
23:38 Wednesday 17th February, 2016
Copyright ©Cosma Rohilla Shalizi; do not distribute without permission

updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Chapter 3

Evaluating Statistical Models:
Error and Inference

3.1 What Are Statistical Models For? Summaries, Fore-
casts, Simulators

There are (at least) three ways we can use statistical models in data analysis: as sum-
maries of the data, as predictors, and as simulators.

The least demanding use of a model is to summarize the data — to use it for
data reduction, or compression. Just as the sample mean or sample quantiles can be
descriptive statistics, recording some features of the data and saying nothing about a
population or a generative process, we could use estimates of a model’s parameters as
descriptive summaries. Rather than remembering all the points on a scatter-plot, say,
we’d just remember what the OLS regression surface was.

It’s hard to be wrong about a summary, unless we just make a mistake. (It may not
be helpful for us later, but that’s different.) When we say “the slope which minimized
the sum of squares was 4.02”, we make no claims about anything but the training
data. That statement relies on no assumptions, beyond our calculating correctly. But
it also asserts nothing about the rest of the world. As soon as we try to connect our
training data to anything else, we start relying on assumptions, and we run the risk
of being wrong.

Probably the most common connection to want to make is to say what other data
will look like — to make predictions. In a statistical model, with random variables,
we do not anticipate that our predictions will ever be exactly right, but we also an-
ticipate that our mistakes will show stable probabilistic patterns. We can evaluate
predictions based on those patterns of error — how big is our typical mistake? are we
biased in a particular direction? do we make a lot of little errors or a few huge ones?

Statistical inference about model parameters — estimation and hypothesis testing
— can be seen as a kind of prediction, extrapolating from what we saw in a small
piece of data to what we would see in the whole population, or whole process. When

71

3.2. ERRORS, IN AND OUT OF SAMPLE 72

we estimate the regression coefficient b̂ = 4.02, that involves predicting new values
of the dependent variable, but also predicting that if we repeated the experiment and
re-estimated b̂ , we’d get a value close to 4.02.

Using a model to summarize old data, or to predict new data, doesn’t commit us
to assuming that the model describes the process which generates the data. But we
often want to do that, because we want to interpret parts of the model as aspects of
the real world. We think that in neighborhoods where people have more money, they
spend more on houses — perhaps each extra $1000 in income translates into an extra
$4020 in house prices. Used this way, statistical models become stories about how the
data were generated. If they are accurate, we should be able to use them to simulate
that process, to step through it and produce something that looks, probabilistically,
just like the actual data. This is often what people have in mind when they talk about
scientific models, rather than just statistical ones.

An example: if you want to predict where in the night sky the planets will be,
you can actually do very well with a model where the Earth is at the center of the
universe, and the Sun and everything else revolve around it. You can even estimate,
from data, how fast Mars (for example) goes around the Earth, or where, in this
model, it should be tonight. But, since the Earth is not at the center of the solar
system, those parameters don’t actually refer to anything in reality. They are just
mathematical fictions. On the other hand, we can also predict where the planets will
appear in the sky using models where all the planets orbit the Sun, and the parameters
of the orbit of Mars in that model do refer to reality.1

This chapter focuses on evaluating predictions, for three reasons. First, often we
just want prediction. Second, if a model can’t even predict well, it’s hard to see how it
could be right scientifically. Third, often the best way of checking a scientific model
is to turn some of its implications into statistical predictions.

3.2 Errors, In and Out of Sample
With any predictive model, we can gauge how well it works by looking at its errors.
We want these to be small; if they can’t be small all the time we’d like them to be
small on average. We may also want them to be patternless or unsystematic (because
if there was a pattern to them, why not adjust for that, and make smaller mistakes).
We’ll come back to patterns in errors later, when we look at specification testing
(Chapter 10). For now, we’ll concentrate on the size of the errors.

To be a little more mathematical, we have a data set with points zn = z1, z2, . . . zn .
(For regression problems, think of each data point as the pair of input and output
values, so zi = (xi , yi), with xi possibly a vector.) We also have various possible mod-
els, each with different parameter settings, conventionally written ✓. For regression,
✓ tells us which regression function to use, so m✓(x) or m(x;✓) is the prediction we
make at point x with parameters set to ✓. Finally, we have a loss function L which
tells us how big the error is when we use a certain ✓ on a certain data point, L(z,✓).

1We can be pretty sure of this, because we use our parameter estimates to send our robots to Mars, and
they get there.

23:38 Wednesday 17th February, 2016

73 3.2. ERRORS, IN AND OUT OF SAMPLE

For mean-squared error, this would just be

L(z,✓) = (y �m✓(x))
2 (3.1)

But we could also use the mean absolute error

L(z,✓) = |y �m✓(x)| (3.2)

or many other loss functions. Sometimes we will actually be able to measure how
costly our mistakes are, in dollars or harm to patients. If we had a model which
gave us a distribution for the data, then p✓(z) would a probability density at z, and
a typical loss function would be the negative log-likelihood, � log m✓(z). No matter
what the loss function is, I’ll abbreviate the sample average of the loss over the whole
data set by L(zn ,✓).

What we would like, ideally, is a predictive model which has zero error on future
data. We basically never achieve this:

• The world just really is a noisy and stochastic place, and this means even the
true, ideal model has non-zero error.2 This corresponds to the first, �2

x , term
in the bias-variance decomposition, Eq. 1.27 from Chapter 1.

• Our models are usually more or less mis-specified, or, in plain words, wrong.
We hardly ever get the functional form of the regression, the distribution of
the noise, the form of the causal dependence between two factors, etc., exactly
right.3 This is the origin of the bias term in the bias-variance decomposition.
Of course we can get any of the details in the model specification more or less
wrong, and we’d prefer to be less wrong.

