[[TODO: Re-organize: bring
curse of dimensionality up,
then additive models as com-
promise, so same order as lec-
tures] ]
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Chapter 9

Additive Models

9.1 Additive Models

The additive model for regression is that the conditional expectation function is a
sum of partial response functions, one for each predictor variable. Formally, when

the vector X of predictor variables has p dimensions, x;,...x > the model says that
E[Y|X=%]=a+> fi(x) 9.1)

This includes the linear model as a special case, where f(x;) = B;x;, but it’s clearly

;
more general, because the f;s can be arbitrary nonlinear functions. The idea is still

that each input feature makes a separate contribution to the response, and these just
add up (hence “partial response function”), but these contributions don’t have to
be strictly proportional to the inputs. We do need to add a restriction to make it

identifiable; without loss of generality, say that E[Y] =2 and E [ X ]):I =o.!
Additive models keep a lot of the nice properties of linear models, but are more

flexible. One of the nice things about linear models is that they are fairly straightfor-
ward to interpret: if you want to know how the prediction changes as you change x;,

you just need to know 3. The partial response function f; plays the same role in an
additive model: of course the change in prediction from changing x; will generally
depend on the level x; had before perturbation, but since that’s also true of reality
that’s really a feature rather than a bug. It’s true that a set of plots for f;s takes more
room than a table of 3 ;S but it’s also nicer to look at, conveys more information,
and imposes fewer systematic distortions on the data.

!To see why we need to do this, imagine the simple case where p = 2. If we add constants ¢, to f; and ¢,
to f,, but subtract ¢; + ¢, from a, then nothing observable has changed about the model. This degeneracy
or lack of identifiability is a little like the way collinearity keeps us from defining true slopes in linear
regression. But it’s less harmful than collinearity because we can fix it with this convention.
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209 9.2. PARTIAL RESIDUALS AND BACK-FITTING

Of course, none of this would be of any use if we couldn’t actually estimate these
models, but we can, through a clever computational trick which is worth knowing
for its own sake. The use of the trick is also something they share with linear models,
so we’ll start there.

9.2 Partial Residuals and Back-fitting
9.2.1 Back-fitting for Linear Models

The general form of a linear regression model is

> - I
E[Y|X:x]:ﬂo+ﬂ-x22ﬂ]-xj (9.2)
j=0
where x, is always the constant 1. (Adding this fictitious constant variable lets us
handle the intercept just like any other regression coefficient.)

Suppose we don’t condition on all of X but just one component of it, say X,.
What is the conditional expectation of Y?

E[YIX,=x] = E[E[Y]X,X,...X,.. X, ] |1X,=x,] 9.3)
)
7=0
= B +E | DB X|X, =x, 9.5)
jk

where the first line uses the law of total expectation?, and the second line uses Eq.
9.2. Turned around,

Brx, = E[Y|X,=x]-E Zﬁijlxk:xk (9.6)
J#k
= E|Y—|D6X | IX,=x 9.7)
J#k

The expression in the expectation is the k™ partial residual — the (total) residual
is the difference between Y and its expectation, the partial residual is the difference
between Y and what we expect it to be ignoring the contribution from X,. Let’s
introduce a symbol for this, say Y.

By =E[Y®|X, =x,] 9.8)

2As you learned in baby prob., this is the fact that E[Y|X]=E[E[Y|X,Z]|X] — that we can always
condition more variables, provided we then average over those extra variables when we’re done.
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One man’s vicious circle is
another’s iterative improve-
ment”
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Given: 7 X (p + 1) inputs x (0 column all 1s)

n X 1 responses y

small tolerance & >0
center y and each column of x
B;«0forjel:p
until (all |,6] —}/j| <8

forkel:p{

) ~
y? ) =J)i— Zj;ék ﬁ;’xzj

¥, « regression coefficient of y*) on x ,

~

/Ble‘—}//e

}
Bo <”_1Z:l:1yi) . ;1‘]:1/6/”1_1 i=1%ij
Return: (/60’/61""/617)

CODE EXAMPLE 18: Pseudocode for back-fitting linear models. Assume we make at least one pass
through the until loop. Recall from Chapter 1 that centering the data does not change the [3 ;s;
this way the intercept only has to be calculated once, at the end. [[ATTN: Fix horizontal lines]]

In words, if the over-all model is linear, then the partial residuals are linear. And
notice that X, is the only input feature appearing here — if we could somehow get
hold of the partial residuals, then we can find 3, by doing a simple regression, rather
than a multiple regression. Of course to get the partial residual we need to know all

the other ,3]-3. .

This suggests the following estimation scheme for linear models, known as the
Gauss-Seidel algorithm, or more commonly and transparently as back-fitting; the
pseudo-code is in Example 18.

