . So if we look at any two rows of U, they’re proportional to each
other:

ui j =
wi

wk
uk j (19.28)

This means that, when Spearman’s model holds true, there is actually only one linearly-
independent row in in u.

Recall from linear algebra that the rank of a matrix is how many linearly inde-
pendent rows it has.6 Ordinarily, the matrix is of full rank, meaning all the rows are
linearly independent. What we have just seen is that when Spearman’s model holds,
the matrix u is not of full rank, but rather of rank 1. More generally, when the factor
model holds with q factors, the matrix u=wT w has rank q . The diagonal entries of
u, called the common variances or commonalities, are no longer automatically 1,

5Actually, we need to be a little careful here. If we find that the tetrad equations don’t hold, we know
a one-factor model must be wrong. We could only conclude that the one-factor model must be right if we
found that the tetrad equations held, and that there were no other models which implied those equations;
but, as we’ll see, there are.

6We could also talk about the columns; it wouldn’t make any difference.
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19.4. ESTIMATION 386

but rather show how much of the variance in each observable is associated with the
variances of the latent factors. Like v, u is a positive symmetric matrix.

Because u is a positive symmetric matrix, we know from linear algebra that it can
be written as

u= cdcT (19.29)

where c is the matrix whose columns are the eigenvectors of u, and d is the diagonal
matrix whose entries are the eigenvalues. That is, if we use all p eigenvectors, we can
reproduce the covariance matrix exactly. Suppose we instead use cq, the p⇥q matrix
whose columns are the eigenvectors going with the q largest eigenvalues, and likewise
make dq the diagonal matrix of those eigenvalues. Then cqdqcq

T will be a symmetric
positive p ⇥ p matrix. This is a matrix of rank q , and so can only equal u if the
latter also has rank q . Otherwise, it’s an approximation which grows more accurate
as we let q grow towards p, and, at any given q , it’s a better approximation to u than
any other rank-q matrix. This, finally, is the precise sense in which factor analysis
tries preserve correlations, as opposed to principal components trying to preserve
variance.

To resume our algebra, define dq
1/2 as the q ⇥ q diagonal matrix of the square

roots of the eigenvalues. Clearly dq = dq
1/2dq

1/2. So

cqdqcq
T = cqdq

1/2dq
1/2cq

T =
Ä
cqdq

1/2
äÄ

cqdq
1/2
äT

(19.30)

So we have
u⇡ Äcqdq

1/2
äÄ

cqdq
1/2
äT

(19.31)

but at the same time we know that u=wT w. So we just identify w with
Ä
cqdq

1/2
äT

:

w=
Ä
cqdq

1/2
äT

(19.32)

and we are done with our algebra.
Let’s think a bit more about how well we’re approximating v. The approximation

will always be exact when q = p, so that there is one factor for each feature (in which
case  = 0 always). Then all factor analysis does for us is to rotate the coordinate
axes in feature space, so that the new coordinates are uncorrelated. (This is the same
was what PCA does with p components.) The approximation can also be exact with
fewer factors than features if the reduced covariance matrix is of less than full rank,
and we use at least as many factors as the rank.

19.4.3 Estimating Factor Loadings and Specific Variances
The classical method for estimating the factor model is now simply to do this eigen-
vector approximation on the sample correlation matrix. Define the reduced or ad-
justed sample correlation matrix as

bu= bv� b (19.33)
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We can’t actually calculate bu until we know, or have a guess as to, b . A reasonable
and common starting-point is to do a linear regression of each feature j on all the
other features, and then set c j to the mean squared error for that regression. (We’ll
come back to this guess later.)

Once we have the reduced correlation matrix, find its top q eigenvalues and eigen-
vectors, getting matrices bcq and bdq as above. Set the factor loadings accordingly, and
re-calculate the specific variances:

bw =
Ä
cqdq

1/2
äT

(19.34)

c j = 1�
kX

r=1
w2

r j (19.35)

ṽ ⌘ b + bwT bw (19.36)

The “predicted” covariance matrix ṽ in the last line is exactly right on the diagonal (by
construction), and should be closer off-diagonal than anything else we could do with
the same number of factors. However, our guess as to u depended on our initial guess
about  , which has in general changed, so we can try iterating this (i.e., re-calculating
cq and dq), until we converge.

19.5 Maximum Likelihood Estimation
It has probably not escaped your notice that the estimation procedure above requires
a starting guess as to  . This makes its consistency somewhat shaky. (If we continu-
ally put in ridiculous values for  , why should we expect that bw!w?) On the other
hand, we know from our elementary statistics courses that maximum likelihood es-
timates are generally consistent, unless we choose a spectacularly bad model. Can we
use that here?

We can, but at a cost. We have so far got away with just making assumptions
about the means and covariances of the factor scores F. To get an actual likelihood,
we need to assume something about their distribution as well.