• Our models are never perfectly estimated. Even if our data come from a perfect
IID source, we only ever have a finite sample, and so our parameter estimates
are (almost!) never quite the true, infinite-limit values. This is the origin of
the variance term in the bias-variance decomposition. But as we get more and
more data, the sample should become more and more representative of the
whole process, and estimates should converge too.

So, because our models are flawed, we have limited data and the world is stochastic,
we cannot expect even the best model to have zero error. Instead, we would like to
minimize the expected error, or risk, or generalization error, on new data.

What we would like to do is to minimize the risk or expected loss

E[L(Z ,✓)] =
Z

L(z,✓)p(z)d z (3.3)

To do this, however, we’d have to be able to calculate that expectation. Doing that
would mean knowing the distribution of Z — the joint distribution of X and Y , for

2This is so even if you believe in some kind of ultimate determinism, because the variables we plug
in to our predictive models are not complete descriptions of the physical state of the universe, but rather
immensely coarser, and this coarseness shows up as randomness.

3Except maybe in fundamental physics, and even there our predictions are about our fundamental
theories in the context of experimental set-ups, which we never model in complete detail.

23:38 Wednesday 17th February, 2016

3.2. ERRORS, IN AND OUT OF SAMPLE 74

the regression problem. Since we don’t know the true joint distribution, we need to
approximate it somehow.

A natural approximation is to use our training data zn . For each possible model
✓, we can could calculate the sample mean of the error on the data, L(zn ,✓), called
the in-sample loss or the empirical risk. The simplest strategy for estimation is then
to pick the model, the value of ✓, which minimizes the in-sample loss. This strategy
is imaginatively called empirical risk minimization. Formally,

c✓n ⌘ argmin
✓2⇥

L(zn ,✓) (3.4)

This means picking the regression which minimizes the sum of squared errors, or the
density with the highest likelihood4. This is what you’ve usually done in statistics
courses so far, and it’s very natural, but it does have some issues, notably optimism
and over-fitting.

The problem of optimism comes from the fact that our training data isn’t per-
fectly representative. The in-sample loss is a sample average. By the law of large
numbers, then, we anticipate that, for each ✓,

L(zn ,✓)!E[L(Z ,✓)] (3.5)

as n!1. This means that, with enough data, the in-sample error is a good approx-
imation to the generalization error of any given model ✓. (Big samples are repre-
sentative of the underlying population or process.) But this does not mean that the
in-sample performance of ✓̂ tells us how well it will generalize, because we purposely
picked it to match the training data zn . To see this, notice that the in-sample loss
equals the risk plus sampling noise:

L(zn ,✓) =E[L(Z,✓)]+ ⌘n(✓) (3.6)

Here ⌘n(✓) is a random term which has mean zero, and represents the effects of
having only a finite quantity of data, of size n, rather than the complete probability
distribution. (I write it ⌘n(✓) as a reminder that different values of ✓ are going to be
affected differently by the same sampling fluctuations.) The problem, then, is that
the model which minimizes the in-sample loss could be one with good generalization
performance (E[L(Z,✓)] is small), or it could be one which got very lucky (⌘n(✓)
was large and negative):

c✓n = argmin
✓2⇥
�E[L(Z ,✓)]+ ⌘n(✓)

�

(3.7)

We only want to minimize E[L(Z ,✓)], but we can’t separate it from ⌘n(✓), so we’re
almost surely going to end up picking a c✓n which was more or less lucky (⌘n < 0)
as well as good (E[L(Z ,✓)] small). This is the reason why picking the model which
best fits the data tends to exaggerate how well it will do in the future (Figure 3.1).

4Remember, maximizing the likelihood is the same as maximizing the log-likelihood, because log is
an increasing function. Therefore maximizing the likelihood is the same as minimizing the negative log-
likelihood.

23:38 Wednesday 17th February, 2016

75 3.2. ERRORS, IN AND OUT OF SAMPLE

0 2 4 6 8 10

2
4

6
8

10
12

regression slope

M
SE

 ri
sk

n <- 20
theta <- 5
x <- runif(n)
y <- x * theta + rnorm(n)
empirical.risk <- function(b) {

mean((y - b * x)^2)
}
true.risk <- function(b) {

1 + (theta - b)^2 * (0.5^2 + 1/12)
}
curve(Vectorize(empirical.risk)(x), from = 0, to = 2 * theta, xlab = "regression slope",

ylab = "MSE risk")
curve(true.risk, add = TRUE, col = "grey")

FIGURE 3.1: Empirical and generalization risk for regression through the origin, Y = ✓X + ✏,
✏⇠N (0,1), with true ✓ = 5, and X ⇠Unif(0,1). Black: MSE on a particular sample (n = 20) as
a function of slope, minimized at ✓̂ = 4.78. Grey: true or generalization risk (Exercise 2). The gap
between the curves is the text’s ⌘n(✓). (Code comments online.)

23:38 Wednesday 17th February, 2016

3.3. OVER-FITTING AND MODEL SELECTION 76

Again, by the law of large numbers ⌘n(✓) ! 0 for each ✓, but now we need to
worry about how fast it’s going to zero, and whether that rate depends on ✓. Suppose
we knew that min✓ ⌘n(✓) ! 0, or max✓ |⌘n(✓)| ! 0. Then it would follow that
⌘n(c✓n)! 0, and the over-optimism in using the in-sample error to approximate the
generalization error would at least be shrinking. If we knew how fast max✓ |⌘n(✓)|
was going to zero, we could even say something about how much bigger the true risk
was likely to be. A lot of more advanced statistics and machine learning theory is
thus about uniform laws of large numbers (showing max✓ |⌘n(✓)|! 0) and rates of
convergence.