This is an iterative approximation algorithm. Initially, we look at how far each
point is from the global mean, and do a simple regression of those deviations on
the first input variable. This then gives us a better idea of what the regression surface
really is, and we use the deviations from that surface in a simple regression on the next
variable; this should catch relations between Y and X, that weren’t already caught by
regressing on X;. We then go on to the next variable in turn. At each step, each
coefficient is adjusted to fit in with what we have already guessed about the other
coefficients — that’s why it’s called “back-fitting”. It is not obvious® that this will
ever converge, but it (generally) does, and the fixed point on which it converges is the
usual least-squares estimate of £3.

Back-fitting is rarely used to fit linear models these days, because with modern
computers and numerical linear algebra it’s faster to just calculate (x”x)™'x”y. But
the cute thing about back-fitting is that it doesn’t actually rely on linearity.

3Unless, I suppose, you’re Gauss.
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211 9.3. THE CURSE OF DIMENSIONALITY

9.2.2 Backfitting Additive Models

Defining the partial residuals by analogy with the linear case, as

YW=y at+Sf(x,) 09)
J#k

a little algebra along the lines of §9.2.1 shows that

E[Y®OIX, = x| = filx) (9.10)

If we knew how to estimate arbitrary one-dimensional regressions, we could now
use back-fitting to estimate additive models. But we have spent a lot of time learn-
ing how to use smoothers to fit one-dimensional regressions! We could use nearest
neighbors, or splines, or kernels, or local-linear regression, or anything else we feel
like substituting here.

Our new, improved back-fitting algorithm in Example 19. Once again, while
it’s not obvious that this converges, it does. Also, the back-fitting procedure works
well with some complications or refinements of the additive model. If we know the
function form of one or another of the f;, we can fit those parametrically (rather
than with the smoother) at the appropriate points in the loop. (This would be a
semiparametric model.) If we think that there is an interaction between x; and x;,,
rather than their making separate additive contributions for each variable, we can
smooth them together; etc.

There are actually rwo packages standard packages for fitting additive models in
R: gam and mgcv. Both have commands called gam, which fit generalized additive
models — the generalization is to use the additive model for things like the probabil-
ities of categorical responses, rather than the response variable itself. If that sounds
obscure right now, don’t worry — we’ll come back to this in Chapters 11-12 after
we’ve looked at generalized linear models. §9.4 below illustrates using one of these
packages to fit an additive model.

9.3 The Curse of Dimensionality

Before illustrating how additive models work in practice, let’s talk about why we’d
want to use them. So far, we have looked at two extremes for regression models;
additive models are somewhere in between.

On the one hand, we had linear regression, which is a parametric method (with
p + 1 parameters). Its weakness is that the true regression function y is hardly ever
linear, so even with infinite data linear regression will always make systematic mis-
takes in its predictions — there’s always some approximation bias, bigger or smaller
depending on how non-linear y is. The strength of linear regression is that it con-
verges very quickly as we get more data. Generally speaking,

MSElinear = 02 + Ainear + O(i’l_l) (911)
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9.3. THE CURSE OF DIMENSIONALITY 212

Given: 7 X p inputs X
n x 1 responses 'y
small tolerance & >0
one-dimensional smoother .

aA‘— ”_12?:13’1'
f]w—Ofor]'AEl:p
until @l |f — g < &) {
forkel:p{
y,(k) =)i— Zj;é/e]?;(xij)
g =S O® ~x,)
8 — & — 1 2 8(xik)
fe &

} PO
Return: (@, f,..- f,)

CODE EXAMPLE 19: Psendo-code for back-fitting additive models. Notice the extra step, as com-
pared to back-fitting linear models, which keeps each partial response function centered.

where the first term is the intrinsic noise around the true regression function, the
second term is the (squared) approximation bias, and the last term is the estimation
variance. Notice that the rate at which the estimation variance shrinks doesn’t de-
pend on p — factors like that are all absorbed into the big O.* Other parametric
models generally converge at the same rate.

At the other extreme, we’ve seen a number of completely nonparametric regres-
sion methods, such as kernel regression, local polynomials, k-nearest neighbors, etc.
Here the limiting approximation bias is actually zero, at least for any reasonable re-
gression function u. The problem is that they converge more slowly, because we need
to use the data not just to figure out the coefficients of a parametric model, but the
sheer shape of the regression function. We saw in Chapter 4 that the mean-squared
error of kernel regression in one dimension is o + O(n~*/°). Splines, k-nearest-
neighbors (with growing k), etc., all attain the same rate. But in p dimensions, this
becomes (Wasserman, 2006, §5.12)

MSE gpouea— 07 = O(n =49 (9.12)
There’s no ultimate approximation bias term here. Why does the rate depend on
p? Well, to hand-wave a bit, think of kernel smoothing, where G(x) is an average
over y; for ¥; near X. In a p dimensional space, the volume within € of X is O(¢?),
so the probability that a training point ¥, falls in the averaging region around ¥ gets
exponentially smaller as p grows. Turned around, to get the same number of training
points per X, we need exponentially larger sample sizes. The appearance of the 4s is

*See Appendix C you are not familiar with “big O” notation.
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213 9.3. THE CURSE OF DIMENSIONALITY

a little more mysterious, but can be resolved from an error analysis of the kind we
did for kernel regression in Chapter 4°. This slow rate isn’t just a weakness of kernel
smoothers, but turns out to be the best any nonparametric estimator can do.

