
00:29 Tuesday 26th January, 2016
Copyright ©Cosma Rohilla Shalizi; do not distribute without permission

updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/

Chapter 5

Simulation

[[TODO: Insert forward ref-
erences to detailed simulation
examples in other chapters]]

You will recall from your previous statistics courses that quantifying uncertainty in
statistical inference requires us to get at the sampling distributions of things like
estimators. When the very strong simplifying assumptions of basic statistics courses
do not apply1, there is little hope of being able to write down sampling distributions
in closed form. There is equally little help when the estimates are themselves complex
objects, like kernel regression curves or even histograms, rather than short, fixed-
length parameter vectors. We get around this by using simulation to approximate the
sampling distributions we can’t calculate.

5.1 What Is a Simulation?
A mathematical model is a mathematical story about how the data could have been
made, or generated. Simulating the model means following that story, implement-
ing it, step by step, in order to produce something which should look like the data
— what’s sometimes called synthetic data, or surrogate data, or a realization of
the model. In a stochastic model, some of the steps we need to follow involve a ran-
dom component, and so multiple simulations starting from exactly the same inputs
or initial conditions will not give exactly the same outputs or realizations. Rather,
will be a distribution over the realizations. Doing many simulations gives us a good
approximation to this distribution.

For a trivial example, consider a model with three random variables, X1 ⇠N (µ1,�2
1),

X2 ⇠N (µ2,�2
2), with X1 |= X2, and X3 =X1+X2. Simulating from this model means

drawing a random value from the first normal distribution for X1, drawing a second
random value for X2, and adding them together to get X3. The marginal distribution
of X3, and the joint distribution of (X1,X2,X3), are implicit in this specification of
the model, and we can find them by running the simulation.

1As discussed ad nauseam in Chapter 2, in your linear models class, you learned about the sampling
distribution of regression coefficients when the linear model is true, and the noise is Gaussian, independent
of the predictor variables, and has constant variance. As an exercise, try to get parallel results when the
noise has a t distribution with 10 degrees of freedom.

125

5.2. HOW DO WE SIMULATE STOCHASTIC MODELS? 126

In this particular case, we could also find the distribution of X3, and the joint
distribution, by probability calculations of the kind you learned how to do in your
basic probability courses. For instance, X3 isN (µ1+µ2,�2

1 +�
2
2). These analytical

probability calculations can usually be thought of as just short-cuts for exhaustive
simulations.

5.2 How Do We Simulate Stochastic Models?

5.2.1 Chaining Together Random Variables
Stochastic models are usually specified by sets of conditional distributions for one
random variable, given some other variable or variables. For instance, a simple linear
regression model might have the specification

X ⇠ N (µx ,�2
1) (5.1)

Y |X ⇠ N (�0+�1X ,�2
2) (5.2)

If we knew how to generate a random variable from the distributions given on the
right-hand sides, we could simulate the whole model by chaining together draws from
those conditional distributions. This is in fact the general strategy for simulating any
sort of stochastic model, by chaining together random variables.2

What this means is that we can reduce the problem of simulating to that of gen-
erating random variables.

5.2.2 Random Variable Generation
5.2.2.1 Built-in Random Number Generators

R provides random number generators for most of the most common distributions.
By convention, the names of these functions all begin with the letter “r”, followed
by the abbreviation of the functions, and the first argument is always the number of
draws to make, followed by the parameters of the distribution. Some examples:

rnorm(n, mean = 0, sd = 1)
runif(n, min = 0, max = 1)
rexp(n, rate = 1)
rpois(n, lambda)
rbinom(n, size, prob)

A further convention is that these parameters can be vectorized. Rather than giv-
ing a single mean and standard deviation (say) for multiple draws from the Gaussian
distribution, each draw can have its own:

2In this case, we could in principle first generate Y , and then draw from Y |X , but have fun finding
those distributions. Especially have fun if, say, X has a t distribution with 10 degrees of freedom. (I keep
coming back to that idea, because it’s really a very small change from being Gaussian.)