Learning theory is a beautiful, deep, and practically important subject, but also
a subtle and involved one. (See §3.6 for references.) To stick closer to analyzing real
data, and to not turn this into an advanced probability class, I will only talk about
some more-or-less heuristic methods, which are good enough for many purposes.

3.3 Over-Fitting and Model Selection
The big problem with using the in-sample error is related to over-optimism, but at
once trickier to grasp and more important. This is the problem of over-fitting. To
illustrate it, let’s start with Figure 3.2. This has the twenty X values from a Gaussian
distribution, and Y = 7X 2 � 0.5X + ✏, ✏ ⇠ N (0,1). That is, the true regression
curve is a parabola, with additive and independent Gaussian noise. Let’s try fitting
this — but pretend that we didn’t know that the curve was a parabola. We’ll try
fitting polynomials of different degrees in x — degree 0 (a flat line), degree 1 (a linear
regression), degree 2 (quadratic regression), up through degree 9. Figure 3.3 shows the
data with the polynomial curves, and Figure 3.4 shows the in-sample mean squared
error as a function of the degree of the polynomial.

Notice that the in-sample error goes down as the degree of the polynomial in-
creases; it has to. Every polynomial of degree p can also be written as a polynomial
of degree p + 1 (with a zero coefficient for x p+1), so going to a higher-degree model
can only reduce the in-sample error. Quite generally, in fact, as one uses more and
more complex and flexible models, the in-sample error will get smaller and smaller.5

Things are quite different if we turn to the generalization error. In principle, I
could calculate that for any of the models, since I know the true distribution, but
it would involve calculating things like E⇥X 18⇤, which won’t be very illuminating.
Instead, I will just draw a lot more data from the same source, twenty thousand
data points in fact, and use the error of the old models on the new data as their
generalization error6. The results are in Figure 3.5.

What is happening here is that the higher-degree polynomials — beyond degree
2 — are not just a little optimistic about how well they fit, they are wildly over-
optimistic. The models which seemed to do notably better than a quadratic actu-

5In fact, since there are only 20 data points, they could all be fit exactly if the degree of the polynomials
went up to 19. (Remember that any two points define a line, any three points a parabola, etc. — p + 1
points define a polynomial of degree p which passes through them.)

6This works, yet again, because of the law of large numbers. In Chapters 5 and especially 6, we will see
much more about replacing complicated probabilistic calculations with simple simulations.

23:38 Wednesday 17th February, 2016

77 3.3. OVER-FITTING AND MODEL SELECTION

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

0
10

20
30

40

x

y

x = rnorm(20)
y = 7 * x^2 - 0.5 * x + rnorm(20)
plot(x, y)
curve(7 * x^2 - 0.5 * x, col = "grey", add = TRUE)

FIGURE 3.2: Scatter-plot showing sample data and the true, quadratic regression curve (grey
parabola).

23:38 Wednesday 17th February, 2016

3.3. OVER-FITTING AND MODEL SELECTION 78

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

0
10

20
30

40

x

y

plot(x, y)
poly.formulae <- c("y~1", paste("y ~ poly(x,", 1:9, ")", sep = ""))
poly.formulae <- sapply(poly.formulae, as.formula)
df.plot <- data.frame(x = seq(min(x), max(x), length.out = 200))
fitted.models <- list(length = length(poly.formulae))
for (model_index in 1:length(poly.formulae)) {

fm <- lm(formula = poly.formulae[[model_index]])
lines(df.plot$x, predict(fm, newdata = df.plot), lty = model_index)
fitted.models[[model_index]] <- fm

}

FIGURE 3.3: Twenty training data points (dots), and ten different fitted regression lines (polyno-
mials of degree 0 to 9, indicated by different line types). R NOTES: The poly command constructs
orthogonal (uncorrelated) polynomials of the specified degree from its first argument; regressing on
them is conceptually equivalent to regressing on 1, x, x2, . . . xdegree, but more numerically stable.
(See ?poly.) This builds a vector of model formulae and then fits each one in turn, storing the fitted
models in a new list.

23:38 Wednesday 17th February, 2016

79 3.3. OVER-FITTING AND MODEL SELECTION

●

●

● ● ● ●
● ●

●

●

0 2 4 6 8

1
2

5
10

20
50

10
0

20
0

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

mse.q <- sapply(fitted.models, function(mdl) {
mean(residuals(mdl)^2)

})
plot(0:9, mse.q, type = "b", xlab = "polynomial degree", ylab = "mean squared error",

log = "y")

FIGURE 3.4: Empirical MSE vs. degree of polynomial for the data from the previous figure. Note
the logarithmic scale for the vertical axis.

23:38 Wednesday 17th February, 2016

3.3. OVER-FITTING AND MODEL SELECTION 80

●
●

● ● ● ● ● ● ●
●

0 2 4 6 8

1
10

10
0

10
00

10
00

0

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

x.new = rnorm(20000)
y.new = 7 * x.new^2 - 0.5 * x.new + rnorm(20000)
gmse <- function(mdl) {

mean((y.new - predict(mdl, data.frame(x = x.new)))^2)
}
gmse.q <- sapply(fitted.models, gmse)
plot(0:9, mse.q, type = "b", xlab = "polynomial degree", ylab = "mean squared error",

log = "y", ylim = c(min(mse.q), max(gmse.q)))
lines(0:9, gmse.q, lty = 2, col = "blue")
points(0:9, gmse.q, pch = 24, col = "blue")

FIGURE 3.5: In-sample error (black dots) compared to generalization error (blue triangles). Note
the logarithmic scale for the vertical axis.

23:38 Wednesday 17th February, 2016

81 3.4. CROSS-VALIDATION

ally do much, much worse. If we picked a polynomial regression model based on
in-sample fit, we’d chose the highest-degree polynomial available, and suffer for it.