For p = 1, the nonparametric rate is O(n~*?), which is of course slower than
O(n™"), but not all that much, and the improved bias usually more than makes up
for it. But as p grows, the nonparametric rate gets slower and slower, and the fully
nonparametric estimate more and more imprecise, yielding the infamous curse of
dimensionality. For p = 100, say, we get a rate of O(n~'/?), which is not very good
at all. (See Figure 9.1.) Said another way, to get the same precision with p inputs that
n data points gives us with one input takes 2(+#)/> data points. For p = 100, this is
n®8 which tells us that matching the error of 7 = 100 one-dimensional observations
requires O(4 x 10*!) hundred-dimensional observations.

So completely unstructured nonparametric regressions won’t work very well in
high dimensions, at least not with plausible amounts of data. The trouble is that
there are just too many possible high-dimensional functions, and seeing only a trillion
points from the function doesn’t pin down its shape very well at all.

This is where additive models come in. Not every regression function is additive,
so they have, even asymptotically, some approximation bias. But we can estimate
each f; by a simple one-dimensional smoothing, which converges at O(n~*°), almost

as good as the parametric rate. So overall
MSEadditive —ot= Aadditive T O(n—4/5> (913)

Since linear models are a sub-class of additive models, 4, 4;;e < 4y,,,- From a purely
predictive point of view, the only time to prefer linear models to additive models is
when 7 is so small that O(7~*/*) — O(n™!) exceeds this difference in approximation
biases; eventually the additive model will be more accurate.®

SRemember that in one dimension, the bias of a kernel smoother with bandwidth 4 is O(h?), and
the variance is O(1/nh), because only samples falling in an interval about 5 across contribute to the
prediction at any one point, and when 4 is small, the number of such samples is proportional to nh.
Adding bias squared to variance gives an error of O(h*)+O((nh)~1), solving for the best bandwidth gives
Pope = O(n~1/%), and the total error is then O(n~*/%). Suppose for the moment that in p dimensions
we use the same bandwidth along each dimension. (We get the same end result with more work if we
let each dimension have its own bandwidth.) The bias is still O(h?), because the Taylor expansion still
goes through. But now only samples falling into a region of volume O(h%) around x contribute to the
prediction at x, so the variance is O((zh%)™"). The best bandwidth is now Pope = O(n~ 1/ +9), yielding

an error of O(n~#/(P14)) a5 promised.
Unless the best additive approximation to u is linear; then the linear model has no more bias and less
variance.
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9.3. THE CURSE OF DIMENSIONALITY

1.0

Excess MSE
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curve(x~(-1), from = 1, to = 10000, log = "x", xlab = "n", ylab = "Excess MSE")

curve(x~(-4/5), add = TRUE, 1ty = "dashed")
curve(x~(-1/26), add = TRUE, 1ty = "dotted")
legend("topright", legend = c(expression(n~{

-1

}), expression(n~{
-4/5

}), expression(n~{
-1/26

})), 1ty = c("solid", "dashed", "dotted"))
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FIGURE 9.1: Schematic of rates of convergence of MSEs for parametric models (O(n=")), one-
dimensional nonparametric regressions or additive models (O(n™**)), and a 100-dimensional

nonparametric regression (O(n='%

logarithmic scale.
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215 9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED

9.4 Example: California House Prices Revisited

As an example, we’ll look at data on median house prices across Census tracts from
the data-analysis assignment in §A.12. This has both California and Pennsylvania,
but it’s hard to visually see patterns with both states; I'll do California, and let you
replicate this all on Pennsylvania, and even on the combined data.

Start with getting the data:

[[TODO: better URL]]

housing <- read.csv("http://www.stat.cmu.edu/ cshalizi/ADAfaEPoV/data/calif_penn_2011.csv")

housing <- na.omit(housing)
calif <- housing[housing$STATEFP == 6, ]

(How do I know that the STATEFP code of 6 corresponds to California?)

