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Chapter 24

Identifying Causal Effects from
Observations

There are two problems which are both known as “causal inference”:

1. Given the causal structure of a system, estimate the effects the variables have
on each other.

2. Given data about a system, find its causal structure.

The first problem is easier, so we’ll begin with it.

24.1 Causal Effects, Interventions and Experiments
As a reminder, when I talk about the causal effect of X on Y , which I write

Pr (Y |d o(X = x)) (24.1)

I mean the distribution of Y which would be generated, counterfactually, were X
to be set to the particular value x. This is not, in general, the same as the ordinary
conditional distribution

Pr (Y |X = x) (24.2)

The reason these are different is that the latter represents taking the original pop-
ulation, as it is, and just filtering it to get the sub-population where X = x. The
processes which set X to that value may also have influenced Y through other chan-
nels, and so this distribution will not, typically, really tell us what would happen if
we reached in and manipulated X . We can sum up the contrast in a little table (Ta-
ble 24.1). As we saw in Chapter 22, if we have the full graph for a directed acyclic
graphical model, it tells us how to calculate the joint distribution of all the variables,
from which of course the conditional distribution of any one variable given another
follows. As we saw in Chapter 23, calculations of Pr (Y |d o(X = x)) use a “surgically”
altered graph, in which all arrows into X are removed, and its value is pinned at x,
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501 24.1. CAUSAL EFFECTS, INTERVENTIONS AND EXPERIMENTS

Probabilistic conditioning Causal conditioning

Pr (Y |X = x) Pr (Y |d o(X = x))
Factual Counter-factual
Select a sub-population Generate a new population
Predicts passive observation Predicts active manipulation
Calculate from full DAG Calculate from surgically-altered DAG
Always identifiable when X and Y Not always identifiable even
are observable when X and Y are observable

TABLE 24.1: Contrasts between ordinary probabilistic conditioning and causal conditioning. (See
below on identifiability.)

but the rest of the graph is as before. If we know the DAG, and we know the distri-
bution of each variable given its parents, we can calculate any causal effect we want,
by graph-surgery.

24.1.1 The Special Role of Experiment

If we want to estimate Pr (Y |d o(X = x)), the most reliable procedure is also the sim-
plest: actually manipulate X to the value x, and see what happens to Y . (As my
mother says, “Why think, when you can just do the experiment?”) A causal or
counter-factual assumption is still required here, which is that the next time we re-
peat the manipulation, the system will respond similarly, but this is pretty weak as
such assumptions go.

While this seems like obvious common sense to us now, it is worth taking a mo-
ment to reflect on the fact that systematic experimentation is a very recent thing;
it only goes back to around 1600. Since then, the knowledge we have acquired by
combining experiments with mathematical theories have totally transformed human
life, but for the first four or five thousand years of civilization, philosophers and
sages much smarter than (almost?) any scientist now alive would have dismissed ex-
periment as something fit only for cooks, potters and blacksmiths, who didn’t really
know what they were doing.

The major obstacle the experimentalist must navigate around is to make sure they
the experiment they are doing is the one they think they are doing. Symbolically,
when we want to know Pr (Y |d o(X = x)), we need to make sure that we are only
manipulating X , and not accidentally doing Pr (Y |d o(X = x),Z = z) (because we are
only experimenting on a sub-population), or Pr (Y |d o(X = x,Z = z)) (because we
are also, inadvertently, manipulating Z). There are two big main divisions about
how to avoid these confusions.

1. The older strategy is to deliberately control or manipulate as many other vari-
ables as possible. If we find Pr (Y |d o(X = x,Z = z)) and Pr

�
Y |d o(X = x 0,Z = z)

�
then we know the differences between them are indeed just due to changing X .
This strategy, of actually controlling or manipulating whatever we can, is the

14:17 Thursday 9th April, 2015



24.2. IDENTIFICATION AND CONFOUNDING 502

traditional one in the physical sciences, and more or less goes back to Galileo
and the beginning of the Scientific Revolution1.

2. The younger strategy is to randomize over all the other variables but X . That
is, to examine the contrast between Pr (Y |d o(X = x)) and Pr

�
Y |d o(X = x 0)
�
,

we use an independent source of random noise to decide which experimental
subjects will get d o(X = x) and which will get d o(X = x 0). It is easy to con-
vince yourself that this makes Pr (Y |d o(X = x)) equal to Pr (Y |X = x). The
great advantage of the randomization approach is that we can apply it even
when we cannot actually control the other causally relevant variables, or even
are unsure of what they are. Unsurprisingly, it has its origins in the biological
sciences, especially agriculture. If we want to credit its invention to a single
culture hero, it would not be too misleading2 to attribute it to R. A. Fisher in
the early 1900s.

Experimental evidence is compelling, but experiments are often slow, expensive,
and difficult. Moreover, experimenting on people is hard, both because there are
many experiments we shouldn’t do, and because there are many experiments which
would just be too hard to organize. We must therefore consider how to do causal
inference from non-experimental, observational data.