The usual assumption is that Fi k ⇠N (0,1), and that the factor scores are indepen-
dent across factors k = 1, . . . q and individuals i = 1, . . . n. With this assumption, the
features have a multivariate normal distribution ~Xi ⇠ N (0, +wT w). This means
that the log-likelihood is

L=�n p
2

log2⇡� n
2

log | +wT w|� n
2

tr
⇣
( +wT w)�1bv

⌘
(19.37)

where tra is the trace of the matrix a, the sum of its diagonal elements. Notice that
the likelihood only involves the data through the sample covariance matrix bv — the
actual factor scores F are not needed for the likelihood.

One can either try direct numerical maximization, or use a two-stage procedure.
Starting, once again, with a guess as to , one finds that the optimal choice of 1/2wT

is given by the matrix whose columns are the q leading eigenvectors of  1/2bv 1/2.
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Starting from a guess as to w, the optimal choice of  is given by the diagonal entries
of bv�wT w. So again one starts with a guess about the unique variances (e.g., the
residuals of the regressions) and iterates to convergence.7

The differences between the maximum likelihood estimates and the “principal
factors” approach can be substantial. If the data appear to be normally distributed
(as shown by the usual tests), then the additional efficiency of maximum likelihood
estimation is highly worthwhile. Also, as we’ll see below, it is a lot easier to test the
model assumptions is one uses the MLE.

19.5.1 Alternative Approaches
Factor analysis is an example of trying to approximate a full-rank matrix, here the
covariance matrix, with a low-rank matrix, or a low-rank matrix plus some correc-
tions, here  +wT w. Such matrix-approximation problems are currently the subject
of very intense interest in statistics and machine learning, with many new methods
being proposed and refined, and it is very plausible that some of these will prove to
work better than older approaches to factor analysis.

In particular, Kao and Van Roy (2011) have recently used these ideas to propose a
new factor-analysis algorithm, which simultaneously estimates the number of factors
and the factor loadings, and does so through a modification of PCA, distinct from the
old “principal factors” method. In their examples, it works better than conventional
approaches, but whether this will hold true generally is not clear. They do not,
unfortunately, provide code.

19.5.2 Estimating Factor Scores
The probably the best method for estimating factor scores is the “regression” or
“Thomson” method, which says

bFi r =
X

j
Xi j bi j (19.38)

and seeks the weights bi j which will minimize the mean squared error, E[(bFi r �
Fi r )2]. You can work out the bi j as an exercise, assuming you know w.

19.6 The Rotation Problem
Recall from linear algebra that a matrix o is orthogonal if its inverse is the same as
its transpose, oT o = I. The classic examples are rotation matrices. For instance, to
rotate a two-dimensional vector through an angle ↵, we multiply it by

r↵ =


cos↵ � sin↵
sin↵ cos↵

�
(19.39)

7The algebra is tedious. See section 3.2 in Bartholomew (1987) if you really want it. (Note that
Bartholomew has a sign error in his equation 3.16.)
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The inverse to this matrix must be the one which rotates through the angle �↵,
r�1
↵ = r�↵, but trigonometry tells us that r�↵ = rT

↵ .
To see why this matters to us, go back to the matrix form of the factor model,

and insert an orthogonal q ⇥ q matrix and its transpose:

X = ✏+Fw (19.40)
= ✏+FooT w (19.41)
= ✏+Hy (19.42)

We’ve changed the factor scores to H⌘Ho, and we’ve changed the factor loadings to
y ⌘ oT w, but nothing about the features has changed at all. We can do as many or-
thogonal transformations of the factors as we like, with no observable consequences
whatsoever.8

Statistically, the fact that different parameter settings give us the same observa-
tional consequences means that the parameters of the factor model are unidentifi-
able. The rotation problem is, as it were, the revenant of having an ill-posed problem:
we thought we’d slain it through heroic feats of linear algebra, but it’s still around and
determined to have its revenge.9

Mathematically, this should not be surprising at all. The factors live in a q -
dimensional vector space of their own. We should be free to set up any coordinate
system we feel like on that space. Changing coordinates in factor space will just re-
quire a compensating change in how factor-space coordinates relate to feature space
(the factor loadings matrix w). That’s all we’ve done here with our orthogonal trans-
formation.

Substantively, this should be rather troubling. If we can rotate the factors as much
as we like without consequences, how on Earth can we interpret them?

19.7 Factor Analysis as a Predictive Model

Unlike principal components analysis, factor analysis really does give us a predictive
model. Its prediction is that if we draw a new member of the population and look at
the vector of observables we get from them,

~X ⇠N (0,wT w+ ) (19.43)

8Notice that the log-likelihood only involves wT w, which is equal to wT ooT w = yT y, so even as-
suming Gaussian distributions doesn’t let us tell the difference between the original and the transformed
variables. In fact, if ~F ⇠N (0, I), then ~F o ⇠N (0o,oT Io) =N (0, I) — in other words, the rotated factor
scores still satisfy our distributional assumptions.