We’ll fit a linear model for the log price, on the thought that it makes some sense
for the factors which raise or lower house values to multiply together, rather than
just adding.

calif.lm <- 1lm(log(Median_house_value) ~ Median_household_income + Mean_household_income +

POPULATION + Total_units + Vacant_units + Owners + Median_rooms + Mean_household_size_owners +

Mean_household_size_renters + LATITUDE + LONGITUDE, data = calif)

This is very fast — about a fifth of a second on my laptop.
Here are the summary statistics’:

print (summary(calif.lm), signif.stars = FALSE, digits = 3)
##

## Call:

## 1lm(formula = log(Median_house_value) ~ Median_household_income +

## Mean_household_income + POPULATION + Total_units + Vacant_units +
## Owners + Median_rooms + Mean_household_size_owners + Mean_household_size_renters +
## LATITUDE + LONGITUDE, data = calif)

##t

## Residuals:

## Min 1Q Median 3Q Max

## -3.855 -0.153 0.034 0.189 1.214

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|t])

## (Intercept) -5.74e+00 5.28e-01 -10.86 < 2e-16

## Median_household_income 1.34e-06 4.63e-07 2.90 0.0038

## Mean_household_income 1.07e-05 3.88e-07 27.71 < 2e-16

## POPULATION -4.15e-05 5.03e-06 -8.27 < 2e-16

## Total_units 8.37e-05 1.55e-05 5.41 6.4e-08

## Vacant_units 8.37e-07 2.37e-05 0.04 0.9719

## Owners -3.98e-03 3.21e-04 -12.41 < 2e-16

’T have suppressed the usual stars on “significant” regression coefficients, because, as discussed in Chap-
ter 2, those aren’t really the most important variables, and I have reined in R’s tendency to use far too
many decimal places.
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9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED 216

!
predlims <- function(preds, sigma) {
prediction.sd <- sqrt(preds$se.fit~2 + sigma~2)
upper <- preds$fit + 2 * prediction.sd
lower <- preds$fit - 2 * prediction.sd
lims <- cbind(lower = lower, upper = upper)
return(lims)

}

CODE EXAMPLE 20: Cualculating quick-and-dirty prediction limits from a prediction object
(preds) containing fitted values and their standard errors, plus an estimate of the noise level. Be-
cause those are two (presumably uncorrelated) sources of noise, we combine the standard deviations
by “adding in quadrature”.

## Median_rooms -1.62e-02 8.37e-03 -1.94 0.0525
## Mean_household_size_owners 5.60e-02 7.16e-03 7.83 5.8e-15
## Mean_household_size_renters -7.47e-02 6.38e-03 -11.71 < 2e-16

## LATITUDE -2.14e-01 5.66e-03 -37.76 < 2e-16
## LONGITUDE -2.15e-01 5.94e-03 -36.15 < 2e-16
##

## Residual standard error: 0.317 on 7469 degrees of freedom
## Multiple R-squared: 0.639,Adjusted R-squared: 0.638
## F-statistic: 1.2e+03 on 11 and 7469 DF, p-value: <2e-16

Figure 9.2 plots the predicted prices, £2 standard errors, against the actual prices.
The predictions are not all that accurate — the RMS residual is 0.317 on the log scale
(i-e., 37% on the original scale), but they do have pretty reasonable coverage; about
96% of actual prices fall within the prediction limits®. On the other hand, the predic-
tions are quite precise, with the median of the calculated standard errors being 0.011
on the log scale (i.e., 1.1% in dollars). This linear model thinks it knows what’s going
on.

Next, we’ll fit an additive model, using the gam function from the mgcv package;
this automatically sets the bandwidths using a fast approximation to leave-one-out
CV called generalized cross-validation, or GCV (§3.4.3).

system.time(calif.gam <- gam(log(Median_house_value) ~ s(Median_household_income) +
s(Mean_household_income) + s(POPULATION) + s(Total_units) + s(Vacant_units) +
s(Owners) + s(Median_rooms) + s(Mean_household_size_owners) + s(Mean_household_size_renters)

$Remember from your linear regression class that there are two kinds of confidence intervals we might
want to use for prediction. One is a confidence interval for the conditional mean at a given value of x; the
other is a confidence interval for the realized values of Y at a given x. Earlier examples have emphasized
the former, but since we don’t know the true conditional means here, we need to use the latter sort of
intervals, prediction intervals proper, to evaluate coverage. The predlims function in Code Example 20
calculates a rough prediction interval by taking the standard error of the conditional mean, combining it
with the estimated standard deviation, and multiplying by 2. Strictly speaking, we ought to worry about
using a ¢-distribution rather than a Gaussian here, but with 7469 residual degrees of freedom, this isn’t
going to matter much. (Assuming Gaussian noise is likely to be more of a concern, but this is only meant
to be a rough cut anyway.)
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Linear model

