
Homework 4: How the Extinct Charismatic
Megafauna Got Their Mass Distribution

36-402, Spring 2016

Due at 11:59 pm on Thursday, 11 February 2016

AGENDA: Explicitly: nonparametric regression, bootstrap, simula-
tion, comparing a simulation to data; implicitly: more practice writing,
testing, and debugging simple functions.

GRADING: Re-writing functions from earlier steps inside later ones
will yield only partial credit. When a question calls for checking some-
thing by repeated simulation, find a way of showing the test was passed
without displaying lots of raw R output.

Some biologists argue that larger animals tend to have advantages over smaller
members of their species, so that natural selection should tend to lead to an increase
in size within an evolutionary lineage1. There is also some evidence that larger species
tend to be shorter-lived than smaller ones2. In this assignment, we will look at the
evidence for an increase in species size within lineages, and how the trade-off between
these two forces might lead to a stable distribution of sizes across species.

We will use two data sets:

• The North American Mammalian Paleofauna Database (nampd.csv) lists, for
about 2000 living and extinct species, the log of the mass, in grams, of a typical
member of the species; the log mass of the ancestral species (when known); and
the dates of the species’ first and last appearance in the fossil record, in millions
of years ago. If the last appearance date is NA, the species is still alive. This
means you should not just throw away all rows containing NAs.

• The Masses of Mammals (MoM.txt) gives, for about 4000 living species, their
mass in grams, identifying codes for the species, genus, and other taxonomic
groups, and an indicator for whether the species lives in the land or in the
water.

1Among other things, larger animals may be harder for predators to attack, find it easier to over-come
prey or other members of their species, and be more efficient metabolically. For more, see, e.g., John Tyler
Bonner, The Evolution of Complexity, by Means of Natural Selection (Princeton University Press, 1988).

2This may be because larger animals need more food in total, and possibly more specialized food
sources, so they are more vulnerable to shifts in their environment.
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The model we will work with goes as follows: At any given time t , there is a
collection of nt species, whose masses are X1,X2, . . .Xnt

. At each time step, one cur-
rent species A gets picked, uniformly at random, to evolve into two new species. The
masses of a descendant species XD is related to that of its ancestor, XA, by the model

XD = exp (r (logXA)+Z) (1)

where Z ∼ N (0,σ2), and r is a function to be learned from the data, subject to
the restriction that XD has to be at least xmin and at most xmax. The ancestor XA is
removed from the current list of species, and its two independent descendants are
added. After this, all species currently in the list have a risk of going extinct, with the
probability for a species of mass x going extinct being a function of their mass,

pe (x) =βxρ (2)

Any species which become extinct are removed from the collection. We then iterate
the model again.

In all of the following questions, unless otherwise specified, you may take σ2 =
0.63 (what are the units?), xmin = 1.8 grams, xmax = 1015 grams, ρ = 0.025, and
β= 1/5000.

1. (5) Linearly regress the log of the new mass on the log of the ancestral mass.
Plot this regression line, along with a scatter-plot of the data, in units of grams,
not log-grams. Carefully explain the interpretation of both the slope and the
intercept. A rote recitation of “a one unit change in the independent variable”,
etc., will not receive full credit; think about the model, the transformations,
and what the transformed model says about the variables.

2. (5) Do a nonparametric regression of log new mass on log ancestral mass. (You
may use any suitable method, such as kernel regression, a local linear model,
or smoothing splines. Ask if you’re not sure what qualifies.) Create a plot
showing the data points, the model from question 1, and the regression curve,
making sure that the axes are in units of grams, not log-grams.

3. Bootstrap confidence bands For this problem, and all later problems, “the regres-
sion curve” means the model you estimated in problem 2.

(a) (10) Using resampling of residuals, calculate 95% confidence bands for the
regression curve, and add them to the plot.

(b) (5) Using resampling of residuals, calculate standard errors for the regres-
sion curve, and add bands at ±2 standard erros to the plot.

(c) (10) Using resampling of cases, calculate 95% confidence bands for the
regression curve, and add them to the plot.

(d) (5) Using resampling of cases, calculate standard errors for the regression
curve, and add bands at ±2 standard errors to the plot.

(e) (5) Do the ±2 standard error bands match the 95% confidence bands
when resampling residuals? When resampling cases? Should they, in ei-
ther case?
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4. Write a function, rmass, which takes as inputs a single ancestral mass XA (not
logXA), an estimated regression function r , and any other parameters required
by the model, and returns a single random value for XD , according to Eq. 1.
Make sure the returned value is in grams, not log grams. You will probably find
it easiest to keep generating candidate values for XD , until you get one which is
between the limits. Hint: while.

(a) (1) What model parameters does your rmass need?

(b) (1) Using the regression curve you estimated in question 2, check, by re-
peated simulation, that the output is always between xmin and xmax, even
when XA is brought near either limit.

(c) (3) Using the regression curve you estimated in question 2, create 150 XA
values between xmin and xmax, evenly spaced on a logarithmic scale, gen-
erate an XD for each of them, and fit a regression curve to the simulated
values. Check that it is close to, but not identical with, the one you found
from the data. Why should it not be identical?