24.2 Identification and Confounding
For the present purposes, the most important distinction between probabilistic and
causal conditioning has to do with the identification (or identifiability), of the con-
ditional distributions. An aspect of a statistical model is identifiable when it cannot
be changed without there also being some change in the distribution of the observable
variables. If we can alter part of a model with no observable consequences, that part
of the model is unidentifiable3. Sometimes the lack of identification is trivial: in a
two-cluster mixture model, we get the same observable distribution if we swap the
labels of the two clusters (§21.1.5). The rotation problem for factor models (§§19.6,
19.10.1) is a less trivial identification problem4. If two variables are co-linear, then
their coefficients in a linear regression are unidentifiable (§2.1.1)5. Note that identi-
fication is about the true distribution, not about what happens with finite data. A
parameter might be identifiable, but we could have so little information about it in
our data that our estimates are unusable, with immensely wide confidence intervals;

1The anguished sound you hear as you read this is every historian of science wailing in protest as the
over-simplification, but this will do as an origin myth for our purposes.

2See previous note.
3More formally, divide the model’s parameters into two parts, say ✓ and . The distinction between ✓1

and ✓2 is identifiable if, for all  1,  2, the distribution over observables coming from (✓1, 1) is different
from that coming from (✓2, 2). If the right choice of  1 and  2 masks the distinction between ✓1 and ✓2,
then ✓ is unidentifiable.

4As this example suggests, what is identifiable depends on what is observed. If we could observe the
factors directly, factor loadings would be identifiable.

5As that example suggests, whether one aspect of a model is identifiable or not can depend on other
aspects of the model. If the co-linearity was broken, the two regression coefficients would become identi-
fiable.
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503 24.2. IDENTIFICATION AND CONFOUNDING

X Y

U

FIGURE 24.1: The distribution of Y given X , Pr (Y |X ), confounds the actual causal effect of X
on Y , Pr (Y |d o(X = x)), with the indirect dependence between X and Y created by their unob-
served common cause U . (You may imagine that U is really more than one variable, with some
internal sub-graph.)

that’s unfortunate, but we just need more data. An unidentifiable parameter, how-
ever, cannot be estimated even with infinite data.6

When X and Y are both observable variables, Pr (Y |X = x) can’t help being iden-
tifiable. (Changing this conditional distribution just is changing part of the distribu-
tion of observables.) Things are very different, however, for Pr (Y |d o(X = x)). In
some models, it’s entirely possible to change this drastically, and always have the
same distribution of observables, by making compensating changes to other parts
of the model. When this is the case, we simply cannot estimate causal effects from
observational data. The basic problem is illustrated in Figure 24.1.

In Figure 24.1, X is a parent of Y . But if we analyze the dependence of Y on X ,
say in the form of the conditional distribution Pr (Y |X = x), we see that there are two
channels by which information flows from cause to effect. One is the direct, causal
path, represented by Pr (Y |d o(X = x)). The other is the indirect path, where X gives
information about its parent U , and U gives information about its child Y . If we just
observe X and Y , we cannot separate the causal effect from the indirect inference.
The causal effect is confounded with the indirect inference. More generally, the
effect of X on Y is confounded whenever Pr (Y |d o(X = x)) 6= Pr (Y |X = x). If there
is some way to write Pr (Y |d o(X = x)) in terms of distributions of observables, we
say that the confounding can be removed by an identification strategy, which de-
confounds the effect. If there is no way to de-confound, then this causal effect is
unidentifiable.

The effect of X on Y in Figure 24.1 is unidentifiable. Even if we erased the arrow
from X to Y , we could get any joint distribution for X and Y we liked by picking

6For more on identifiability, and what to do with unidentifiable problems, see the great book by Man-
ski (2007).
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24.2. IDENTIFICATION AND CONFOUNDING 504

P (X |U ), P (Y |U ) and P (U ) appropriately. So we cannot even, in this situation, use
observations to tell whether X is actually a cause of Y . Notice, however, that even if
U was observed, it would still not be the case that Pr (Y |X = x) = Pr (Y |d o(X = x)).
While the effect would be identifiable (via the back door criterion; see below), we
would still need some sort of adjustment to recover it.

In the next section, we will look at such identification strategies and adjustments.
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505 24.3. IDENTIFICATION STRATEGIES

24.3 Identification Strategies
To recap, we want to calculate the causal effect of X on Y , Pr (Y |d o(X = x)), but we
cannot do an experiment, and must rely on observations. In addition to X and Y ,
there will generally be some covariates Z which we know, and we’ll assume we know
the causal graph, which is a DAG. Is this enough to determine Pr (Y |d o(X = x))?
That is, does the joint distribution identify the causal effect?

The answer is “yes” when the covariates Z contain all the other relevant vari-
ables7. The inferential problem is then no worse than any other statistical estimation
problem. In fact, if we know the causal graph and get to observe all the variables,
then we could (in principle) just use our favorite non-parametric conditional den-
sity estimate at each node in the graph, with its parent variables as the inputs and its
own variable as the response. Multiplying conditional distributions together gives
the whole distribution of the graph, and we can get any causal effects we want by
surgery. Equivalently (Exercise 2), we have that

Pr (Y |d o(X = x)) =
X

t
Pr (Y |X = x,Pa(X ) = t )Pr (Pa(X ) = t ) (24.3)

where Pa(X ) is the complete set of parents of X .
If we’re willing to assume more, we can get away with just using non-parametric

regression or even just an additive model at each node. Assuming yet more, we could
use parametric models at each node; the linear-Gaussian assumption is (alas) very
popular.