Predicted ($)
3e+06 4e+06
| |

2e+06
|

1e+06

0e+00
|

T T T T T T
0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

Actual price ($)

plot(calif$Median_house_value, exp(preds.lm$fit), type = "n", xlab = "Actual price ($)",
ylab = "Predicted ($)", main = "Linear model", ylim = c(0, exp(max(predlims.lm))))

segments(calif$Median_house_value, exp(predlims.lm[, "lower"]), calif$Median_house_value,
exp(predlims.1lm[, "upper"]), col = "grey")

abline(a = 0, b = 1, 1ty = "dashed")

points(calif$Median_house_value, exp(preds.lm$fit), pch = 16, cex = 0.1)

FIGURE 9.2: Actual median house values (horizontal axis) versus those predicted by the linear
model (black dots), plus or minus two predictive standard errors (grey bars). The dashed line shows
where actual and predicted prices are equal. Here predict gives both a fitted value for each point,
and a standard error for that prediction. (Without a newdata argument, predict defaults to the
data used to estimate calif .1m, which here is what we want.) Predictions are exponentiated so
they’re comparable ro the original values (and because it’s easier to grasp dollars than log-dollars).
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9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED 218

s(LATITUDE) + s(LONGITUDE), data = calif))
## user system elapsed
## 3.806 0.170 4.199

(That is, it took about five seconds total to run this.) The s() terms in the gam
formula indicate which terms are to be smoothed — if we wanted particular paramet-
ric forms for some variables, we could do that as well. (Unfortunately we can’t just
write MedianHouseValue ~ s(.), we have to list all the variables on the right-hand
side.”) The smoothing here is done by splines (hence s()), and there are lots of op-
tions for controlling the splines, or replacing them by other smoothers, if you know
what you’re doing.

Figure 9.3 compares the predicted to the actual responses. The RMS error has
improved (0.27 on the log scale, or 130%, with 96% of observations falling with +2
standard errors of their fitted values), at only a fairly modest cost in the claimed
precision (the median standard error of prediction is 0.02, or 2.1%). Figure 9.4 shows
the partial response functions.

It makes little sense to have latitude and longitude make separate additive contri-
butions here; presumably they interact. We can just smooth them together!?:

calif.gam2 <- gam(log(Median_house_value) ~ s(Median_household_income) + s(Mean_household_income
s (POPULATION) + s(Total_units) + s(Vacant_units) + s(Owners) + s(Median_rooms) +
s (Mean_household_size_owners) + s(Mean_household_size_renters) + s(LONGITUDE,
LATITUDE), data = calif)

This gives an RMS error of +0.25 (log-scale) and 96% coverage, with a median
standard error of 0.021, so accuracy is improving (at least in sample), with little loss
of precision.

Figures 9.6 and 9.7 show two different views of the joint smoothing of longitude
and latitude. In the perspective plot, it’s quite clear that price increases specifically
towards the coast, and even more specifically towards the great coastal cities. In the
contour plot, one sees more clearly an inward bulge of a negative, but not too very
negative, contour line (between -122 and -120 longitude) which embraces Napa, Sacra-
mento, and some related areas, which are comparatively more developed and more
expensive than the rest of central California, and so more expensive than one would
expect based on their distance from the coast and San Francisco.

If you worked through problem set A.12, you will recall that one of the big things
wrong with the linear model is that its errors (the residuals) are highly structured
and very far from random. In essence, it totally missed the existence of cities, and
the fact that houses cost more in cities (because land costs more there). It’s a good
idea, therefore, to make some maps, showing the actual values, and then, by way of
contrast, the residuals of the models. Rather than do the plotting by hand over and
over, let’s write a function (Code Example 21).

9 Alternately, we could use Kevin Gilbert’s formulaTools functions — see https://gist.github.
com/kgilbert-cmu.

197f the two variables which interact have very different magnitudes, it’s better to smooth them with a
te() term than an s ) term, but here they are comparable. See §9.5 for more, and help(gam.models).
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First additive model
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plot(calif$Median_house_value, exp(preds.gam$fit), type = "n", xlab = "Actual price ($)",
ylab = "Predicted ($)", main = "First additive model", ylim = c(0, exp(max(predlims.gam))))
segments(calif$Median_house_value, exp(predlims.gam[, "lower"]), calif$Median_house_value,
exp(predlims.gam[, "upper"]), col = "grey")
abline(a = 0, b = 1, 1ty = "dashed")
points(calif$Median_house_value, exp(preds.gam$fit), pch = 16, cex = 0.1)

FIGURE 9.3: Actual versus predicted prices for the additive model, as in Figure 9.2. Note that
the sig2 attribute of a model returned by gam() is the estimate of the noise variance around the
regression surface (%),
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FIGURE 9.4: The estimated partial response functions for the additive model, with a shaded region
showing +2 standard errors. The tick marks along the horizontal axis show the observed values of
the input variables (a rug plot); note that the error bars are wider where there are fewer observa-
tions. Setting pages=0 (the default) would produce eight separate plots, with the user prompted ro
cycle through them. Setting scale=0 gives each plot its own vertical scale; the default is to force
them to share the same one. Finally, note that here the vertical scales are logarithmic.
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s(Mean_household_size_renters,

Mean_household_size_renters
plot(calif.gam2, scale = 0, se = 2, shade = TRUE, resid = TRUE, pages = 1)

FIGURE 9.5: Partial response functions and partial vesiduals for addfit2, as in Figure 9.4. See
subsequent figures for the joint smoothing of longitude and latitude, which here is an illegible mess.
See help(plot.gam) for the plotting options used here.