In this example, the more complicated models — the higher-degree polynomials,
with more terms and parameters — were not actually fitting the generalizable features
of the data. Instead, they were fitting the sampling noise, the accidents which don’t
repeat. That is, the more complicated models over-fit the data. In terms of our earlier
notation, ⌘ is bigger for the more flexible models. The model which does best here is
the quadratic, because the true regression function happens to be of that form. The
more powerful, more flexible, higher-degree polynomials were able to get closer to
the training data, but that just meant matching the noise better. In terms of the bias-
variance decomposition, the bias shrinks with the model degree, but the variance of
estimation grows.

Notice that the models of degrees 0 and 1 also do worse than the quadratic model
— their problem is not over-fitting but under-fitting; they would do better if they
were more flexible. Plots of generalization error like this usually have a minimum. If
we have a choice of models — if we need to do model selection — we would like to
find the minimum. Even if we do not have a choice of models, we might like to know
how big the gap between our in-sample error and our generalization error is likely to
be.

There is nothing special about polynomials here. All of the same lessons apply
to variable selection in linear regression, to k-nearest neighbors (where we need to
choose k), to kernel regression (where we need to choose the bandwidth), and to
other methods we’ll see later. In every case, there is going to be a minimum for the
generalization error curve, which we’d like to find.

(A minimum with respect to what, though? In Figure 3.5, the horizontal axis
is the model degree, which here is the number of parameters [minus one for the
intercept]. More generally, however, what we care about is some measure of how
complex the model space is, which is not necessarily the same thing as the number of
parameters. What’s more relevant is how flexible the class of models is, how many
different functions it can approximate. Linear polynomials can approximate a smaller
set of functions than quadratics can, so the latter are more complex, or have higher
capacity. More advanced learning theory has a number of ways of quantifying this,
but the details get pretty arcane, and we will just use the concept of complexity or
capacity informally.)

3.4 Cross-Validation

The most straightforward way to find the generalization error would be to do what
I did above, and to use fresh, independent data from the same source — a testing or
validation data-set. Call this z0m , as opposed to our training data zn . We fit our model

to zn , and getc✓n . The loss of this on the validation data is

E
h

L(Z ,c✓n)
i

+ ⌘0m(
c✓n) (3.8)

23:38 Wednesday 17th February, 2016

3.4. CROSS-VALIDATION 82

●

●

● ● ● ● ● ● ● ●

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

polynomial degree

R
2

●

●

● ● ● ● ● ● ● ●

R2

Radj
2

extract.rsqd <- function(mdl) {
c(summary(mdl)$r.squared, summary(mdl)$adj.r.squared)

}
rsqd.q <- sapply(fitted.models, extract.rsqd)
plot(0:9, rsqd.q[1,], type = "b", xlab = "polynomial degree", ylab = expression(R^2),

ylim = c(0, 1))
lines(0:9, rsqd.q[2,], type = "b", lty = "dashed")
legend("bottomright", legend = c(expression(R^2), expression(R[adj]^2)), lty = c("solid",

"dashed"))

FIGURE 3.6: R2 and adjusted R2 for the polynomial fits, to reinforce §2.2.1.1’s point that neither
is really a useful measure of how well a model fits, or a good way to select among models.

23:38 Wednesday 17th February, 2016

83 3.4. CROSS-VALIDATION

CAPA <- na.omit(read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/01/calif_penn_2011.csv"))
half_A <- sample(1:nrow(CAPA), size = nrow(CAPA)/2, replace = FALSE)
half_B <- setdiff(1:nrow(CAPA), half_A)
small_formula = "Median_house_value ~ Median_household_income"
large_formula = "Median_house_value ~ Median_household_income + Median_rooms"
small_formula <- as.formula(small_formula)
large_formula <- as.formula(large_formula)
msmall <- lm(small_formula, data = CAPA, subset = half_A)
mlarge <- lm(large_formula, data = CAPA, subset = half_A)
in.sample.mse <- function(model) {

mean(residuals(model)^2)
}
new.sample.mse <- function(model, half) {

test <- CAPA[half,]
predictions <- predict(model, newdata = test)
return(mean((test$Median_house_value - predictions)^2))

}

CODE EXAMPLE 1: Code used to generate the numbers in Figure 3.7. See online for comments.

where now the sampling noise on the validation set, ⌘0m , is independent of”✓m . So this
gives us an unbiased estimate of the generalization error, and, if m is large, a precise
one. If we need to select one model from among many, we can pick the one which
does best on the validation data, with confidence that we are not just over-fitting.

The problem with this approach is that we absolutely, positively, cannot use any
of the validation data in estimating the model. Since collecting data is expensive —
it takes time, effort, and usually money, organization, effort and skill — this means
getting a validation data set is expensive, and we often won’t have that luxury.

3.4.1 Data Splitting
The next logical step, however, is to realize that we don’t strictly need a separate
validation set. We can just take our data and split it ourselves into training and testing
sets. If we divide the data into two parts at random, we ensure that they have (as
much as possible) the same distribution, and that they are independent of each other.
Then we can act just as though we had a real validation set. Fitting to one part of
the data, and evaluating on the other, gives us an unbiased estimate of generalization
error. Of course it doesn’t matter which half of the data is used to train and which
half is used to test.

Figure 3.7 illustrates the idea with a bit of the data and linear models from §A.12,
and Code Example 1 shows the code used to make Figure 3.7.