00:29 Tuesday 26th January, 2016

127 5.2. HOW DO WE SIMULATE STOCHASTIC MODELS?

rnorm(10, mean = 1:10, sd = 1/sqrt(1:10))

That instance is rather trivial, but the exact same principle would be at work here:

rnorm(nrow(x), mean = predict(regression.model, newdata = x), sd = predict(volatility.model,
newdata = x))

where regression.model and volatility.model are previously-defined parts
of the model which tell us about conditional expectations and conditional variances.

Of course, none of this explains how R actually draws from any of these distribu-
tions; it’s all at the level of a black box, which is to say black magic. Because ignorance
is evil, and, even worse, unhelpful when we need to go beyond the standard distribu-
tions, it’s worth opening the black box just a bit. We’ll look at using transformations
between distributions, and, in particular, transforming uniform distributions into
others (§5.2.2.3). Appendix O explains some more advanced methods, and looks at
the issue of how to get uniformly-distributed random numbers in the first place.

5.2.2.2 Transformations

If we can generate a random variable Z with some distribution, and V = g (Z), then
we can generate V . So one thing which gets a lot of attention is writing random
variables as transformations of one another — ideally as transformations of easy-to-
generate variables.

Example: from standard to customized Gaussians Suppose we can generate ran-
dom numbers from the standard Gaussian distribution Z ⇠ N (0,1). Then we can
generate from N (µ,�2) as �Z + µ. We can generate � 2 random variables with 1
degree of freedom as Z2. We can generate � 2 random variables with d degrees of
freedom by summing d independent copies of Z2.

In particular, if we can generate random numbers uniformly distributed between
0 and 1, we can use this to generate anything which is a transformation of a uniform
distribution. How far does that extend?

5.2.2.3 Quantile Method

Suppose that we know the quantile function QZ for the random variable X we want,
so that QZ (0.5) is the median of X , QZ (0.9) is the 90th percentile, and in general
QZ (p) is bigger than or equal to X with probability p. QZ comes as a pair with the
cumulative distribution function FZ , since

QZ (FZ (a)) = a, FZ (QZ (p)) = p (5.3)

In the quantile method (or inverse distribution transform method), we generate a
uniform random number U and feed it as the argument to QZ . Now QZ (U) has the

00:29 Tuesday 26th January, 2016

5.2. HOW DO WE SIMULATE STOCHASTIC MODELS? 128

distribution function FZ :

Pr (QZ (U) a) = Pr (FZ (QZ (U)) FZ (a)) (5.4)
= Pr (U  FZ (a)) (5.5)
= FZ (a) (5.6)

where the last line uses the fact that U is uniform on [0,1], and the first line uses the
fact that FZ is a non-decreasing function, so b  a is true if and only if FZ (b) FZ (a).

Example. The CDF of the exponential distribution with rate � is 1� e��x . The
quantile function Q(p) is thus� log (1�p)

� . (Notice that this is positive, because 1� p <
1 and so log (1� p) < 0, and that it has units of 1/�, which are the units of x, as it
should.) Therefore, if U Unif(0,1), then � log (1�U)

� ⇠ Exp(�). This is the method
used by rexp().

Example: Power laws The Pareto distribution or power law is a two-parameter

family, f (x;↵, x0) =
↵�1

x0

⇣

x
x0

⌘�↵
if x � x0, with density 0 otherwise. Integration

shows that the cumulative distribution function is F (x;↵, x0) = 1�
⇣

x
x0

⌘�↵+1
. The

quantile function therefore is Q(p;↵, x0) = x0(1� p)�
1
↵�1 . (Notice that this has the

same units as x, as it should.)

Example: Gaussians The standard Gaussian N (0,1) does not have a closed form
for its quantile function, but there are fast and accurate ways of calculating it numer-
ically (they’re what stand behind qnorm), so the quantile method can be used. In
practice, there are other transformation methods which are even faster, but rely on
special tricks.