If some variables are not observed, then the issue of which causal effects are obser-
vationally identifiable is considerably trickier. Apparently subtle changes in which
variables are available to us and used can have profound consequences.

The basic principle underlying all considerations is that we would like to condi-
tion on adequate control variables, which will block paths linking X and Y other
than those which would exist in the surgically-altered graph where all paths into X
have been removed. If other unblocked paths exist, then there is some confounding
of the causal effect of X on Y with their mutual dependence on other variables.

This is familiar to use from regression as the basic idea behind using additional
variables in our regression, where the idea is that by introducing covariates, we “con-
trol for” other effects, until the regression coefficient for our favorite variable repre-
sents only its causal effect. Leaving aside the inadequacies of linear regression as such
(Chapter 2), we need to be cautious here. Just conditioning on everything possible
does not give us adequate control, or even necessarily bring us closer to it. As Fig-
ure 24.2 illustrates, and as several of the data-analysis problem sets will drive home,
adding an ill-chosen covariate to a regression can create confounding.

7This condition is sometimes known as causal sufficiency. Strictly speaking, we do not have to sup-
pose that all causes are included in the model and observable. What we have to assume is that all of the
remaining causes have such an unsystematic relationship to the ones included in the DAG that they can
be modeled as noise. (This does not mean that the noise is necessarily small.) In fact, what we really have
to assume is that the relationships between the causes omitted from the DAG and those included is so
intricate and convoluted that it might as well be noise, along the lines of algorithmic information theory
(Li and Vitányi, 1997), whose key result might be summed up as “Any determinism distinguishable from
randomness is insufficiently complex”. But here we verge on philosophy.
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X Y

Z

FIGURE 24.2: “Controlling for” additional variables can introduce bias into estimates of causal
effects. Here the effect of X on Y is directly identifiable, Pr (Y |d o(X = x)) = Pr (Y |X = x).
If we also condition on Z however, because it is a common effect of X and Y , we’d get
Pr (Y |X = x,Z = z) 6= Pr (Y |X = x). In fact, even if there were no arrow from X to Y , con-
ditioning on Z would make Y depend on X .

There are three main ways we can find adequate controls, and so get both identi-
fiability and appropriate adjustments:

1. We can condition on an intelligently-chosen set of covariates S, which block all
the indirect paths from X to Y , but leave all the direct paths open. (That is, we
can follow the regression strategy, but do it right.) To see whether a candidate
set of controls S is adequate, we apply the back-door criterion.

2. We can find a set of variables M which mediate the causal influence of X on Y
— all of the direct paths from X to Y pass through M . If we can identify the
effect of M on Y , and of X on M , then we can combine these to get the effect of
X on Y . (That is, we can just study the mechanisms by which X influences Y .)
The test for whether we can do this combination is the front-door criterion.

3. We can find a variable I which affects X , and which only affects Y by influ-
encing X . If we can identify the effect of I on Y , and of I on X , then we can,
sometimes, “factor” them to get the effect of X on Y . (That is, I gives us vari-
ation in X which is independent of the common causes of X and Y .) I is then
an instrumental variable for the effect of X on Y .

Let’s look at these three in turn.
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U

X
Y

S1 V S3

S2

B

FIGURE 24.3: Illustration of the back-door criterion for identifying the causal effect of X on Y .
Setting S = {S1, S2} satisfies the criterion, but neither S1 nor S2 on their own would. Setting
S = {S3}, or S = {S1, S2, S3} also works. Adding B to any of the good sets makes them fail the
criterion.

24.3.1 The Back-Door Criterion: Identification by Conditioning

When estimating the effect of X on Y , a back-door path is an undirected path be-
tween X and Y with an arrow into X . These are the paths which create confounding,
by providing an indirect, non-causal channel along which information can flow. A
set of conditioning variables or controls S satisfies the back-door criterion when (i)
S blocks every back-door path between X and Y , and (ii) no node in S is a descendant
of X . (Cf. Figure 24.3.) When S meets the back-door criterion,

Pr (Y |d o(X = x)) =
X

s
Pr (Y |X = x, S = s )Pr (S = s ) (24.4)

Notice that all the items on the right-hand side are observational conditional proba-
bilities, not counterfactuals. Thus we have achieved identifiability, as well as having
an adjustment strategy.

The motive for (i) is plain, but what about (ii)? We don’t want to include descen-
dants of X which are also ancestors of Y , because that blocks off some of the causal
paths from X to Y , and we don’t want to include descendants of X which are also
descendants of Y , because they provide non-causal information about Y 8.