3.4.2 k-Fold Cross-Validation (CV)
The problem with data splitting is that, while it’s an unbiased estimate of the risk,
it is often a very noisy one. If we split the data evenly, then the test set has n/2

23:38 Wednesday 17th February, 2016

3.4. CROSS-VALIDATION 84

Median_house_value Median_household_income Median_rooms
2 909600 111667 6.0
3 748700 66094 4.6
4 773600 87306 5.0
5 579200 62386 4.5
11274 209500 56667 6.0
11275 253400 71638 6.6

Median_house_value Median_household_income Median_rooms
3 748700 66094 4.6
4 773600 87306 5.0
5 579200 62386 4.5

Median_house_value Median_household_income Median_rooms
2 909600 111667 6.0
11274 209500 56667 6.0
11275 253400 71638 6.6

RMSE(A!A) RMSE(A! B)
Income only 1.6301137⇥ 105 1.6003643⇥ 105

Income + Rooms 1.2771308⇥ 105 1.2647686⇥ 105

FIGURE 3.7: Example of data splitting. The top table shows three columns and seven rows of
the housing-price data used in §A.12. I then randomly split this into two equally-sized parts (next
two tables). I estimate a linear model which predicts house value from income alone, and another
model which predicts from income and the median number of rooms, on the first half. The third
table fourth row shows the performance of each estimated model both on the first half of the data
(left column) and on the second (right column). The latter is a valid estimate of generalization
error. The larger model always has a lower in-sample error, whether or not it is really better, so
the in-sample MSEs provide little evidence that we should use the larger model. Having a lower
score under data splitting, however, is evidence that the larger model generalizes better. (For R
commands used to get these numbers, see Code Example 1.)

23:38 Wednesday 17th February, 2016

85 3.4. CROSS-VALIDATION

cv.lm <- function(data, formulae, nfolds = 5) {
data <- na.omit(data)
formulae <- sapply(formulae, as.formula)
n <- nrow(data)
fold.labels <- sample(rep(1:nfolds, length.out = n))
mses <- matrix(NA, nrow = nfolds, ncol = length(formulae))
colnames <- as.character(formulae)
for (fold in 1:nfolds) {

test.rows <- which(fold.labels == fold)
train <- data[-test.rows,]
test <- data[test.rows,]
for (form in 1:length(formulae)) {

current.model <- lm(formula = formulae[[form]], data = train)
predictions <- predict(current.model, newdata = test)
test.responses <- eval(formulae[[form]][[2]], envir = test)
test.errors <- test.responses - predictions
mses[fold, form] <- mean(test.errors^2)

}
}
return(colMeans(mses))

}

CODE EXAMPLE 2: Function to do k-fold cross-validation on linear models, given as a vector (or
list) of model formulae. Note that this only returns the CV MSE, not the parameter estimates on
each fold.

data points — we’ve cut in half the number of sample points we’re averaging over. It
would be nice if we could reduce that noise somewhat, especially if we are going to
use this for model selection.

One solution to this, which is pretty much the industry standard, is what’s called
k-fold cross-validation. Pick a small integer k, usually 5 or 10, and divide the data at
random into k equally-sized subsets. (The subsets are often called “folds”.) Take the
first subset and make it the test set; fit the models to the rest of the data, and evaluate
their predictions on the test set. Now make the second subset the test set and the rest
of the training sets. Repeat until each subset has been the test set. At the end, average
the performance across test sets. (This is the same as data-set splitting if k = 2.) This
is the cross-validated estimate of generalization error for each model. Model selection
then picks the model with the smallest estimated risk.7 Code Example 2 performs
k-fold cross-validation for linear models specified by formulae.

The reason cross-validation works is that it uses the existing data to simulate the
process of generalizing to new data. If the full sample is large, then even the smaller
portion of it in the testing data is, with high probability, fairly representative of the

7A closely related procedure, sometimes also called “k-fold CV”, is to pick 1/k of the data points at
random to be the test set (using the rest as a training set), and then pick an independent 1/k of the data
points as the test set, etc., repeating k times and averaging. The differences are subtle, but what’s described
in the main text makes sure that each point is used in the test set just once.

23:38 Wednesday 17th February, 2016

3.4. CROSS-VALIDATION 86

data-generating process. Randomly dividing the data into training and test sets makes
it very unlikely that the division is rigged to favor any one model class, over and above
what it would do on real new data. Of course the original data set is never perfectly
representative of the full data, and a smaller testing set is even less representative,
so this isn’t ideal, but the approximation is often quite good. It is especially good at
getting the relative order of different models right, that is, at controlling over-fitting.8
Figure 3.8 demonstrates these points for the polynomial fits we considered earlier (in
Figures 3.3–3.5).

Cross-validation is probably the most widely-used method for model selection,
and for picking control settings, in modern statistics. There are circumstances where
it can fail — especially if you give it too many models to pick among — but it’s the
first thought of seasoned practitioners, and it should be your first thought, too. The
assignments to come will make you very familiar with it.

8The cross-validation score for the selected model still tends to be somewhat over-optimistic, because
it’s still picking the luckiest model — though the influence of luck is much attenuated. Tibshirani and
Tibshirani (2009) provides a simple correction.

23:38 Wednesday 17th February, 2016

87 3.4. CROSS-VALIDATION

●
●

● ● ● ● ● ● ●
●

0 2 4 6 8

1
10

10
0

10
00

10
00

0

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

● In−sample
Generalization
CV

little.df <- data.frame(x = x, y = y)
cv.q <- cv.lm(little.df, poly.formulae)
plot(0:9, mse.q, type = "b", xlab = "polynomial degree", ylab = "mean squared error",

log = "y", ylim = c(min(mse.q), max(gmse.q)))
lines(0:9, gmse.q, lty = 2, col = "blue", type = "b", pch = 2)
lines(0:9, cv.q, lty = 3, col = "red", type = "b", pch = 3)
legend("topleft", legend = c("In-sample", "Generalization", "CV"), col = c("black",

"blue", "red"), lty = 1:3, pch = 1:3)

FIGURE 3.8: In-sample, generalization, and cross-validated MSE for the polynomial fits of Figures
3.3, 3.4 and 3.5. Note that the cross-validation is done entirely within the initial set of only 20 data
points.