9Remember that we obtained the loading matrix w as a solution to wT w = u, that is to we got w as a
kind of matrix square root of the reduced correlation matrix. For a real number u there are two square
roots, i.e., two numbers w such that w ⇥ w = u, namely the usual w =

p
u and w = �pu, because

(�1)⇥ (�1) = 1. Similarly, whenever we find one solution to wT w= u, oT w is another solution, because
ooT = I. So while the usual “square root” of u is w = dq

1/2c, for any orthogonal matrix oT dq
1/2c will

always work just as well.
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if we make the usual distributional assumptions. Of course it might seem like it
makes a more refined, conditional prediction,

~X |~F ⇠N (F w, ) (19.44)

but the problem is that there is no way to guess at or estimate the factor scores ~F
until after we’ve seen ~X , at which point anyone can predict X perfectly. So the actual
forecast is given by Eq. 19.43.10

Now, without going through the trouble of factor analysis, one could always just
postulate that

~X ⇠N (0,v) (19.45)

and estimate v; the maximum likelihood estimate of it is the observed covariance
matrix, but really we could use any consistent estimator of the covariance matrix.
The closer our is to the true v, the better our predictions. One way to think of
factor analysis is that it looks for the maximum likelihood estimate, but constrained
to matrices of the form wT w+ .

On the plus side, the constrained estimate has a faster rate of convergence. That
is, both the constrained and unconstrained estimates are consistent and will converge
on their optimal, population values as we feed in more and more data, but for the
same amount of data the constrained estimate is probably closer to its limiting value.
In other words, the constrained estimate bwT bw+ b has less variance than the uncon-
strained estimate bv.

On the minus side, maybe the true, population v just can’t be written in the form
wT w+ . Then we’re getting biased estimates of the covariance and the bias will not
go away, even with infinitely many samples. Using factor analysis rather than just
fitting a multivariate Gaussian means betting that either this bias is really zero, or
that, with the amount of data on hand, the reduction in variance outweighs the bias.

(I haven’t talked about estimation errors in the parameters of a factor model.
With large samples and maximum-likelihood estimation, one could use the usual
asymptotic theory. For small samples, one bootstraps as usual.)

19.7.1 How Many Factors?
How many factors should we use? All the tricks people use for the how-many-
principal-components question can be tried here, too, with the obvious modifica-
tions. However, some other answers can also be given, using the fact that the factor
model does make predictions, unlike PCA.

1. Log-likelihood ratio tests Sample covariances will almost never be exactly equal
to population covariances. So even if the data comes from a model with q
factors, we can’t expect the tetrad equations (or their multi-factor analogs) to

10A subtlety is that we might get to see some but not all of ~X , and use that to predict the rest. Say
~X = (X1,X2), and we see X1. Then we could, in principle, compute the conditional distribution of the
factors, p(F |X1), and use that to predict X2. Of course one could do the same thing using the correlation
matrix, factor model or no factor model.
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hold exactly. The question then becomes whether the observed covariances are
compatible with sampling fluctuations in a q -factor model, or are too big for
that.
We can tackle this question by using log likelihood ratio tests. The crucial
observations are that a model with q factors is a special case of a model with
q + 1 factors (just set a row of the weight matrix to zero), and that in the most
general case, q = p, we can get any covariance matrix v into the form wT w.
(Set  = 0 and proceed as in the “principal factors” estimation method.)

As explained in Appendix G, if b✓ is the maximum likelihood estimate in a
restricted model with u parameters, and b⇥ is the MLE in a more general model
with r > s parameters, containing the former as a special case, and finally ` is
the log-likelihood function

2[`(b⇥)� `(b✓)]† � 2
r�s (19.46)

when the data came from the small model. The general regularity conditions
needed for this to hold apply to Gaussian factor models, so we can test whether
one factor is enough, two, etc.
(Said another way, adding another factor never reduces the likelihood, but the
equation tells us how much to expect the log-likelihood to go up when the new
factor really adds nothing and is just over-fitting the noise.)
Determining q by getting the smallest one without a significant result in a like-
lihood ratio test is fairly traditional, but statistically messy.11 To raise a subject
we’ll return to, if the true q > 1 and all goes well, we’ll be doing lots of hypoth-
esis tests, and making sure this compound procedure works reliably is harder
than controlling any one test. Perhaps more worrisomely, calculating the like-
lihood relies on distributional assumptions for the factor scores and the noises,
which are hard to check for latent variables.

2. If you are comfortable with the distributional assumptions, use Eq. 19.43 to
predict new data, and see which q gives the best predictions — for compara-
bility, the predictions should be compared in terms of the log-likelihood they
assign to the testing data. If genuinely new data is not available, use cross-
validation.
Comparative prediction, and especially cross-validation, seems to be somewhat
rare with factor analysis. There is no good reason why this should be so.