More formally, we can proceed as follows (Pearl, 2009b, §11.3.3). We know from
Eq. 24.3 that

Pr (Y |d o(X = x)) =
X

t
Pr (Pa(X ) = t )Pr (Y |X = x,Pa(X ) = t ) (24.5)

8What about descendants of X which are neither ancestors nor descendants of Y ? Conditioning on
them is either creates potential colliders, if they are also descended from ancestors of Y other than X , or
needlessly complicates the adjustment in Eq. 24.4.
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Now suppose we can always introduce another set of conditioned variables, if we
sum out over them:

Pr (Y |d o(X = x)) =
X

t
Pr (Pa(X ) = t )
X

s
Pr (Y, S = s |X = x,Pa(X ) = t ) (24.6)

We can do this for any set of variables S, it’s just probability. It’s also just probability
that

Pr (Y, S |X = x,Pa(X ) = t ) = (24.7)
Pr (Y |X = x,Pa(X ) = t , S = s )Pr (S = s |X = x,Pa(X ) = t )

so

Pr (Y |d o(X = x)) = (24.8)X
t

Pr (Pa(X ) = t )
X

s
Pr (Y |X = x,Pa(X ) = t , S = s )Pr (S = s |X = x,Pa(X ) = t )

Now we invoke the fact that S satisfies the back-door criterion. Point (i) of the crite-
rion, blocking back-door paths, implies that Y |= Pa(X )|X , S. Thus

Pr (Y |d o(X = x)) = (24.9)X
t

Pr (Pa(X ) = t )
X

s
Pr (Y |X = x, S = s )Pr (S = s |X = x,Pa(X ) = t )

Point (ii) of the criterion, not containing descendants of X , means (by the Markov
property) that X |= S |Pa(X ). Therefore

Pr (Y |d o(X = x)) = (24.10)X
t

Pr (Pa(X ) = t )
X

s
Pr (Y |X = x, S = s )Pr (S = s |Pa(X ) = t )

Since
P

t Pr (Pa(X ) = t )Pr (S = s |Pa(X ) = t ) = Pr (S = s ), we have, at last,

Pr (Y |d o(X = x)) =
X

s
Pr (Y |X = x, S = s )Pr (S = s ) (24.11)

as promised. É

24.3.1.1 The Entner Rules

Using the back-door criterion requires us to know the causal graph. Recently, Entner
et al. (2013) have given a simple set of rules which provide sufficient conditions for
deciding that set of variables satisfy the back-door criterion, or that X actually has no
effect on Y , which can be used without knowing the graph completely.

It makes no sense to control for anything which is a descendant of either Y or X ;
that’s either blocking a directed path or activating a collider. So let W be the set of
all observed variables which descend neither from X nor Y .
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1. If there is a set of controls S such that X |= Y |S, then X has no causal effect on
Y .
Reasoning: Y can’t be a child of X if we can make them independent by condi-
tioning on anything, and Y can’t be a more remote descendant either, since S
doesn’t include any descendants of X . So in this situation all the paths linking
X to Y must be back-door paths, and S, blocking them, shows there’s no effect.

2. If there is a W 2 W and a subset S of the W , not including W , such that (i)
W 6 |= Y |S, but (ii) W |= Y |S,X , then X has an effect on Y , and S satisfies the
back-door criterion for estimating the effect.
Reasoning: Point (i) shows that conditioning on S leaves open path from W to
Y . By point (ii), these paths must all pass through X , since conditioning on X
blocks them, hence X has an effect on Y . S must block all the back-door paths
between X and Y , otherwise X would be a collider on paths between W and
Y , so conditioning on X would activate those paths.

3. If there is a W 2W and a subset S ofW , excluding W , such that (i) W 6 |= X |S
but (ii) W |= Y |S, then X has no effect on Y .
Reasoning: Point (i) shows that conditioning on S leaves open active paths from
W to X . But by (ii), there cannot be any open paths from W to Y , so there
cannot be any open paths from X to Y .

If none of these rules apply, whether X has an effect on Y , and if so what adequate
controls are for finding it, will depend on the exact graph, and cannot be determined
just from independence relations among the observables. (For proofs of everything,
see the paper.)
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X M Y

U

FIGURE 24.4: Illustration of the front-door criterion, after Pearl (2009b, Figure 3.5). X , Y and
M are all observed, but U is an unobserved common cause of both X and Y . X  U ! Y is a
back-door path confounding the effect of X on Y with their common cause. However, all of the
effect of X on Y is mediated through X ’s effect on M . M ’s effect on Y is, in turn, confounded by the
back-door path M  X  U ! Y , but X blocks this path. So we can use back-door adjustment
to find Pr (Y |d o(M = m)), and directly find Pr (M |d o(X = x)) = Pr (M |X = x). Putting these
together gives Pr (Y |d o(X = x)).

