
Homework 1: What’s That Got to Do with the
Price of Condos in California?

36-402, Spring 2016

Due at 11:59 pm on Wednesday, 20 January 2016

AGENDA: A refresher in using linear regression to explore relation-
ships between variables; also, fun with linear smoothers.

INSTRUCTIONS: See the general instructions on the class website for
formats, collaboration, etc., and the rubric at the end of this assignment.

The Census Bureau divides the country up into geographic regions, smaller than
counties, called “tracts” of a few thousand people each, and reports much of its
data at the level of tracts. This data set, drawn from the 2011 American Commu-
nity Survey, contains information on the housing stock and economic circumstances
of every tract in California and Pennsylvania. For each tract, the data file http:
//www.stat.cmu.edu/~cshalizi/uADA/16/hw/01/CAPA.csv records lots of vari-
ables (not all of which will be used in this assignment):

• A geographic ID code, a code for the state, a code for the county, and a code
for the tract

• The population, latitude and longitude of the tract

• Its name

• The median value of the housing units in the tract

• The total number of units and the number of vacant units

• The median number of rooms per unit

• The mean number of people per household which owns its home, the mean
number of people per renting household

• The median and mean income of households (in dollars, from all sources)

• The percentage of housing units built in 2005 or later; built in 2000–2004; built
in the 1990s; in the 1980s; in the 1970s; in the 1960s; in the 1950s; in the 1940s;
and in 1939 or earlier

• The percentage of housing units with 0 bedrooms; with 1 bedroom; with 2;
with 3; with 4; with 5 or more bedrooms
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• The percentage of households which own their home, and the percentage which
rent

These are not values for individual houses or families, but summaries of all of the
houses and families in the tract.

The basic question here has to do with how the quality of the housing stock, the
income of the people, and the geography of the tract relate to house values in the
tract. We will look at several different linear models, and see if they have reasonable
interpretations, and/or make systematic errors.

Begin by loading the data set into a new data-frame in R.

1. (2) Not all variables are available for all tracts. Remove the rows containing
NA values. How many tracts are eliminated? How many people live in those
tracts? What happens to the summary statistics for median house value and
median income? (Hint: Recipe 5.27 in The R Cookbook.)

All subsequent problems will be done on this cleaned data set.

2. House value and income

(a) (1) Linearly regress median house value on median household income.
Report the intercept and the coefficient, and explain what they mean.

(b) (2) Linearly regress median house value on mean household income. Re-
port the intercept and the coefficient and explain their meanings. Why
are the coefficients for two different measure of household income differ-
ent?

(c) (3) Regress median house value on both mean and median household
income. Report the estimates, and interpret the coefficients, as before.
Does this interpretation seem reasonable? Explain.

3. (5) Regress median house value on median income, mean income, population,
number of housing units, number of vacant units, percentage of owners, me-
dian number of rooms, mean household size of homeowners, and mean house-
hold size of renters. Report all the estimated coefficients and their standard
errors to reasonable precision, and explain what they mean. Why are the coef-
ficients on income different from in the previous models?

4. Checking residuals for the model from problem 3.

(a) (5) Make a Q −Q plot of the regression residuals.

(b) (5) Make scatter-plots of the regression residuals against each of the predic-
tor variables, and add kernel smoother curves (as in Chapter 1). Describe
any patterns you see. (A very rough rule of thumb is that the bandwidth
should be about σn−1/5, where σ is the standard deviation of the predic-
tor variable and n is the sample size.)

(c) (5) Make scatter-plots of the squared residuals against each of the predictor
variables, and add kernel smoother curves. Describe any patterns you see.
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(d) (5) Explain, using these plots, whether the residuals appear Gaussian and
independent of the predictors.

5. Fit the model from 3 to data from California alone, and again to data from
Pennsylvania alone.

(a) (5) Report the two sets of coefficients and standard errors. Explain whether
or not it is plausible that the true coefficients are really the same.

(b) (2) What are the square root of the mean squared error (RMSEs) of the
Pennsylvania and California estimates, on their own data?