19.7.1.1 R2 and Goodness of Fit

For PCA, we saw that R2 depends on the sum of the eigenvalues 18.1.3. For factor
models, the natural notion of R2 is the sum of squared factor loadings:

R2 =

Pq
j=1

Pp
k=1

w2
j k

p
(19.47)

11Suppose q is really 1, but by chance that gets rejected. Whether q = 2 gets rejected in turn is not an
independent event!

22:20 Tuesday 31st March, 2015



19.8. FACTOR MODELS VERSUS PCA ONCE MORE 392

(Remember that the factors are, by design, uncorrelated with each other, and that the
entries of w are the correlations between factors and observables.) If we write w in
terms of eigenvalues and eigenvectors as in §19.4.2, w =

Ä
cqdq

1/2
äT

, then you can
show that the numerator in R2 is, again, a sum of eigenvalues.

People sometimes select the number of factors by looking at how much variance
they “explain” — really, how much variance is kept after smoothing on to the plane.
As usual with model selection by R2, there is little good to be said for this, except
that it is fast and simple.

In particular, R2 should not be used to assess the goodness-of-fit of a factor model.
The bluntest way to see this is to simulate data which does not come from a factor
model, fit a small number of factors, and see what R2 one gets. This was done by
Peterson (2000), who found that it was easy to get R2 of 0.4 or 0.5, and sometimes
even higher12 The same paper surveyed values of R2 from the published literature on
factor models, and found that the typical value was also somewhere around 0.5; no
doubt this was just a coincidence13.

Instead of looking at R2, it is much better to check goodness-of-fit by actually
goodness-of-fit tests. We looked at some tests of multivariate goodness-of-fit in Chap-
ter 15. In the particular case of factor models with the Gaussian assumption, we can
use a log-likelihood ratio test, checking the null hypothesis that the number of factors
= q against the alternative of an arbitrary multivariate Gaussian (which is the same
as p factors). This test is automatically performed by factanal in R.

If the Gaussian assumption is dubious but we want a factor model and goodness-
of-fit anyway, we can look at the difference between the empirical covariance matrix
v and the one estimated by the factor model, b + bwT bw. There are several notions of
distance between matrices (matrix norms) which could be used as test statistics; one
could also use the sum of squared differences between the entries of v and those of
b + bwT bw. Sampling distributions would have to come from bootstrapping, where
we would want to simulate from the factor model.

19.8 Factor Models versus PCA Once More
We began this chapter by seeking to add some noise, and some probabilistic assump-
tions, into PCA. The factor models we came up with are closely related to principal
components, but are not the same. Many of the differences have been mentioned as
we went, but it’s worth collecting some of the most important ones here.

1. Factor models assume that the data comes from a certain distribution, IID
across data points. PCA assumes nothing about distributions at all. More-
over, factor models can be used generatively, to say how the latent factors cause
the observable variables. PCA has nothing to say about the data-generating
process.

12See also http://bactra.org/weblog/523.html for a similar experiment, with (not very elegant) R
code.

13Peterson (2000) also claims that reported values of R2 for PCA are roughly equal to those of factor
analysis, but by this point I hope that none of you take that as an argument in favor of PCA.
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2. Factor models can be tested by their predictions on new data points; PCA
cannot.

3. Factor models assume that the variance matrix of the data takes a special form,
wT w+ , where w is q⇥ p and is diagonal. That is, the variance matrix must
be “low rank plus noise”. PCA works no matter what sample variance matrix
the data might have.

4. If the factor model is true, then the principal components are (or approach
with enough data) the eigenvectors of wT w+ . They do not approach the
eigenvectors of wT w, which would be the principal factors. If the noise is
small, the difference may also be small, but the factor model can be correct, if
perhaps not so useful, while  is as big as wT w.

5. Factor models are subject to the rotation problem; PCA is not. Which one has
the advantage here is unclear.

6. Similarly, a principal component is just a linear combination of the observable
variables. A latent factor is another, distinct random variable. Differences in
factor scores imply differences in the expected values of observables. Differences
in projections on to principal components imply differences in realized values
of observables. (It’s a little like the distinction between the predicted value for
the response in a linear regression, which is a combination of the covariates,
and the actual value of the response.)

19.9 Examples in R

19.9.1 Example 1: Back to the US circa 1977
We resume looking at the properties of the US states around 1977. In §18.3, we did
a principal components analysis, finding a first component that seemed to mark the
distinction between the South and the rest of the country, and a second that seemed
to separate big, rich states from smaller, poorer ones. Let’s now subject the data to
factor analysis. We begin with one factor, using the base R function factanal.