21:06 Thursday 17" March, 2016



9.4. EXAMPLE: CALIFORNIA HOUSE PRICES REVISITED 222

plot(calif.gamQ, select = 10, phi = 60, pers = TRUE, ticktype = "detailed",
cex.axis = 0.5)

FIGURE 9.6: The result of the joint smoothing of longitude and latitude.
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s(LONGITUDE,LATITUDE,28.48)

LATITUDE

36

34

-124 -122 -120 -118 -116 -114

LONGITUDE

plot(calif.gam2, select = 10, se = FALSE)

FIGURE 9.7: The result of the joint smoothing of longitude and latitude. Setting se=TRUE, the
defanlt, adds standard errors for the contour lines in multiple colors. Again, note that these are log
units.
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T
graymapper <- function(z, x = calif$LONGITUDE, y = calif$LATITUDE, n.levels|= 10,
breaks = NULL, break.by "length", legend.loc = "topright", digits = 3
o)A
my.greys = grey(((n.levels - 1):0)/n.levels)
if (!'is.null(breaks)) {

stopifnot(length(breaks) == (n.levels + 1))
}
else {
if (identical(break.by, "length")) {
breaks = seq(from = min(z), to = max(z), length.out = n.levels +
1
}
else {
breaks = quantile(z, probs = seq(0, 1, length.out = n.levels + 1))
}
}

z = cut(z, breaks, include.lowest = TRUE)
colors = my.greys[z]
plot(x, y, col = colors, bg = colors, ...)
if (!is.null(legend.loc)) {
breaks.printable <- signif(breaks[l:n.levels], digits)
legend(legend.loc, legend = breaks.printable, fill = my.greys)
}

invisible (breaks)

CODE EXAMPLE 21: Map-making code. In its basic use, this takes vectors for x and y coordinates,
and draws gray points whose color depends on a third vector for z, with darker points indicating
higher values of z. Options allow for the control of the number of gray levels, setting the breaks
berween levels automatically, and using a legend. Returning the break-points makes it easier ro use
the same scale in multiple maps. See online for commented code.
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Figures 9.8 and 9.9 show that allowing for the interaction of latitude and longitude
(the smoothing term plotted in Figures 9.6-9.7) leads to a much more random and
less systematic clumping of residuals. This is desirable in itself, even if it does little to
improve the mean prediction error. Essentially, what that smoothing term is doing is
picking out the existence of California’s urban regions, and their distinction from the
rural background. Examining the plots of the interaction term should suggest to you
how inadequate it would be to just put in a LONGITUDEXLATITUDE term in a linear
model.

Including an interaction between latitude and longitude in a spatial problem is
pretty obvious. There are other potential interactions which might be important
here — for instance, between the two measures of income, or between the total num-
ber of housing units available and the number of vacant units. We could, of course,
just use a completely unrestricted nonparametric regression — going to the opposite
extreme from the linear model. In addition to the possible curse-of-dimensionality is-
sues, however, getting something like npreg to run with 7000 data points and 11 pre-
dictor variables requires a lot of patience. Other techniques, like nearest neighbor re-
gression (§1.5.1) or regression trees (Ch. 13), may run faster, though cross-validation
can be demanding even there.

9.5 Interaction Terms and Expansions

One way to think about additive models, and about (p0351bly) mcludmg interaction
terms, is to imagine doing a sort of Taylor series or power series expansion of the true
regression function. The zero-th order expansion would be a constant:

ulx)~a (9.14)

The best constant to use here would just be E[Y]. (“Best” here is in the mean-square
sense, as usual.) A purely additive model would correspond to a first-order expansion:

)4
)xat+ > fi(x)) 9.15)
j=1
Two-way interactions come in when we go to a second-order expansion:
W)t 30+ 30 S Fulen) 016

j=1 j=1k=j+1

(Why do I limit % to run from j + 1 to p?, rather than from 1 to p?) We will, of
course, insist that E [ f] (X /’Xk)] =0 forall j, k. If we want to estimate these terms

in R, using mgcv, we use the syntax s(xj, xk) or te(xj, xk). The former fits a
thin-plate spline over the (x;,x;) plane, and is appropriate when those variables are
measured on similar scales, so that curvatures along each direction are comparable.
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par (mfrow = c(2, 2))

calif.breaks <- graymapper(calif$Median_house_value, pch = 16, xlab = "Longitude",
ylab = "Latitude", main = "Data", break.by = "quantiles")

graymapper (exp(preds.1lm$fit), breaks = calif.breaks, pch = 16, xlab = "Longitude",
ylab = "Latitude", legend.loc = NULL, main = "Linear model")

graymapper (exp(preds.gam$fit), breaks = calif.breaks, legend.loc = NULL, pch = 16,
xlab = "Longitude", ylab = "Latitude", main = "First additive model")

graymapper (exp(preds.gam2$fit), breaks = calif.breaks, legend.loc = NULL, pch = 16,
xlab = "Longitude", ylab = "Latitude", main = "Second additive model")

par(mfrow = c(1, 1))