23:38 Wednesday 17th February, 2016

3.4. CROSS-VALIDATION 88

3.4.3 Leave-one-out Cross-Validation
Suppose we did k-fold cross-validation, but with k = n. Our testing sets would
then consist of single points, and each point would be used in testing once. This is
called leave-one-out cross-validation. It actually came before k-fold cross-validation,
and has two advantages. First, it doesn’t require any random number generation, or
keeping track of which data point is in which subset. Second, and more importantly,
because we are only testing on one data point, it’s often possible to find what the
prediction on the left-out point would be by doing calculations on a model fit to the
whole data. (See below.) This means that we only have to fit each model once, rather
than k times, which can be a big savings of computing time.

The drawback to leave-one-out CV is subtle but often decisive. Since each training
set has n � 1 points, any two training sets must share n � 2 points. The models fit
to those training sets tend to be strongly correlated with each other. Even though
we are averaging n out-of-sample forecasts, those are correlated forecasts, so we are
not really averaging away all that much noise. With k-fold CV, on the other hand,
the fraction of data shared between any two training sets is just k�2

k�1 , not n�2
n�1 , so even

though the number of terms being averaged is smaller, they are less correlated.
There are situations where this issue doesn’t really matter, or where it’s over-

whelmed by leave-one-out’s advantages in speed and simplicity, so there is certainly
still a place for it, but one subordinate to k-fold CV.9[[ATTN: AIC appendix?]]

A Short-cut for Linear Smoothers Suppose the model m is a linear smoother
(§1.5). For each of the data points i , then, the predicted value is a linear combination
of the observed values of y, m(xi) =

P

j ŵ(xi , xj)yj (Eq. 1.48). As in §1.5.3, define the
“influence”, “smoothing” or “hat” matrix ŵ by ŵi j = ŵ(xi , xj). What happens when
we hold back data point i , and then make a prediction at xi ? Well, the observed
response at i can’t contribute to the prediction, but otherwise the linear smoother
should work as before, so

m(�i)(xi) =
(ŵy)i � ŵi i yi

1� ŵi i

The numerator just removes the contribution to m(xi) that came from yi , and the
denominator just re-normalizes the weights in the smoother. Now a little algebra
says that

yi �m(�i)(xi) =
yi �m(xi)

1� ŵi i

The quantity on the left of that equation is what we want to square and average to
get the leave-one-out CV score, but everything on the right can be calculated from

9At this point, it may be appropriate to say a few words about the Akaike information criterion, or
AIC. AIC also tries to estimate how well a model will generalize to new data. One can show that, under
standard assumptions, as the sample size gets large, leave-one-out CV actually gives the same estimate as
AIC (Claeskens and Hjort, 2008, §2.9). However, there do not seem to be any situations where AIC works
where leave-one-out CV does not work at least as well. So AIC should really be understood as a very fast,
but often very crude, approximation to the more accurate cross-validation.

23:38 Wednesday 17th February, 2016

89 3.5. WARNINGS

the fit we did to the whole data. The leave-one-out CV score is therefore

1
n

n
X

i=1

Ç

yi �m(xi)
1� ŵi i

å2

(3.9)

Thus, if we restrict ourselves to leave-one-out and to linear smoothers, we can cal-
culate the CV score with just one estimation on the whole data, rather than n re-
estimates.

An even faster approximation that this is what’s called “generalized” cross-validation,
which is just the in-sample MSE divided by (1�n�1 tr ŵ)2. That is, rather than divid-
ing each term in Eq. 3.9 by a unique factor that depends on its own diagonal entry in
the hat matrix, we use the average of all the diagonal entries, n�1 tr ŵ. (Recall from
§1.5.3.2 that tr ŵ is the number of effective degrees of freedom for a linear smoother.)
In addition to speed, this tends to reduce the influence of points with high values of
ŵi i , which may or may not be desirable.

3.5 Warnings
Some caveats are in order.

1. All of these model selection methods aim at getting models which will gen- [[ATTN: Only mentioned
CV in this version!]]eralize well to new data, if it follows the same distribution as old data. Gener-

alizing well even when distributions change is a much harder and much less
well-understood problem (Quiñonero-Candela et al., 2009). It is particularly
troublesome for a lot of applications involving large numbers of human beings,
because society keeps changing all the time — variables vary by definition, but
the relationships between variables also change. (That’s history.)

2. All of the standard theory of statistical inference you have learned so far pre-
sumes that you have a model which was fixed in advance of seeing the data. If
you use the data to select the model, that theory becomes invalid, and it will
no longer give you correct p-values for hypothesis tests, confidence sets for pa-
rameters, etc., etc. Typically, using the same data both to select a model and to
do inference leads to too much confidence that the model is correct, significant,
and estimated precisely.

3. All the model selection methods we have discussed aim at getting models which
predict well. This is not necessarily the same as getting the true theory of the
world. Presumably the true theory will also predict well, but the converse does
not necessarily follow. We will see examples later where false but low-capacity
models, because they have such low variance of estimation, actually out-predict
correctly specified models. [[TODO: cross-refs]]

The last two items — combining selection with inference, and parameter inter-
pretation — deserve elaboration.

23:38 Wednesday 17th February, 2016

3.5. WARNINGS 90

3.5.1 Inference after Selection
You have, by this point, learned a lot of inferential statistics — how to test various
hypotheses, calculate p-values, find confidence regions, etc. Most likely, you have
been taught procedures or calculations which all presume that the model you are
working with is fixed in advance of seeing the data. But, of course, if you do model
selection, the model you do inference within is not fixed in advance, but is actually a
function of the data. What happens then?