24.3.2 The Front-Door Criterion: Identification by Mechanisms
A set of variables M satisfies the front-door criterion when (i) M blocks all directed
paths from X to Y , (ii) there are no unblocked back-door paths from X to M , and
(iii) X blocks all back-door paths from M to Y . Then

Pr (Y |d o(X = x)) = (24.12)X
m

Pr (M = m|X = x)
X

x 0
Pr
�
Y |X = x 0, M = m

�
Pr
�
X = x 0
�

A natural reaction to the front-door criterion is “Say what?”, but it becomes more
comprehensible if we take it apart. Because, by clause (i), M blocks all directed paths
from X to Y , any causal dependence of Y on X must be mediated by a dependence
of Y on M :

Pr (Y |d o(X = x)) =
X

m
Pr (Y |d o(M = m))Pr (M = m|d o(X = x)) (24.13)

Clause (ii) says that we can get the effect of X on M directly,

Pr (M = m|d o(X = x)) = Pr (M = m|X = x) . (24.14)

Clause (iii) say that X satisfies the back-door criterion for identifying the effect of M
on Y , and the inner sum in Eq. 24.12 is just the back-door computation (Eq. 24.4) of
Pr (Y |d o(M = m)). So really we are using the back door criterion, twice. (See Figure
24.4.)

For example, in the “does tooth-brushing prevent heart-disease?” example of
§23.2.2, we have X = “frequency of tooth-brushing”, Y = “heart disease”, and we
could take as the mediating M either “gum disease” or “inflammatory immune re-
sponse”, according to Figure 23.2.
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X M1 M M2 Y

U

FIGURE 24.5: The path X ! M ! Y contains all the mechanisms by which X influences Y ,
but is not isolated from the rest of the system (U ! M ). The sub-mechanisms X ! M1 ! M and
M !M2! Y are isolated, and the original causal effect can be identified by composing them.

24.3.2.1 The Front-Door Criterion and Mechanistic Explanation

Morgan and Winship (2007, ch. 8) give a useful insight into the front-door criterion.
Each directed path from X to Y is, or can be thought of as, a separate mechanism by
which X influences Y . The requirement that all such paths be blocked by M , (i), is
the requirement that the set of mechanisms included in M be “exhaustive”. The two
back-door conditions, (ii) and (iii), require that the mechanisms be “isolated”, not
interfered with by the rest of the data-generating process (at least once we condition
on X ). Once we identify an isolated and exhaustive set of mechanisms, we know all
the ways in which X actually affects Y , and any indirect paths can be discounted,
using the front-door adjustment 24.12.

One interesting possibility suggested by this is to elaborate mechanisms into sub-
mechanisms, which could be used in some cases where the plain front-door criterion
won’t apply9, such as Figure 24.5. Because U is a parent of M , we cannot use the
front-door criterion to identify the effect of X on Y . (Clause (i) holds, but (ii) and (iii)
both fail.) But we can use M1 and the front-door criterion to find Pr (M |d o(X = x)),
and we can use M2 to find Pr (Y |d o(M = m)). Chaining those together, as in Eq.
24.13, would given Pr (Y |d o(X = x)). So even though the whole mechanism from X
to Y is not isolated, we can still identify effects by breaking it into sub-mechanisms
which are isolated. This suggests a natural point at which to stop refining our account
of the mechanism into sub-sub-sub- mechanisms: when we can identify the causal
effects we’re concerned with.

9The ideas in this paragraph come from conversation Prof. Winship; see Morgan and Winship (2015,
ch. 10).
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U

FIGURE 24.6: A valid instrumental variable, I , is related to the cause of interest, X , and influences
Y only through its influence on X , at least once control variables block other paths. Here, to use I as
an instrument, we should condition on S, but should not condition on B. (If we could condition
on U , we would not need to use an instrument.)

24.3.3 Instrumental Variables
A variable I is an instrument10 for identifying the effect of X on Y when there is
a set of controls S such that (i) I 6 |= X |S, and (ii) every unblocked path from I to
Y has an arrow pointing into to X . Another way to say (ii) is that I |= Y |S, d o(X ).
Colloquially, I influences Y , but only through first influencing X (at least once we
control for S). (See Figure 24.6.)

How is this useful? By making back-door adjustments for S, we can identify
Pr (Y |d o(I = i )) and Pr (X |d o(I = i )). Since all the causal influence of I on Y must
be channeled through X (by point (ii)), we have

Pr (Y |d o(I = i )) =
X

x
Pr (Y |d o(X = x))Pr (X = x|d o(I = i )) (24.15)

as in Eq. 24.3. We can thus identify the causal effect of X on Y whenever Eq. 24.15
can be solved for Pr (Y |d o(X = x)) in terms of Pr (Y |d o(I = i )) and Pr (X |d o(I = i )).
Figuring out when this is possible in general requires an excursion into the theory of
integral equations11, which is beyond the scope of this class; the upshot is that, in gen-

10The term “instrumental variables” comes from econometrics, where they were originally used, in the
1940s, to identify parameters in simultaneous equation models. (The metaphor was that I is a measuring
instrument for the otherwise inaccessible parameters.) Definitions of instrumental variables are surpris-
ingly murky and controversial outside of extremely simple linear systems; this one is taken from Galles
and Pearl (1997), via Pearl (2009b, §7.4.5).

11If X is continuous, then the analog of Eq. 24.15 is Pr (Y |d o(I = i )) =R
p(Y |d o(X = x))p(X = x|d o(I = i ))d x, where the “integral operator”

R ·p(X = x|d o(I = i ))d x is
known, as is Pr (Y |d o(I = i )).
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I X

Y

U

FIGURE 24.7: I acts as an instrument for estimating the effect of X on Y , despite the presence of
the confounding, unobserved variable U .

eral, there are no solutions. However, in the special case where the relations between
all variables are linear, we can do better.