FIGURE 9.8: Maps of real prices (top left), and those predicted by the linear model (top right), the
purely additive model (bottom left), and the additive model with interaction berween latitude and
longitude (bottom right). Categories are deciles of the actual prices.
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Data Residuals of linear model
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FIGURE 9.9: Actual housing values (top left), and the residuals of the three models. (The residuals
are all plotted with the same color codes.) Notice that both the linear model and the additive model
without spatial interaction systematically mis-price urban areas. The model with spatial interaction
does much better at having randomly-scattered errors, though bhardly perfect. — How would you
make a map of the magnitude of regression errors?
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The latter uses a tensor product of smoothing splines along each coordinate, and is
more appropriate when the measurement scales are very different!?.

There is an important ambiguity here: for any j, with additive partial-response
function f;, I could take any of its interactions, set f].’k(x]«,xk) = fir(xjox) + fi(x))
and f] /(x;) =0, and get exactly the same predictions under all circumstances. This is

the parallel to being able to add and subtract constants from the first-order functions,
provided we made corresponding changes to the intercept term. We therefore need
to similarly fix the two-way interaction functions.

A natural way to do this is to insist that the second-order f; function should
be uncorrelated with (“orthogonal t0”) the first-order functions f; and f,; this is
the analog to insisting that the first-order functions all have expectation zero. The
/;is then represent purely interactive contributions to the response, which could
not be captured by additive terms. If this is what we want to do, the best syntax
to use in mgev is ti, which specifically separates the first- and higher- order terms,
e.g,ti(xj) + ti(xk) + ti(xj, xk) will estimate three functions, for the additive
contributions and their interaction.

An alternative is to just pick a particular f;;, and absorb f; into it. The model

then looks like .
pE)yma+d ) >0 fulxn) 9.17)

=1 k=j+1
We can also mix these two approaches, if we specifically do not want additive or
interactive terms for certain predictor variables. This is what I did above, where
I estimated a single second-order smoothing term for both latitude and longitude,
with no additive components for either.

Of course, there is nothing special about two-way interactions. If you’re curious
about what a three-way term would be like, and you’re lucky enough to have data
which amenable to fitting it, you could certainly try

» pop
pra+ D fi)+ D0 D0 fin(xx) + D firi(x %) (9.18)
=1

j=1 k=j+1 Jokil

(How should the indices for the last term go?) More ambitious combinations are cer-
tainly possible, though they tend to become a confused mass of algebra and indices.

Geometric interpretation It’s often convenient to think of the regression function
as living in a big (infinite-dimensional) vector space of functions. Within this space,
the constant functions form a linear sub-space'?, and we can ask for the projection
of the true regression function on to that sub-space; this would be the best approxi-
mation™ to y as a constant. This is, of course, the expectation value. The additive

UFor the distinction between thin-plate and tensor-product splines, see §8.4. If we want to interact a
continuous variable x; with a categorical x;, mgev’s syntax is s (xj, by=xk) or te(xj, by=xk).
12Because if £ and g are two constant functions, a f + b g is also a constant, for any real numbers # and

b

13 Remember that projecting a vector on to a linear sub-space finds the point in the sub-space closest to
the original vector. This is equivalent to minimizing the (squared) bias.
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functions of all p variables also form a linear sub-space'*, so the right-hand side of
Eq. 9.15 is just the projection of u on to that space, and so forth and so on. When
we insist on having the higher-order interaction functions be uncorrelated with the
additive functions, we’re taking the projection of u on to the space of all functions
orthogonal to the additive functions.

Selecting interactions There are two issues with interaction terms. First, the curse
of dimensionality returns: an order-¢ interaction term will converge at the rate O(n—*/+4)),
so they can dominate the over-all uncertainty. Second, there are lots of possible in-
teractions ((Z ), in fact), which can make it very demanding in time and data to fit

them all, and hard to interpret. Just as with linear models, therefore, it can make a
lot of sense to selective examine interactions based on subject-matter knowledge, or
residuals of additive models.