This depends on whether you do inference with the same data used to select the
model, or with another, independent data set. If it’s the same data, then all of the
inferential statistics become invalid — none of the calculations of probabilities on
which they rest are right any more. Typically, if you select a model so that it fits the
data well, what happens is that confidence regions become too small10, as do p-values
for testing hypotheses about parameters. Nothing can be trusted as it stands.

The essential difficulty is this: Your data are random variables. Since you’re doing
model selection, making your model a function of the data, that means your model is
random too. That means there is some extra randomness in your estimated parame-
ters (and everything else), which isn’t accounted for by formulas which assume a fixed
model (Exercise 4). This is not just a problem with formal model-selection devices
like cross-validation. If you do an initial, exploratory data analysis before deciding
which model to use — and that’s generally a good idea — you are, yourself, acting as
a noisy, complicated model-selection device.

There are three main ways of dealing with this issue of post-selection inference.

1. Ignore it. This can actually make sense if you don’t really care about doing in-
ference within your selected model, you just care about what model is selected.
Otherwise, I can’t recommend it.

2. Beat it with more statistical theory. There is, currently, a lot of interest among
statisticians in working out exactly what happens to sampling distributions
under various combinations of models, model-selection methods, and assump-
tions about the true, data-generating process. Since this is an active area of
research in statistical theory, I will pass it by, with some references in §3.611.

3. Evade it with an independent data set. Remember that if the events A and B
are probabilistically independent, then Pr (A|B) = Pr (A). Now set A = “the
confidence set we calculated from this new data covers the truth” and B = “the
model selected from this old data was such-and-such”. So long as the old and
the new data are independent, it doesn’t matter that the model was selected
using data, rather than being fixed in advance.

The last approach is of course our old friend data splitting (§3.4.1). We divide
the data into two parts, and we use one of them to select the model. We then re-
estimate the selected model on the other part of the data, and only use that second
part in calculating our inferential statistics. Experimentally, using part of the data to

10Or, if you prefer, the same confidence region really has a lower confidence level, a lower probability
of containing or covering the truth, than you think it does.

11But I am sure that Prof. G’Sell or Prof. Tibshirani would be happy to tell you all about it.

23:38 Wednesday 17th February, 2016

91 3.5. WARNINGS

do selection, and then all of the data to do inference, does not work as well as a strict
split (Faraway, 2016). Using equal amounts of data for selection and for inference is
somewhat arbitrary, but, again it’s not clear that there’s a much better division.

Of course, if you only use a portion of your data to calculate confidence regions,
they will typically be larger than if you used all of the data. (Or, if you’re running
hypothesis tests, fewer coefficients will be significantly different from zero, etc.) This
drawback is more apparent than real, since using all of your data to select a model and
do inference gives you apparently-precise confidence regions which aren’t actually
valid.

The simple data-splitting approach to combining model selection and inference
only works if the individual data points were independent to begin with. When we
deal with dependent data, in Part III, other approaches will be necessary.

3.5.2 Parameter Interpretation
In many situations, it is very natural to want to attach some substantive, real-world
meaning to the parameters of our statistical model, or at least to some of them. I have
mentioned examples above like astronomy, and it is easy to come up with many oth-
ers from the natural sciences. This is also extremely common in the social sciences.
It is fair to say that this is much less carefully attended to than it should be.

To take just one example, consider the paper “Luther and Suleyman” by Prof.
Murat Iyigun (Iyigun, 2008). The major idea of the paper is to try to help explain
why the Protestant Reformation was not wiped out during the European wars of
religion (or alternately, why the Protestants did not crush all the Catholic powers),
leading western Europe to have a mixture of religions, with profound consequences.
Iyigun’s contention is that all of the Christians were so busy fighting the Ottoman
Turks, or perhaps so afraid of what might happen if they did not, that conflicts among
the European Christians were suppressed. To quote his abstract:

at the turn of the sixteenth century, Ottoman conquests lowered the
number of all newly initiated conflicts among the Europeans roughly
by 25 percent, while they dampened all longer-running feuds by more
than 15 percent. The Ottomans’ military activities influenced the length
of intra-European feuds too, with each Ottoman-European military en-
gagement shortening the duration of intra-European conflicts by more
than 50 percent.

To back this up, and provide those quantitative figures, Prof. Iyigun estimates linear
regression models, of the form12

Yt =�0+�1Xt +�2Zt +�3Ut + ✏t (3.10)

where Yt is “the number of violent conflicts initiated among or within continental
European countries at time t”13, Xt is “the number of conflicts in which the Ottoman
Empire confronted European powers at time t”, Zt is “the count at time t of the

12His Eq. 1 on pp. 1473; I have modified the notation to match mine.
13In one part of the paper; he uses other dependent variables elsewhere.

23:38 Wednesday 17th February, 2016

3.6. FURTHER READING 92

newly initiated number of Ottoman conflicts with others and its own domestic civil
discords”, Ut is control variables reflecting things like the availability of harvests to
feed armies, and ✏t is Gaussian noise.

The qualitative idea here, about the influence of the Ottoman Empire on the
European wars of religion, has been suggested by quite a few historians before14. The
point of this paper is to support this rigorously, and make it precise. That support
and precision requires Eq. 3.10 to be an accurate depiction of at least part of the
process which led European powers to fight wars of religion. Prof. Iyigun, after all,
wants to be able to interpret a negative estimate of �1 as saying that fighting off
the Ottomans kept Christians from fighting each other. If Eq. 3.10 is inaccurate, if
the model is badly mis-specified, however,�1 becomes the best approximation to the
truth within a systematically wrong model, and the support for claims like “Ottoman
conquests lowered the number of all newly initiated conflicts among the Europeans
roughly by 25 percent” drains away.