Let’s start with the most basic possible set-up for an instrumental variable, namely
that in Figure 24.7, where we just have X , Y , the instrument I , and the unobserved
confounders S. If everything is linear, identifying the causal effect of X on Y is
equivalent to identifying the coefficient on the X ! Y arrow. We can write

X = ↵0+↵I +�U + ✏X (24.16)

and
Y =�0+�X + �U + ✏Y (24.17)

where ✏X and ✏Y are mean-zero noise terms, independent of each other and of the
other variables, and we can, without loss of generality, assume U has mean zero as
well. We want to find �. Substituting,

Y =�0+�↵0+�↵I + (�� + � )U +�✏X + ✏Y (24.18)

Since U , ✏X and ✏Y are all unobserved, we can re-write this as

Y = �0+�↵I + ⌘ (24.19)

where ⌘= (�� + � )U +�✏X + ✏Y has mean zero.
Now take the covariances:

Cov[I ,X ] = ↵Var[I ]+Cov[✏X , I ] (24.20)
Cov[I ,Y ] = �↵Var[I ]+Cov[⌘, I ] (24.21)

= �↵Var[I ]+ (�� + � )Cov[U , I ] (24.22)
+�Cov[✏X , I ]+Cov[✏Y , I ]

By condition (ii), however, we must have Cov[U , I ] = 0, and of course Cov[✏X , I ] =
Cov[✏Y , I ] = 0. Therefore Cov[I ,Y ] =�↵Var[I ]. Solving,

�=
Cov[I ,Y ]
Cov[I ,X ]

(24.23)
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This can be estimated by substituting in the sample covariances, or any other consis-
tent estimators of these two covariances.

On the other hand, the (true or population-level) coefficient for linearly regress-
ing Y on X is

Cov[X ,Y ]
Var[X ]

=
�Var[X ]+ �Cov[U ,X ]

Var[X ]
(24.24)

= �+ �
Cov[U ,X ]

Var[X ]
(24.25)

= �+ �
�Var[U ]

↵2Var[I ]+�2Var[U ]+Var[✏X ]
(24.26)

That is, “OLS is biased for the causal effect when X is correlated with the noise”. In
other words, simple regression is misleading in the presence of confounding12.

The instrumental variable I provides a source of variation in X which is uncor-
related with the other common ancestors of X and Y . By seeing how both X and Y
respond to these perturbations, and using the fact that I only influences Y through
X , we can deduce something about how X influences Y , though linearity is very
important to our ability to do so.

The simple line of reasoning above runs into trouble if we have multiple instru-
ments, or need to include controls (as the definition of an instrument allows). In
§25.2 we’ll look at the more complicated estimation methods which can handle this,
again assuming linearity.

24.3.3.1 Some Invalid Instruments

Not everything which looks like an instrument actually works. If Y is indeed a
descendant of I , but there is a line of descent that doesn’t go through X , then I is
not a valid instrument for X (Figure 24.8). If there are unblocked back-door paths
linking I and Y — if I and Y have common ancestors, for instance — then I is not a
valid instrument (Figure 24.9).

Economists sometimes refer to both sets of problems with instruments as “vi-
olations of exclusion restrictions”. The second sort of problem, in particular, is a
“failure of exogeneity”.

24.3.3.2 Critique of Instrumental Variables

By this point, you may well be thinking that instrumental variable estimation is very
much like using the front-door criterion. There, the extra variable M came between
X and Y ; here, X comes between I and Y . It is, perhaps, surprising (if not annoying)
that using an instrument only lets us identify causal effects under extra assumptions,
but that’s life. Just as the front-door criterion relies on using our scientific knowl-
edge, or rather theories, to find isolated and exhaustive mechanisms, finding valid

12But observe that if we want to make a linear prediction of Y and only have X available, i.e., to find
the best r1 in E[Y |X = x] = r0+ r1 x, then Eq. 24.26 is exactly the coefficient we would want to use. OLS
is doing its job.
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I

X

Z Y

U

FIGURE 24.8: I is not a valid instrument for identifying the effect of X on Y , because I can
influence Y through a path not going through X . If we could control for Z, however, I would
become valid.

I

X

S Y

U

FIGURE 24.9: I is not a valid instrument for identifying the effect of X on Y , because there is an
unblocked back-door path connecting I and Y . If we could control for S, however, I would become
valid.
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instruments relies on theories about the world (or the part of it under study), and
one would want to try to check those theories.

In fact, instrumental variable estimates of causal effects are often presented as
more or less unquestionable, and free of theoretical assumptions; economists, and
other social scientists influenced by them, are especially apt to do this. As the economist
Daniel Davies puts it13, devotees of this approach

have a really bad habit of saying:
“Whichever way you look at the numbers, X”.
when all they can really justify is:
“Whichever way I look at the numbers, X”.
but in fact, I should have said that they could only really support:
“Whichever way I look at these numbers, X”.

(Emphasis in the original.) It will not surprise you to learn that I think this is very
wrong.