Since QZ (U) has the same distribution function as X , we can use the quantile
method, as long as we can calculate QZ . Since QZ always exists, in principle this
solves the problem. In practice, we need to calculate QZ before we can use it, and this
may not have a closed form, and numerical approximations may be intractable.3 In
such situations, we turn to more advanced methods, like those described in Appendix
O.

5.2.3 Sampling
A complement to drawing from given distributions is to sample from a given collec-
tion of objects. This is a common task, so R has a function to do it:

sample(x, size, replace = FALSE, prob = NULL)

Here x is a vector which contains the objects we’re going to sample from. size is
the number of samples we want to draw from x. replace says whether the samples

3In essence, we have to solve the nonlinear equation FZ (x) = p for x over and over for different p —
and that assumes we can easily calculate FZ .

00:29 Tuesday 26th January, 2016

129 5.2. HOW DO WE SIMULATE STOCHASTIC MODELS?

are drawn with or without replacement. (If replace=TRUE, then size can be arbi-
trarily larger than the length of x. If replace=FALSE, having a larger size doesn’t
make sense.) Finally, the optional argument prob allows for weighted sampling; ide-
ally, prob is a vector of probabilities as long as x, giving the probability of drawing
each element of x4.

As a convenience for a common situation, running sample with one argument
produces a random permutation of the input, i.e.,

sample(x)

is equivalent to

sample(x, size = length(x), replace = FALSE)

For example, the code for k-fold cross-validation, Code Example 2, had the lines

fold.labels <- sample(rep(1:nfolds, length.out = nrow(data)))

Here, rep repeats the numbers from 1 to nfolds until we have one number for
each row of the data frame, say 1,2,3,4,5,1,2,3,4,5,1,2 if there were twelve rows.
Then sample shuffles the order of those numbers randomly. This then would give
an assignment of each row of df to one (and only one) of five folds.

5.2.3.1 Sampling Rows from Data Frames

When we have multivariate data (which is the usual situation), we typically arrange
it into a data-frame, where each row records one unit of observation, with multiple
interdependent columns. The natural notion of sampling is then to draw a random
sample of the data points, which in that representation amounts to a random sample
of the rows. We can implement this simply by sampling row numbers. For instance,
this command,

df[sample(1:nrow(df), size = b),]

will create a new data frame from b, by selecting b rows from df without re-
placement. It is an easy exercise to figure out how to sample from a data frame with
replacement, and with unequal probabilities per row.

5.2.3.2 Multinomials and Multinoullis

If we want to draw one value from a multinomial distribution with probabilities
p = (p1, p2, . . . pk), then we can use sample:

4If the elements of prob do not add up to 1, but are positive, they will be normalized by their sum,
e.g., setting prob=c(9,9,1) will assign probabilities (9

19 , 9
19 , 1

19) to the three elements of x.

00:29 Tuesday 26th January, 2016

5.3. REPEATING SIMULATIONS 130

sample(1:k, size = 1, prob = p)

If we want to simulate a “multinoulli” process5, i.e., a sequence of independent
and identically distributed multinomial random variables, then we can easily do so:

rmultinoulli <- function(n, prob) {
k <- length(prob)
return(sample(1:k, size = n, replace = TRUE, prob = prob))

}

Of course, the labels needn’t be the integers 1 : k (exercise 1).

5.2.3.3 Probabilities of Observation

Often, our models of how the data are generated will break up into two parts. One
part is a model of how actual variables are related to each other out in the world.
(E.g., we might model how education and racial categories are related to occupation,
and occupation is related to income.) The other part is a model of how variables come
to be recorded in our data, and the distortions they might undergo in the course of
doing so. (E.g., we might model the probability that someone appears in a survey
as a function of race and income.) Plausible sampling mechanisms often make the
probability of appearing in the data a function of some of the variables. This can
then have important consequences when we try to draw inferences about the whole
population or process from the sample we happen to have seen.[[TODO: cross-ref to missing

data chapter, when written]]
income <- rnorm(n, mean = predict(income.model, x), sd = sigma)
capture.probabilities <- predict(observation.model, x)
observed.income <- sample(income, size = b, prob = capture.probabilities)

5.3 Repeating Simulations
Because simulations are often most useful when they are repeated many times, R has
a command to repeat a whole block of code:

replicate(n, expr)

Here expr is some executable “expression” in R, basically something you could
type in the terminal, and n is the number of times to repeat it.