To back up the use of Eq. 3.10, Prof. Iyigun looks at a range of slightly different
linear-model specifications (e.g., regress the number of intra-Christian conflicts in
year t on the number of Ottoman attacks in year t�1), and slightly different methods
of estimating the parameters. What he does not do is look at the other implications
of the model: that residuals should be (at least approximately) Gaussian, that they
should be unpredictable from the regressor variables. He does not look at whether
the relationships he thinks are linear really are linear (see Chapters 4, 9, and 10). He
does not try to simulate his model and look at whether the patterns of European
wars it produces resemble actual history (see Chapter 5). He does not try to check
whether he has a model which really supports causal inference, though he has a causal
question (see Part IV).

I do not say any of this to denigrate Prof. Iyigun. His paper is actually much better
than most quantitative work in the social sciences. This is reflected by the fact that it
was published in the Quarterly Journal of Economics, one of the most prestigious, and
rigorously-reviewed, journals in the field. The point is that by the end of this course,
you will have the tools to do better.

3.6 Further Reading
[[TODO: Link to stuff on
penalties in splines and opti-
mization appendix]]
[[TODO: Link to stuff on
sieves and capacity control,
perhaps in optimization ap-
pendix]]

Data splitting and cross-validation go back in statistical practice for many decades,
though often as a very informal tool. One of the first important papers on the sub-
ject was Stone (1974), which goes over the earlier history. Arlot and Celisse (2010) is a
good recent review of cross-validation. Faraway (1992, 2016) reviews computational
evidence that data splitting reduces the over-confidence that results from model se-
lection even if one only wants to do prediction. Györfi et al. (2002, chs. 7–8) has
important results on data splitting and cross-validation, though the proofs are rather
more advanced than this book.

Some comparatively easy starting points on statistical learning theory are Kearns
and Vazirani (1994), Cristianini and Shawe-Taylor (2000) and Mohri et al. (2012).
At a more advanced level, look at the tutorial papers by Bousquet et al. (2004); von

14See §1–2 of Iyigun (2008), and MacCulloch (2004, passim).

23:38 Wednesday 17th February, 2016

93 3.7. EXERCISES

Luxburg and Schölkopf (2008), or the textbooks by Vidyasagar (2003) and by An-
thony and Bartlett (1999) (the latter is much more general than its title suggests), or
read the book by Vapnik (2000) (one of the founders). Hastie et al. (2009), while in-
valuable, is much more oriented towards models and practical methods than towards
learning theory.

On model selection in general, the best recent summary is the book by Claeskens
and Hjort (2008); it is more theoretically demanding than this book, but includes
many real-data examples.

The literature on doing statistical inference after model selection by accounting
for selection effects, rather than simple data splitting, is already large and rapidly
growing. Taylor and Tibshirani (2015) is a comparatively readable introduction to the
“selective inference” approach associated with those authors and their collaborators.
Tibshirani et al. (2015) draws connections between this approach and the bootstrap
(ch. 6). Berk et al. (2013) provides yet another approach to post-selection inference;
nor is this an exhaustive list.

White (1994) is a thorough treatment of parameter estimation in models which
may be mis-specified, and some general tests for mis-specification. It also briefly dis-
cusses the interpretation of parameters in mis-specified models. That very important
topic deserves a more in-depth treatment, but I don’t know of one.

3.7 Exercises
1. Suppose that one of our model classes contains the true and correct model, but

we also consider more complicated and flexible model classes. Does the bias-
variance trade-off mean that we will over-shoot the true model, and always go
for something more flexible, when we have enough data? (This would mean
there was such a thing as too much data to be reliable.)

2. Derive the formula for the generalization risk in the situation depicted in Fig-
ure 3.1, as given by the true.risk function in the code for that figure. In
particular, explain to yourself where the constants 0.52 and 1/12 come from.

3. “Optimism” and degrees of freedom Suppose that we observe data of the form
Yi = µ(xi) + ✏i , where the noise terms ✏i have mean zero, are uncorrelated,
and all have variance �2. We use a linear smoother (§1.5) to get estimates bµ
from n such data points. The “optimism” of the estimate is

E
2

4

1
n

n
X

i=1

(Y 0i � bµ(xi))
2

3

5�E
2

4

1
n

n
X

i=1

(Yi � bµ(xi))
2

3

5 (3.11)

where Y 0i is an independent copy of Yi . That is, the optimism is the difference
between the in-sample MSE, and how well the model would predict on new
data taken at exactly the same xi values.

(a) Find a formula for the optimism in terms of n, �2, and the number of
effective degrees of freedom (in the sense of §1.5.3).

23:38 Wednesday 17th February, 2016

3.7. EXERCISES 94

(b) When (and why) does E
î

1
n

Pn
i=1 (Y

0
i � bµ(xi))2
ó

differ from the risk?

4. The perils of post-selection inference, and data splitting to the rescue15 Generate a
1000⇥101 array, where all the entries are IID standard Gaussian variables. We’ll
call the first column the response variable Y , and the others the predictors
X1, . . .X100. By design, there is no true relationship between the response and
the predictors (but all the usual linear-Gaussian-modeling assumptions hold).

(a) Estimate the model Y = �0 +�1X1 +�50X50 + ✏. Extract the p-value
for the F test of the whole model. Repeat the simulation, estimation and
testing 100 times, and plot the histogram of the p-values. What does it
look like? What should it look like?

(b) Use the step function to select a linear model by forward stepwise selec-
tion. Extract the p-value for the F -test of the selected model. Repeat 100
times and plot the histogram of p-values. Explain what’s going on.

(c) Again use step to select a model based on one random 1000⇥ 101 array.
Now re-estimate the selected model on a new 1000⇥101 array, and extract
the new p-value. Repeat 100 times, with new selection and inference sets
each time, and plot the histogram of p-values.

15Inspired by Freedman (1983).

23:38 Wednesday 17th February, 2016