5. Write a function, origin, which takes the same arguments as rmass, except
that instead of one ancestral mass it can take a vector of them. origin should
pick one entry from the vector to be XA, and generate two independent values
of XD from it. One of these should replace the entry for XA, and the other
should be added to the end of the vector.

(a) (2) Check, by simulating with a length-one vector of ancestral masses,
that neither component of the returned value matches the ancestral mass
(why?), that both components have the same marginal distribution, and
that the two components are uncorrelated with each other.

(b) (1) Check, by simulating, that if the input vector of masses has length m,
the output vector always has length m+ 1. (Check at least two values of
m.)

(c) (2) Check, by simulating, that m−1 entries in the output match the input
exactly. Check this for at least two values of m. Hint: is.element, or
%in%, or match.

6. Write a function, extinct.prob, which takes as inputs a vector of species
masses, and parameters ρ and β, and returns the extinction probabilities ac-
cording to Eq. 2.

(a) (2) Check that if the masses are c(100, 1600, 10000) grams, ρ = 1/2
and β= 1/200, then extinct.prob returns the right values.

(b) (1) Check that if ρ= 0, the output probabilities are allβ, no matter what
the masses are.

(c) (1) Check that if the input masses are all equal, so are the returned proba-
bilities, for at least three of different combinations of mass, ρ and β.

(d) (1) Check that if ρ 6= 0 and β 6= 0, and the masses are all different, then
the returned probabilities are all distinct.
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7. Write a function, extinction, which takes a vector of species masses, ρ and
β, and returns a possibly-shorter vector which removes the masses of species
which were probabilistically selected for extinction. Be sure to handle the (un-
fortunate) case where every species goes extinct. Hint: What does rbinom(n,size=1,prob=p)
do when p is a vector of length n?

(a) (1) Check that if β= 0, the output vector is always the same as the input
vector.

(b) (3) Create a case where the input masses are all equal, and ρ and β are set
so that the extinction probability should be 1/2. Check that the output
is, on average, half as long as the input.

(c) (1) In the same test cases as the previous part, check that all the values in
the new vector of masses were also in the old vector of masses.

8. (5) Write a function, evolve_step, which takes as inputs a vector of species
masses, plus all needed parameters and estimated curves; calls origin and
extinction as appropriate; and returns a new vector of species masses. How
do you know it works?

9. (5) Write a function, mass_evolve, which takes the same inputs as evolve_step,
plus an additional number T; iterates evolve_step T times; and returns the fi-
nal vector of species masses. How do you know it works? Hint: There will
almost certainly need to be a for loop inside the function.

10. Comparing simulations to each other In this question, use the default parameter
values, and the regression curve you estimated in question 2.

(a) (1) Run mass_evolve starting from a single species with a mass of 120
grams for T = 2 × 105 steps. Save the output as masses.1. Plot the
histogram.

(b) (1) Re-run mass_evolve from the same conditions. Save as masses.2.
Plot the histogram.

(c) (1) Re-run from the same conditions but for T = 4× 105 steps, saving as
masses.3. Plot the histogram.

(d) (1) Change the starting condition to two species, one of 40 grams and one
of 1000 grams. Run twice, both times with T = 2×105, saving the results
as masses.4 and masses.5.

(e) (1) How do the distributions of the various masses compare to each
other?

11. Comparing simulations to reality

(a) (1) Load the Masses of Mammals data set, and plot the histogram of masses
for land species.

(b) (2) Compare, in words, the distribution for land species to that obtained
from the simulations.
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(c) (2) Compare the distributions using QQ plots.

12. (5) Does the output of the simulation model match the actual mass distribu-
tion? Are the differences between the model and reality bigger than those
between different runs of the simulation? Are there qualitative distinctions
between the simulation-to-simulation differences, and the simulation-to-reality
differences? Support your answers by reference to the plots you have already
made, or, if need be, new ones.

Note: more advanced techniques for comparing distributions exist, and we’ll cover
some of them later in the course.

RUBRIC (10): The text is laid out cleanly, with clear divisions between prob-
lems and sub-problems. The writing itself is well-organized, free of grammatical and
other mechanical errors, and easy to follow. Questions which ask for a plot or ta-
ble are answered with both the figure itself and the command (or commands) use to
make the plot. Plots are carefully labeled, with informative and legible titles, axis
labels, and (if called for) sub-titles and legends; they are placed near the text of the
corresponding problem. All quantitative and mathematical claims are supported by
appropriate derivations, included in the text, or calculations in code. Numerical re-
sults are reported to appropriate precision. Code is properly integrated with a tool
like R Markdown or knitr, and both the knitted file and the source file are submitted.
The code is indented, commented, and uses meaningful names. All code is relevant
to the text; there are no dangling or useless commands. All parts of all problems are
answered with actual coherent sentences, and never with raw computer code or its
output.

EXTRA CREDIT (5): Re-write the code so that Z , rather than being drawn from
a Gaussian distribution, comes from resampling the residuals of the estimated regres-
sion curve. What do you have to modify? How much do the results change? Which
version fits the observed mass distribution better?
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