For instance,

output <- replicate(1000, rnorm(length(x), beta0 + beta1 * x, sigma))

will replicate, 1000 times, sampling from the predictive distribution of a Gaussian
linear regression model. Conceptually, this is equivalent to doing something like

5A handy term I learned from Gustavo Lacerda.

00:29 Tuesday 26th January, 2016

131 5.4. WHY SIMULATE?

output <- matrix(0, nrow = 1000, ncol = length(x))
for (i in 1:1000) {

output[i,] <- rnorm(length(x), beta0 + beta1 * x, sigma)
}

but the replicate version has two great advantages. First, it is faster, because R
processes it with specially-optimized code. (Loops are especially slow in R.) Second,
and far more importantly, it is clearer: it makes it obvious what is being done, in one
line, and leaves the computer to figure out the boring and mundane details of how
best to implement it.

5.4 Why Simulate?
There are three major uses for simulation: to understand a model, to check it, and to
fit it. We will deal with the first two here, and return to fitting in Chapter 23, after
we’ve looked at dealing with dependence and hidden variables.

5.4.1 Understanding the Model; Monte Carlo
We understand a model by seeing what it predicts about the variables we care about,
and the relationships between them. Sometimes those predictions are easy to ex-
tract from a mathematical representation of the model, but often they aren’t. With a
model we can simulate, however, we can just run the model and see what happens.

Our stochastic model gives a distribution for some random variable Z , which in
general is a complicated, multivariate object with lots of interdependent components.
We may also be interested in some complicated function g of Z , such as, say, the
ratio of two components of Z , or even some nonparametric curve fit through the
data points. How do we know what the model says about g ?

Assuming we can make draws from the distribution of Z , we can find the distri-
bution of any function of it we like, to as much precision as we want. Suppose that
Z̃1, Z̃2, . . . Z̃b are the outputs of b independent runs of the model — b different repli-
cates of the model. (The tilde is a reminder that these are just simulations.) We can
calculate g on each of them, getting g (Z̃1), g (Z̃2), . . . g (Z̃b). If averaging makes sense
for these values, then

1
b

b
X

i=1

g (Z̃i)��!b!1 E[g (Z)] (5.7)

by the law of large numbers. So simulation and averaging lets us get expectation
values. This basic observation is the seed of the Monte Carlo method.6 If our
simulations are independent, we can even use the central limit theorem to say that
1
b

Pb
i=1 g (Z̃i) has approximately the distributionN (E[g (Z)] ,V[g (Z)]/b). Of course,

if you can get expectation values, you can also get variances. (This is handy if trying
6The name was coined by the physicists who used the method to do calculations relating to designing

the hydrogen bomb; see Metropolis et al. (1953). Folklore among physicists says that the method goes
back at least to Enrico Fermi in the 1930s, without the cutesy name.

00:29 Tuesday 26th January, 2016

5.4. WHY SIMULATE? 132

to apply the central limit theorem!) You can also get any higher moments — if, for
whatever reason, you need the kurtosis, you just have to simulate enough.

You can also pick any set s and get the probability that g (Z) falls into that set:

1
b

b
X

i=1

1s (g (Zi))��!b!1 Pr (g (Z) 2 s) (5.8)

The reason this works is of course that Pr (g (Z) 2 s) = E⇥1s (g (Z))
⇤

, and we can
use the law of large numbers again. So we can get the whole distribution of any
complicated function of the model that we want, as soon as we can simulate the
model. It is really only a little harder to get the complete sampling distribution than
it is to get the expectation value, and the exact same ideas apply.