I hope that, after four months of nonlinear models, if someone tries to sell you
a linear regression, you should be very skeptical, but let’s leave that to one side. (It’s
not impossible that everything really is linear.) The clue that instrumental variable
estimation is a creature of theoretical assumptions is point (ii) in the definition of an
instrument: I |= Y |S, d o(X ). This says that if we eliminate all the arrows into X , the
control variables S block all the other paths between I and Y . This is exactly as much
an assertion about mechanisms as what we have to do with the front-door criterion.
In fact it doesn’t just say that every mechanism by which I influences Y is mediated
by X , it also says that there are no common causes of I and Y (other than those
blocked by S).

This assumption is most easily defended when I is genuinely random, For in-
stance, if we do a randomized experiment, I might be a coin-toss which assigns each
subject to be in either the treatment or control group, each with a different value
of X . If “compliance” is not perfect (if some of those in the treatment group don’t
actually get the treatment, or some in the control group do), it is nonetheless plau-
sible that the only route by which I influences the outcome is through X , so an
instrumental variable regression is appropriate. (I here is sometimes called “intent to
treat”.)

Even here, we must be careful. If we are evaluating a new medicine, whether
people think they are getting a medicine or not could change how they act, and med-
ical outcomes. Knowing whether they were assigned to the treatment or the control
group would thus create another path from I to Y , not going through X . This is
why randomized clinical trials are generally “double-blinded” (neither patients nor
medical personnel know who is in the control group); but how effective the double-
blinding is itself a theoretical assumption.

More generally, any argument that a candidate instrument is valid is really an
argument that other channels of influence, apart from the favored one through X ,
can be ruled out. This generally cannot be done through analyzing the same variables

13In part four of his epic and insightful review of Freakonomics; see http://d-squareddigest.
blogspot.com/2007/09/freakiology-yes-folks-its-part-4-of.html.
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used in the instrumental-variable estimation (see below), but involves some theory
about the world, and rests on the strength of the evidence for that theory. As has been
pointed out multiple times — for instance, by Rosenzweig and Wolpin (2000), and
by Deaton (2010) — the theories needed to support instrumental variable estimates
in particular concrete cases are often not very well-supported, and plausible rival
theories can produce very different conclusions from the same data.

Many people have thought that one can test for the validity of an instrument, by
looking at whether I |= Y |X — the idea being that, if influence flows from I through
X to Y , conditioning on X should block the channel. The problem is that, in the
instrumental-variable set-up, X is a collider, so conditioning on X actually creates an
indirect dependence even if I is valid. So I 6 |= Y |X , whether or not the instrument is
valid, and the test (even if performed perfectly with infinite data) tells us nothing14.

A final, more or less technical, issue with instrumental variable estimation is that
many instruments are (even if valid) weak — they only have a little influence on
X , and a small covariance with it. This means that the denominator in Eq. 24.23
is a number close to zero. Error in estimating the denominator, then, results in
a much larger error in estimating the ratio. Weak instruments lead to noisy and
imprecise estimates of causal effects. It is not hard to construct scenarios where, at
reasonable sample sizes, one is actually better off using the biased OLS estimate than
the unbiased but high-variance instrumental estimate.

14However, see Pearl (2009b, §8.4) for a different approach which can “screen out very bad would-be
instruments”.
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FIGURE 24.10: Social influence is confounded with selecting friends with similar traits, unobserved
in the data.

24.3.4 Failures of Identification

The back-door and front-door criteria, and instrumental variables, are all sufficient
for estimating causal effects from probabilistic distributions, but are not necessary.
A necessary condition for un-identifiability is the presence of an unblockable back-
door path from X to Y . However, this is not sufficient for lack of identification
— we might, for instance, be able to use the front door criterion, as in Figure 24.4.
There are necessary and sufficient conditions for the identifiability of causal effects
in terms of the graph, and so for un-identifiability, but they are rather complex and I
will not go over them (see Shpitser and Pearl (2008), and Pearl (2009b, §§3.4–3.5) for
an overview).

As an example of the unidentifiable case, consider Figure 24.10. This DAG depicts
the situation analyzed in Christakis and Fowler (2007), a famous paper claiming to
show that obesity is contagious in social networks (at least in the suburb of Boston
where the data was collected). At each observation, participants in the study get
their weight taken, and so their obesity status is known over time. They also provide
the name of a friend. This friend is often in the study. Christakis and Fowler were
interested in the possibility that obesity is contagious, perhaps through some process
of behavioral influence. If this is so, then Irene’s obesity status in year 2 should
depend on Joey’s obesity status in year one, but only if Irene and Joey are friends —
not if they are just random, unconnected people. It is indeed the case that if Joey
becomes obese, this predicts a substantial increase in the odds of Joey’s friend Irene
becoming obese, even controlling for Irene’s previous history of obesity15.