(state.fa1 <- factanal(state.x77,factors=1,scores="regression"))
##
## Call:
## factanal(x = state.x77, factors = 1, scores = "regression")
##
## Uniquenesses:
## Population Income Illiteracy Life Exp Murder HS Grad
## 0.957 0.791 0.235 0.437 0.308 0.496
## Frost Area
## 0.600 0.998
##
## Loadings:
## Factor1
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## Population -0.208
## Income 0.458
## Illiteracy -0.875
## Life Exp 0.750
## Murder -0.832
## HS Grad 0.710
## Frost 0.632
## Area
##
## Factor1
## SS loadings 3.178
## Proportion Var 0.397
##
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 91.97 on 20 degrees of freedom.
## The p-value is 3.34e-11

The output here tells us what fraction of the variance in each observable comes
from its own noise (= the diagonal entries in b = “uniquenesses”). It also gives us
the factor loadings, i.e., the rows of bw. Here there’s only one loading vector, since
we set factors = q = 1. As a courtesy, the default printing method for the loadings
leaves blanks where the loadings would be very small (here, for Area); this can be
controlled through options (see help(loadings)). The last option picks between
different methods of estimating the factor scores.

For comparison, here is the first principal component:

##
## Loadings:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
## Population 0.126 0.411 -0.656 -0.409 0.406 -0.219
## Income -0.299 0.519 -0.100 -0.638 0.462
## Illiteracy 0.468 0.353 0.387 -0.620 -0.339
## Life Exp -0.412 -0.360 0.443 0.327 0.219 -0.256 0.527
## Murder 0.444 0.307 0.108 -0.166 -0.128 -0.325 -0.295 0.678
## HS Grad -0.425 0.299 0.232 -0.645 -0.393 -0.307
## Frost -0.357 -0.154 0.387 -0.619 0.217 0.213 -0.472
## Area 0.588 0.510 0.201 0.499 0.148 0.286
##
## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
## SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
## Proportion Var 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
## Cumulative Var 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

The first principal component is clearly not the same as the single common factor
we extracted, even after a sign change, but it’s not shockingly dissimilar either, as a
map shows.

Of course, why use just one factor? Given the number of observables, we can
fit up to four factors before the problem becomes totally unidentified and factanal
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plot.states_scaled(state.fa1$score[,1],min.size=0.3,max.size=1.5,
xlab="longitude",ylab="latitude")

FIGURE 19.3: The US states, plotted in position with symbols scaled by their factor scores in a one-
factor model. Compare to Figure 18.5, which is where the plot.states_scaled function comes
from. (Try plotting the negative of the factor scores to make the maps look more similar.)
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plot(1:4,pvalues,xlab="q (number of factors)", ylab="pvalue",
log="y",ylim=c(1e-11,0.04))

abline(h=0.05,lty="dashed")

FIGURE 19.4: Gaussian likelihood ratio test p-value for models with various numbers of latent
factors, fit to the US-in-1977 data.

refuses to work. That function automatically runs the likelihood ratio test every time
it fits a model, assuming Gaussian distributions for the observables. As remarked,
this can work reasonably well for non-Gaussian distributions if they’re not too non-
Gaussian, especially if n is much larger than the number of parameters; of course
n = 50 is pretty modest. Still, let’s try it:

pvalues <- sapply(1:4,function(q){factanal(state.x77,factors=q)$PVAL})
signif(pvalues,2)
## objective objective objective objective
## 3.3e-11 3.3e-05 4.6e-03 4.7e-02

(Figure 19.4 plots the results.) None of the models has a p-value crossing the
conventional 0.05 level, meaning all of them show systematic, detectable departures
from what the data should look like if the factor model were true. Still, the four-
factor model comes close.

Notice that the first factor’s loadings do not stay the same when we add more
factors, unlike the first principal component:

print(factanal(state.x77, factors=4)$loadings)
##
## Loadings:
## Factor1 Factor2 Factor3 Factor4
## Population 0.636

22:20 Tuesday 31st March, 2015



397 19.10. REIFICATION, AND ALTERNATIVES TO FACTOR MODELS

## Income 0.313 0.281 0.561 0.189
## Illiteracy -0.466 -0.878
## Life Exp 0.891 0.191
## Murder -0.792 -0.384 0.109 0.405
## HS Grad 0.517 0.418 0.581
## Frost 0.128 0.679 0.105 -0.460
## Area -0.174 0.796
##
## Factor1 Factor2 Factor3 Factor4
## SS loadings 2.054 1.680 1.321 0.821
## Proportion Var 0.257 0.210 0.165 0.103
## Cumulative Var 0.257 0.467 0.632 0.734

19.9.2 Example 2: Stocks
Classical financial theory suggests that the log-returns of corporate stocks should be
IID Gaussian random variables, but allows for the possibility that different stocks
might be correlated with each other. In fact, theory suggests that the returns to any
given stock should be the sum of two components: one which is specific to that firm,
and one which is common to all firms. (More specifically, the common component
is one which couldn’t be eliminated even in a perfectly diversified portfolio.) This in
turn implies that stock returns should match a one-factor model. The rest of this example is de-

liberately omitted, since it will
be a homework assignment for
2015.
[[ATTN: Get population cod-
ing data from neuro., and use
that as an example?]]