5.4.2 Checking the Model
An important but under-appreciated use for simulation is to check models after they
have been fit. If the model is right, after all, it represents the mechanism which gen-
erates the data. This means that when we simulate, we run that mechanism, and the
surrogate data which comes out of the machine should look like the real data. More
exactly, the real data should look like a typical realization of the model. If it does not,
then the model’s account of the data-generating mechanism is systematically wrong
in some way. By carefully choosing the simulations we perform, we can learn a lot
about how the model breaks down and how it might need to be improved.7

5.4.2.1 “Exploratory” Analysis of Simulations

Often the comparison between simulations and data can be done qualitatively and
visually. For example, a classic data set concerns the time between eruptions of the
Old Faithful geyser in Yellowstone, and how they relate to the duration of the latest
eruption. A common exercise is to fit a regression line to the data by ordinary least
squares:

library(MASS)
data(geyser)
fit.ols <- lm(waiting ~ duration, data = geyser)

Figure 5.1 shows the data, together with the OLS line. It doesn’t look that great,
but if someone insisted it was a triumph of quantitative vulcanology, how could you
show they were wrong?

We’ll consider general tests of regression specifications in Chapter 10. For now,
let’s focus on the way OLS is usually presented as part of a stochastic model for the
response conditional on the input, with Gaussian and homoskedastic noise. In this
case, the stochastic model is waiting=�0+�1duration+✏, with ✏⇠N (0,�2). If
we simulate from this probability model, we’ll get something we can compare to the

7“Might”, because sometimes (e.g., §1.4.2) we’re better off with a model that makes systematic mis-
takes, if they’re small and getting it right would be a hassle.

00:29 Tuesday 26th January, 2016

133 5.4. WHY SIMULATE?

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

50
60

70
80

90
10
0

11
0

duration

wa
iti
ng

plot(geyser$duration, geyser$waiting, xlab = "duration", ylab = "waiting")
abline(fit.ols)

FIGURE 5.1: Data for the geyser data set, plus the OLS regression line.

00:29 Tuesday 26th January, 2016

5.4. WHY SIMULATE? 134

rgeyser <- function() {
n <- nrow(geyser)
sigma <- summary(fit.ols)$sigma
new.waiting <- rnorm(n, mean = fitted(fit.ols), sd = sigma)
new.geyser <- data.frame(duration = geyser$duration, waiting = new.waiting)
return(new.geyser)

}

CODE EXAMPLE 5: Function for generating surrogate data sets from the linear model fit to
geyser.

actual data, to help us assess whether the scatter around that regression line is really
bothersome. Since OLS doesn’t require us to assume a distribution for the input
variable (here, duration), the simulation function in Code Example 5 leaves those
values alone, but regenerates values of the response (waiting) according to the model
assumptions.

A useful principle for model checking is that if we do some exploratory data
analyses of the real data, doing the same analyses to realizations of the model should
give roughly the same results (Gelman, 2003; Hunter et al., 2008; Gelman and Shalizi,
2013). This is a test the model fails. Figure 5.2 shows the actual histogram of waiting,
plus the histogram produced by simulating — reality is clearly bimodal, but the model
is unimodal. Similarly, Figure 5.3 shows the real data, the OLS line, and a simulation
from the OLS model. It’s visually clear that the deviations of the real data from the
regression line are both bigger and more patterned than those we get from simulating
the model, so something is wrong with the latter.

By itself, just seeing that data doesn’t look like a realization of the model isn’t
super informative, since we’d really like to know how the model’s broken, and so
how to fix it. Further simulations, comparing more detailed analyses of the data to
analyses of the simulation output, are often very helpful here. Looking at Figure 5.3,
we might suspect that one problem is heteroskedasticity — the variance isn’t constant.
This suspicion is entirely correct, and will be explored in §7.3.2.