The difficulty arises from the latent variables for Irene and Joey (the round nodes

15The actual analysis was a bit more convoluted than that, but this is the general idea.
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in Figure 24.10). These include all the traits of either person which (a) influence who
they become friends with, and (b) influence whether or not they become obese. A
very partial list of these would include: taste for recreational exercise, opportunity
for recreational exercise, taste for alcohol, ability to consume alcohol, tastes in food,
occupation and how physically demanding it is, ethnic background16, etc. Put simply,
if Irene and Joey are friends because they spend two hours in the same bar every day
drinking and eating chicken wings with ranch dressing, it’s less surprising that both of
them have an elevated chance of becoming obese, and likewise if they became friends
because they both belong to the decathlete’s club, they are both unusually unlikely
to become obese. Irene’s status is predictable from Joey’s, then, not (or not just)
because Joey influences Irene, but because seeing what kind of person Irene’s friends
are tells us about what kind of person Irene is. It is not too hard to convince oneself
that there is just no way, in this DAG, to get at the causal effect of Joey’s behavior on
Irene’s that isn’t confounded with their latent traits (Shalizi and Thomas, 2011). To
de-confound, we would need to actual measure those latent traits, which may not be
impossible but is certainly was not done here17.

When identification is not possible — when we can’t de-confound — it may still be
possible to bound causal effects. That is, even if we can’t say exactly that Pr (Y |d o(X = x))
must be, we can still say it has to fall within a certain (non-trivial!) range of possibil-
ities. The development of bounds for non-identifiable quantities, what’s sometimes
called partial identification, is an active area of research, which I think is very likely
to become more and more important in data analysis; the best introduction I know
is Manski (2007).

16Friendships often run within ethnic communities. On the one hand, this means that friends tend
to be more genetically similar than random members of the same town, so they will be usually apt to
share genes which influence susceptibility to obesity (in that environment). On the other hand, ethnic
communities transmit, non-genetically, traditions regarding food, alcohol, sports, exercise, etc., and (again
non-genetically: Tilly (1998)) influence employment and housing opportunities.

17Of course, the issue is not really about obesity. Studies of “viral marketing”, and of social influence
more broadly, all generically have the same problem. Predicting someone’s behavior from that of their
friend means conditioning on the existence of a social tie between them, but that social tie is a collider,
and activating the collider creates confounding.
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24.4 Summary

Of the four techniques I have introduced, instrumental variables are clever, but fragile
and over-sold18. Experimentation is ideal, but often unavailable. The back-door and
front-door criteria are, I think, the best observational approaches, when they can be
made to work.

Often, nothing can be made to work. Many interesting causal effects are just not
identifiable from observational data. More exactly, they only become identifiable un-
der very strong modeling assumptions, typically ones which cannot be tested from
the same data, and sometimes ones which cannot be tested by any sort of empirical
data whatsoever. Sometimes, we have good reasons (from other parts of our scien-
tific knowledge) to make such assumptions. Sometimes, we make such assumptions
because we have a pressing need for some basis on which to act, and a wrong guess is
better than nothing19. If you do make such assumptions, you need to make clear that
you are doing so, and what they are; explain your reasons for making those assump-
tions, and not others20; and indicate how different your conclusions could be if you
made different assumptions.

24.4.1 Further Reading

My presentation of the three major criteria is heavily indebted to Morgan and Win-
ship (2007), but I hope not a complete rip-off. Pearl (2009b) is also essential reading
on this topic. Berk (2004) provides an excellent critique of naive (that is, overwhelm-
ingly common) uses of regression for estimating causal effects.

Most econometrics texts devote considerable space to instrumental variables. Didelez
et al. (2010) is a very good discussion of instrumental variable methods, with less-
standard applications. There is some work on non-parametric versions of instru-
mental variables (e.g., Newey and Powell 2003), but the form of the models must
be restricted or they are unidentifiable. On the limitations of instrumental variables,
Rosenzweig and Wolpin (2000) and Deaton (2010) are particularly recommended; the
latter reviews the issue in connection with important recent work in development
economics and the alleviation of extreme poverty, an area where statistical estimates
really do matter.

There is a large literature in the philosophy of science and in methodology on the
notion of “mechanisms”. References I have found useful include, in general, Salmon
(1984), and, specifically on social processes, Elster (1989), Hedström and Swedberg
(1998) (especially Boudon 1998), Hedström (2005), Tilly (1984, 2008), and DeLanda
(2006).

18I confess that I would probably not be so down on them if others did not push them up so excessively.
19As I once heard a distinguished public health expert put it, “This problem is too important to worry

about getting it right.”
20“My boss/textbook says so” and “so I can estimate �” are not good reasons
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FIGURE 24.11: DAG for Exercise 3.

24.5 Exercises
1. Draw a graphical model representing the situation where a causal variable X

is set at random. Verify that Pr (Y |X = x) is then equal to Pr (Y |d o(X = x)).
(Hint: Use the back door criterion.)

2. Prove Eq. 24.3, by using the causal Markov property of the appropriate surgically-
altered graph.

3. Refer to Figure 24.11. Can we use the front door criterion to estimate the effect
of occupational prestige on cancer? If so, give a set S of variables that we would
adjust for in the front-door method. Is there more than one such set? If so, can
you find them all? Are there variables we could add to this set (or sets) which
would violate the front-door criterion?

4. Read Salmon (1984). When does his “statistical relevance basis” provide enough
information to identify causal effects?
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