19.10 Reification, and Alternatives to Factor Models
A natural impulse, when looking at something like Figure 19.1, is to reify the factors,
and to treat the arrows causally: that is, to say that there really is some variable
corresponding to each factor, and that changing the value of that variable will change
the features. For instance, one might want to say that there is a real, physical variable
corresponding to the factor F1, and that increasing this by one standard deviation
will, on average, increase X1 by 0.87 standard deviations, decrease X2 by 0.75 standard
deviations, and do nothing to the other features. Moreover, changing any of the other
factors has no effect on X1.

Sometimes all this is even right. How can we tell when it’s right?

19.10.1 The Rotation Problem Again
Consider the following matrix, call it r :

2
64

cos30 � sin30 0
sin30 cos30 0

0 0 1

3
75 (19.48)

Applied to a three-dimensional vector, this rotates it thirty degrees counter-clockwise
around the vertical axis. If we apply r to the factor loading matrix of the model in
the figure, we get the model in Figure 19.5. Now instead of X1 being correlated with
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FIGURE 19.5: The model from Figure 19.1, after rotating the first two factors by 30 degrees around
the third factor’s axis. The new factor loadings are rounded to two decimal places.

the other variables only through one factor, it’s correlated through two factors, and
X4 has incoming arrows from three factors.

Because the transformation is orthogonal, the distribution of the observations is
unchanged. In particular, the fit of the new factor model to the data will be exactly
as good as the fit of the old model. If we try to take this causally, however, we come
up with a very different interpretation. The quality of the fit to the data does not,
therefore, let us distinguish between these two models, and so these two stories about
the causal structure of the data.

The rotation problem does not rule out the idea that checking the fit of a factor
model would let us discover how many hidden causal variables there are.

19.10.2 Factors or Mixtures?

Suppose we have two distributions with probability densities f0(x) and f1(x). Then
we can define a new distribution which is a mixture of them, with density f↵(x) =
(1� ↵) f0(x) + ↵ f1(x), 0  ↵  1. The same idea works if we combine more than
two distributions, so long as the sum of the mixing weights sum to one (as do ↵ and
1�↵). Mixture models are a very flexible and useful way of representing complicated
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probability distributions14, and we will look at them in detail in Chapter 21.

I bring up mixture models here because there is a very remarkable result: any
linear factor model with q factors is equivalent to some mixture model with q +
1 clusters, in the sense that the two models have the same means and covariances
(Bartholomew, 1987, pp. 36–38). Recall from above that the likelihood of a factor
model depends on the data only through the correlation matrix. If the data really
were generated by drawing from q + 1 clusters, then a model with q factors can
match the covariance matrix very well, and so get a very high likelihood. This means
it will, by the usual test, seem like a very good fit. Needless to say, however, the
causal interpretations of the mixture model and the factor model are very different.
The two may be distinguishable if the clusters are well-separated (by looking to see
whether the data are unimodal or not), but that’s not exactly guaranteed.

All of which suggests that factor analysis can’t alone really tell us whether we have
q continuous latent variables, or one discrete hidden variable taking q + 1 values.

19.10.3 The Thomson Sampling Model

We have been working with fewer factors than we have features. Suppose that’s not
true. Suppose that each of our features is actually a linear combination of a lot of
variables we don’t measure:

Xi j = ⌘i j +
qX

k=1

Ai k Tk j = ⌘i j + ~Ai · ~Tj (19.49)

where q � p. Suppose further that the latent variables Ai k are totally independent
of one another, but they all have mean 0 and variance 1; and that the noises ⌘i j
are independent of each other and of the Ai k , with variance � j ; and the Tk j are
independent of everything. What then is the covariance between Xia and Xi b ? Well,
because E

⇥
Xia
⇤
= E

⇥
Xi b
⇤
= 0, it will just be the expectation of the product of the

14They are also a probabilistic, predictive alternative to the kind of clustering techniques you may have
seen in data mining: each distribution in the mixture is basically a cluster, and the mixing weights are the
probabilities of drawing a new sample from the different clusters.
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features:

E
⇥

XiaXi b
⇤

(19.50)

= E
h
(⌘ia + ~Ai · ~Ta)(⌘i b + ~Ai · ~Tb )

i
(19.51)

= E
⇥
⌘ia⌘i b

⇤
+E

h
⌘ia
~Ai · ~Tb

i
+E

h
⌘i b

~Ai · ~Ta

i
+E

h
(~Ai · ~Ta)(~Ai · ~Tb )

i
(19.52)

= 0+ 0+ 0+E

2
4
 qX

k=1

Ai k Tka

! qX
l=1

Ai l Tl b

!3
5 (19.53)

= E

2
64
X
k ,l

Ai k Ai l TkaTl b

3
75 (19.54)

=
X
k ,l

E
⇥

Ai k Ai l
⇤

TkaTl b (19.55)

=
X
k ,l

E
⇥

Ai k Ai l
⇤

E
⇥

TkaTl b
⇤

(19.56)

=
qX

k=1

E
⇥

TkaTk b
⇤

(19.57)

where to get the last line I use the fact that E
⇥

Ai k Ai l
⇤
= 1 if k = l and= 0 otherwise.