(c) (5) Use the Pennsylvania estimates to predict the California data. What is
the RMSE? What is the correlation between the Pennsylvania coefficients’
predictions for California, and the California coefficients’ predictions?
Hint: Recipe 11.18.

6. (10) Make a map of the regression residuals for the model from problem 3.
The vertical coordinate should be latitude, the horizontal coordinate should
be longitude, and the size of the residual should be shown by the color of the
points (Hint: Recipe 10.23). Are the residuals randomly scattered over space,
or are there regions where the model systematically over- or under- predicts?
Are there regions where the errors are unusually large in both directions? (You
might also want to make a map of the absolute value of the residuals.) — If you
cannot make a map, you can still get partial credit for scatter-plots of residuals
against latitude and longitude.

7. (5) Fit a linear regression with all the variables from problem 3, as well as lat-
itude and longitude. Report the new coefficients and their standard errors.
What do the coefficients on latitude and longitude mean? How important are
latitude and longitude in this new model?

8. (5) Make a map of the regression residuals for the new model from problem
7. Compare and contrast it with the map from problem 6. Which one looks
better, and why?

9. Degrees of freedom Suppose Yi =µ(Xi )+εi , where Xi is p-dimensional, and εi
is a random variable, uncorrelated with the X s and the other εs, with expecta-
tion 0 and constant variance σ2. Our data consists of n pairs (X1,Y1), . . . (Xn ,Yn).

(a) (5) Consider the intercept-only model which always predicts the sample
average of the Yi . Find the influence matrix w, and show that it has 1
degree of freedom, using the definition in §1.5.3.

(b) (5) Consider predicting Y using k nearest neighbors. Explain the form of
the influence matrix w (it may be inconvenient to give an exact formula
for it), and find a formula for the number of degrees of freedom in terms
of k and n. (Hint: Your formula should reduce to the answer of the
previous problem when k = n; why?) Why doesn’t p matter?
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10. More Freedom, More Optimism We’re in the same mathematical set-up as in
the previous problem. We use some linear smoother (not necessarily linear
regression) to get an estimate of the regression function bµ. The “optimism” of
the estimate is
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where Y ′i is an independent copy of Yi . That is, the optimism is the difference
between the in-sample MSE, and how well the model would predict on new
data taken at exactly the same xi values.

(a) (10) Find a formula for the optimism in terms of n, σ2, and the number
of degrees of freedom. Hints: Re-write Eq. 1 as a sum of differences of
expectations. What is Cov(Yi , bµi )? What is Cov(Y ′i , bµi )?

(b) (2) Find the optimism of a linear regression for Y , in terms of n, σ2, and
p. What happens as n→∞?

(c) (3) Find the optimism of a k-nearest neighbor regression for Y , in terms
of n, σ2 and k. What happens as n →∞? What if k changes with n, as
k =
p

n?

RUBRIC (10): The text is laid out cleanly, with clear divisions between prob-
lems and sub-problems. The writing itself is well-organized, free of grammatical and
other mechanical errors, and easy to follow. Questions which ask for a plot or ta-
ble are answered with both the figure itself and the command (or commands) use to
make the plot. Plots are carefully labeled, with informative and legible titles, axis
labels, and (if called for) sub-titles and legends; they are placed near the text of the
corresponding problem. All quantitative and mathematical claims are supported by
appropriate derivations, included in the text, or calculations in code. Numerical re-
sults are reported to appropriate precision. Code is properly integrated with a tool
like R Markdown or knitr, and both the knitted file and the source file are submitted.
The code is indented, commented, and uses meaningful names. All code is relevant
to the text; there are no dangling or useless commands. All parts of all problems are
answered with actual coherent sentences, and never with raw computer code or its
output.

EXTRA CREDIT (10): Using the function knn.reg from the FNN package, as in
chapter 1, do a five-nearest-neighbor regression for the house values, using latitude
and longitude as the only predictor variables. Find the RMSE and make a map of the
residuals. How does this compare to the linear models you estimated? (You will need
to calculate distance between locations as a function of latitude and longitude.)
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