5.4.3 Sensitivity Analysis
Often, the statistical inference we do on the data is predicated on certain assump-
tions about how the data is generated. We’ve talked a lot about the Gaussian-noise
assumptions that usually accompany linear regression, but there are many others.
For instance, if we have missing values for some variables and just ignore incomplete
rows, we are implicitly assuming that data are “missing at random”, rather than in
some systematic way. Often, these assumptions make our analysis much neater than[[TODO: Cross-ref to missing

data chapter when written]] it otherwise would be, so it would be convenient if they were true.
As a wise man said long ago, “The method of ‘postulating’ what we want has

many advantages; they are the same as the advantages of theft over honest toil” (Rus-
sell, 1920, ch. VII, p. 71). In statistics, honest toil often takes the form of sensitivity
analysis, of seeing how much our conclusions would change if the assumptions were

00:29 Tuesday 26th January, 2016

135 5.4. WHY SIMULATE?

waiting

D
en
si
ty

40 50 60 70 80 90 100 110

0.
00

0.
01

0.
02

0.
03

0.
04

hist(geyser$waiting, freq = FALSE, xlab = "waiting", main = "", sub = "", col = "grey")
lines(hist(rgeyser()$waiting, plot = FALSE), freq = FALSE, lty = "dashed")

FIGURE 5.2: Actual density of the waiting time between eruptions (grey bars, solid lines) and that
produced by simulating the OLS model (dashed lines).

00:29 Tuesday 26th January, 2016

5.4. WHY SIMULATE? 136

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

50
60

70
80

90
10
0

11
0

duration

wa
iti
ng

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

plot(geyser$duration, geyser$waiting, xlab = "duration", ylab = "waiting")
abline(fit.ols)
points(rgeyser(), pch = 20, cex = 0.5)

FIGURE 5.3: As in Figure 5.1, plus one realization of simulating the OLS model (small black dots).

00:29 Tuesday 26th January, 2016

137 5.5. FURTHER READING

violated, i.e., of checking how sensitive our inferences are to the assumptions. In
principle, this means setting up models where the assumptions are more or less vio-
lated, or violated in different ways, analyzing them as though the assumptions held,
and seeing how badly wrong we go. Of course, if that was easy to do in closed form,
we often wouldn’t have needed to make those assumptions in the first place.

On the other hand, it’s usually pretty easy to simulate a model where the assump-
tion is violated, run our original, assumption-laden analysis on the simulation output,
and see what happens. Because it’s a simulation, we know the complete truth about
the data-generating process, and can assess how far off our inferences are. In favorable
circumstances, our inferences don’t mess up too much even when the assumptions we
used to motivate the analysis are badly wrong. Sometimes, however, we discover that
even tiny violations of our initial assumptions lead to large errors in our inferences.
Then we either need to make some compelling case for those assumptions, or be very
cautious in our inferences.

5.5 Further Reading
Many texts on scientific programming discuss simulation, including Press et al. (1992)
and, using R, ?. There are also many more specialized texts on simulation in various
applied areas. It must be said that many references on simulation present it as almost
completely disconnected from statistics and data analysis, giving the impression that
probability models just fall from the sky. Guttorp (1995) is an excellent exception.

For further reading on methods of drawing random variables from a given distri-
bution, on Monte Carlo, and on generating uniform random numbers, see Appendix
O. For doing statistical inference by comparing simulations to data, see Chapter 23.

When all (!) you need to do is draw numbers from a probability distribution
which isn’t one of the ones built in to R, it’s worth checking CRAN’s “task view” on
probability distributions, https://cran.r-project.org/web/views/Distributions.
html.

For sensitivity analyses, Miller (1998) describes how to use modern optimization
methods to actively search for settings in simulation models which break desired be-
haviors or conclusions. I have not seen this idea applied to sensitivity analyses for
statistical models, but it really ought to be.

5.6 Exercises
1. Modify rmultinoulli from §5.2.3.2 so that the values in the output are not

the integers from 1 to k, but come from a vector of arbitrary labels.

00:29 Tuesday 26th January, 2016