If the coefficients T are fixed, then the last expectation goes away and we merely have
the same kind of sum we’ve seen before, in the factor model.

Instead, however, let’s say that the coefficients T are themselves random (but
independent of A and ⌘). For each feature Xia , we fix a proportion za between 0 and
1. We then set Tka ⇠ Bernoulli(za), with Tka |= Tl b unless k = l and a = b . Then

E
⇥

TkaTk b
⇤
= E

⇥
Tka
⇤

E
⇥

Tk b
⇤
= za zb (19.58)

and
E
⇥

XiaXi b
⇤
= q za zb (19.59)

Of course, in the one-factor model,

E
⇥

XiaXi b
⇤
= wa wb (19.60)

So this random-sampling model looks exactly like the one-factor model with factor
loadings proportional to za . The tetrad equation, in particular, will hold.

Now, it doesn’t make a lot of sense to imagine that every time we make an ob-
servation we change the coefficients T randomly. Instead, let’s suppose that they are
first generated randomly, giving values Tk j , and then we generate feature values ac-
cording to Eq. 19.49. The covariance between Xia and Xi b will be

Pq
k=1

TkaTk b . But
this is a sum of IID random values, so by the law of large numbers as q gets large this
will become very close to q za zb . Thus, for nearly all choices of the coefficients, the
feature covariance matrix should come very close to satisfying the tetrad equations
and looking like there’s a single general factor.

22:20 Tuesday 31st March, 2015



401 19.10. REIFICATION, AND ALTERNATIVES TO FACTOR MODELS

rthomson <- function(n, d, a, q, ability.mean = 0, ability.sd = 1) {
require(MASS)
general.per.test = sample(1:a, size = d, replace = TRUE)
specifics.per.test = sample(1:q, size = d, replace = TRUE)
general.to.tests = matrix(0, a, d)
for (i in 1:d) {

abilities = sample(1:a, size = general.per.test[i], replace = FALSE)
general.to.tests[abilities, i] = 1

}
sigma = matrix(0, a, a)
diag(sigma) = (ability.sd)^2
mu = rep(ability.mean, a)
x = mvrnorm(n, mu, sigma)
general.tests = x %*% general.to.tests
specific.tests = matrix(0, n, d)
noisy.tests = matrix(0, n, d)
for (i in 1:d) {

j = specifics.per.test[i]
specifics = rnorm(n, mean = ability.mean * j, sd = ability.sd * sqrt(j))
specific.tests[, i] = general.tests[, i] + specifics
noises = rnorm(n, mean = 0, sd = ability.sd)
noisy.tests[, i] = specific.tests[, i] + noises

}
tm = list(data = noisy.tests, general.ability.pattern = general.to.tests,

numbers.of.specifics = specifics.per.test, ability.matrix = x, specific.tests = specific.tests)
return(tm)

}

CODE EXAMPLE 31: Function for simulating the Thomson latent-sampling model.

In this model, each feature is a linear combination of a random sample of a huge
pool of completely independent features, plus some extra noise specific to the fea-
ture.15 Precisely because of this, the features are correlated, and the pattern of corre-
lations is that of a factor model with one factor. The appearance of a single common
cause actually arises from the fact that the number of causes is immense, and there is
no particular pattern to their influence on the features.

Code Example 31 simulates the Thomson model.

15When Godfrey Thomson introduced this model in 1914, he used a slightly different procedure to
generate the coefficient Tk j . For each feature he drew a uniform integer between 1 and q , call it qj , and
then sampled the integers from 1 to q without replacement until he had qj random numbers; these were the
values of k where Tk j = 1. This is basically similar to what I describe, setting z j = qj /q , but a bit harder
to analyze in an elementary way. — Thomson (1916), the original paper, includes what we would now call
a simulation study of the model, where Thomson stepped through the procedure to produce simulated
data, calculate the empirical correlation matrix of the features, and check the fit to the tetrad equations.
Not having a computer, Thomson generated the values of Tk j with a deck of cards, and of the Ai k and ⌘i j
by rolling 5220 dice.
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tm <- rthomson(50,11,500,50)
factanal(tm$data,1)
##
## Call:
## factanal(x = tm$data, factors = 1)
##
## Uniquenesses:
## [1] 0.169 0.816 0.368 0.458 0.537 0.332 0.378 0.758 0.757 0.999 0.844
##
## Loadings:
## Factor1
## [1,] 0.911
## [2,] 0.428
## [3,] 0.795
## [4,] 0.737
## [5,] 0.680
## [6,] 0.817
## [7,] 0.789
## [8,] 0.492
## [9,] 0.493
## [10,]
## [11,] 0.394
##
## Factor1
## SS loadings 4.582
## Proportion Var 0.417
##
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 50.17 on 44 degrees of freedom.
## The p-value is 0.242

The first command generates data from n = 50 items with p = 11 features and
q = 500 latent variables. (The last argument controls the average size of the specific
variances � j .) The result of the factor analysis is of course variable, depending on
the random draws; this attempt gave the proportion of variance associated with the
factor as 0.42, and the p-value as 0.24. Repeating the simulation many times, one sees
that the p-value is pretty close to uniformly distributed, which is what it should be if
the null hypothesis is true (Figure 19.6). For fixed n, the distribution becomes closer
to uniform the larger we make q . In other words, the goodness-of-fit test has little or
no power against the alternative of the Thomson model.

Modifying the Thomson model to look like multiple factors grows notation-
ally cumbersome; the basic idea however is to use multiple pools of independently-
sampled latent variables, and sum them:

Xi j = ⌘i j +
q1X

k=1

Ai k Tk j +
q2X

k=1

Bi k Rk j + . . . (19.61)

where the Tk j coefficients are uncorrelated with the Rk j , and so forth. In expectation,
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FIGURE 19.6: Mimcry of the one-factor model by the Thomson model. The Thomson model was
simulated 200 times with the parameters given above; each time, the simulated data was then fit to
a factor model with one factor, and the p-value of the goodness-of-fit test extracted. The plot shows
the empirical cumulative distribution function of the p-values. If the null hypothesis were exactly
true, then p ⇠Unif(0,1), and the theoretical CDF would be the diagonal line (dashed).
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if there are r such pools, this exactly matches the factor model with r factors, and any
particular realization is overwhelmingly likely to match if the q1, q2, . . . qr are large
enough.16

It’s not feasible to estimate the T of the Thomson model in the same way that
we estimate factor loadings, because q > p. This is not the point of considering the
model, which is rather to make it clear that we actually learn very little about where
the data come from when we learn that a factor model fits well. It could mean that
the features arise from combining a small number of factors, or on the contrary from
combining a huge number of factors in a random fashion. A lot of the time the latter
is a more plausible-sounding story.

For example, a common application of factor analysis is in marketing: you survey
consumers and ask them to rate a bunch of products on a range of features, and then
do factor analysis to find attributes which summarize the features. That’s fine, but it
may well be that each of the features is influenced by lots of aspects of the product you
don’t include in your survey, and the correlations are really explained by different
features being affected by many of the same small aspects of the product. Similarly for
psychological testing: answering any question is really a pretty complicated process
involving lots of small processes and skills (of perception, several kinds of memory,
problem-solving, attention, motivation, etc.), which overlap partially from question
to question.

19.11 Further Reading
The classical papers by Spearman (1904) and Thurstone (1934) are readily available
online, and very much worth reading for getting a sense of the problems which mo-
tivated the introduction of factor analysis, and the skill with which the founders
grappled with them. Loehlin (1992) is a decent textbook intended for psychologists;
the presumably mathematical and statistical level is decidedly lower than that of this
book, but it’s still useful. Thomson (1939) remains one of the most insightful books
on factor analysis, though obviously there have been a lot of technical refinements
since he wrote. It’s strongly recommended for anyone who plans to make much use
of the method. While out of print, used copies are reasonably plentiful and cheap,
and at least one edition is free online.

On purely statistical issues related to factor analysis, Bartholomew (1987) is by far
the best reference I have found; it quite properly sets it in the broader context of latent
variable models, including the sort of latent class models we will explore in Chapter
21. The computational advice of that edition is, necessarily, now quite obsolete; there
is an updated edition from 2011, which I have not been able to consult by the time of
writing.

The use of factor analysis in psychological testing has given rise to a large con-
troversial literature, full of claims, counter-claims, counter-counter-claims, and so on
ad nauseam. Without, here, going into that, I will just note that to the extent the

16A recent paper on the Thomson model (Bartholomew et al., 2009) proposes just this modification
to multiple factors and to Bernoulli sampling. However, I proposed this independently, in the fall 2008
version of these notes, about a year before their paper.
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strongest arguments against (say) reifying the general factor extracted from intelli-
gence tests as “general intelligence” are good arguments, they do not just apply to
intelligence, but also to personality tests, and indeed to many procedures outside
psychology. In other words, if there’s a problem, it’s not just a problem for intelli-
gence testing alone, or even for psychology alone. On this, see Glymour (1998) and
Borsboom (2005, 2006).

Exercises
1. Prove Eq. 19.13.

2. Why is it fallacious to go from “the data have the kind of correlations predicted
by a one-factor model” to “the data were generated by a one-factor model”?

3. Consider Figure 19.2 and its code. What is w here? What is  ? What is the
implied covariance matrix of ~X ? .

4. Show that the correlation between the j th feature and G, in the one-factor
model, is wj .

5. Check that Eq. 19.11 and Eq. 19.25 are compatible.

6. Find the weights bi j for the Thomson estimator of factor scores (Eq. 19.38),
assuming you know w. Do you need to assume a Gaussian distribution?
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