Varying-coefficient models In some contexts, people like to use models of the
form

P
y(x):a+Zx]-f/~(x_j) (9.19)
j=1

where f; is a function of the non-j predictor variables, or some subset of them. These
varying-coefficient functions are obviously a subset of the usual class of additive
models, but there are occasions where they have some scientific justification!®. These
are conveniently estimated in mgcv through the by option, e.g., s(xk, by=xj) will
estimate a term of the form x; f(x;)."®

9.6 Closing Modeling Advice

With modern computing power, there are very few situations in which it is actually
better to do linear regression than to fit an additive model. In fact, there seem to be
only two good reasons to prefer linear models.

1. Our data analysis is guided by a credible scientific theory which asserts linear
relationships among the variables we measure (not others, for which our observ-
ables serve as imperfect proxies).

2. Our data set is so massive that either the extra processing time, or the extra
computer memory, needed to fit and store an additive rather than a linear
model is prohibitive.

Even when the first reason applies, and we have good reasons to believe a linear the-
ory, the truly scientific thing to do would be to check linearity, by fitting a flexible
non-linear model and seeing if it looks close to linear. (We will see formal tests based

By parallel reasoning to the previous footnote.

3They can also serve as a “transitional object” when giving up the use of purely linear models.

16 As we saw above, by does something slightly different when given a categorical variable. How are
these two uses related?
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on this idea in Chapter 10.) Even when the second reason applies, we would like to
know how much bias we’re introducing by using linear predictors, which we could
do by randomly selecting a subset of the data which is small enough for us to manage,
and fitting an additive model.

In the vast majority of cases when users of statistical software fit linear models,
neither of these justifications applies: theory doesn’t tell us to expect linearity, and
our machines don’t compel us to use it. Linear regression is then employed for no
better reason than that users know how to type 1m but not gam. Yo# now know
better, and can spread the word.

9.7 Further Reading

Simon Wood, who wrote the mgcv package, has a nice book about additive models
and their generalizations, Wood (2006); at this level it’s your best source for further
information. Buja et a/. (1989) is a thorough theoretical treatment.

The expansions of §9.5 are sometimes called “functional analysis of variance” or
“functional ANOVA”. Making those ideas precise requires exploring some of the
geometry of infinite-dimensional spaces of functions (“Hilbert space”). See Wahba
(1990) for a treatment of the statistical topic, and Halmos (1957) for a classic intro-
duction to Hilbert spaces.

Historical notes Ezekiel (1924) seems to be the first publication advocating the use
of additive models as a general method, which he called “curvilinear multiple cor-
relation”. His paper was complete with worked examples on simulated data (with
known answers) and real data (from economics)!”. He was explicit that any rea-
sonable smoothing or regression technique could be used to find what we’d call the
partial response functions. He also gave a successive-approximation algorithm for es-
timate the over-all model: start with an initial guess about all the partial responses;
plot all the partial residuals; refine the partial responses simultaneously; repeat. This
differs from back-fitting in that the partial response functions are updating in parallel
within each cycle, not one after the other. This is a subtle difference, and Ezekiel’s
method will often work, but can run into trouble with correlated predictor variables,
when back-fitting will not.

The Gauss-Seidel or backfitting algorithm was invented by Gauss in the early
1800s during his work on least squares estimation in linear models; he mentioned it
in letters to students, but never published it. (Apparently he described it as something
one could do “while half asleep”.) Seidel gave the first published version in 1874. (See
https://www.siam.org/meetings/1a09/talks/benzi.pdf.) [ am not sure when
the connection was made between additive statistical models and back-fitting.

17«Each of these curves illustrates and substantiates conclusions reached by theoretical economic analy-
sis. Equally important, they provide definite quantitative statements of the relationships. The method of
...curvilinear multiple correlation enable[s] us to use the favorite tool of the economist, caeteris paribus,
in the analysis of actual happenings equally as well as in the intricacies of theoretical reasoning” (p. 453).
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9.8 Exercises

1. Repeat the analyses of California housing prices with Pennsylvania housing
prices. Which partial response functions might one reasonably hope would
stay the same? Do they? (How can you tell?)

2. Additive? For general p, let ||X|| be the (ordinary, Euclidean) length of the
vector X. Is this an additive function of the (ordinary, Cartesian) coordinates?
Is ||%]]* an additive function? || — %;|| for a fixed %? || — %,||*?

3. Additivity vs. parallelism

(2) Take any additive function f of p arguments x;,x,,...x,. Fix a coor-
dinate index 7 and a real number c. Prove that f(x;,%,...%;,...x,) —
f(x1,%),...x; +c,...x,) depends only on x; and ¢, and not on the other

coordinates.

(b) Suppose p =2, and continue to assume f is additive. Consider the curve
formed by plotting f(x,,x,) against x, for a fixed value of x,, and the
curved formed by plotting f(x;,x,) against x, with x, fixed at a different
value, say x;. Prove that the curves are parallel, i.e., that the vertical
distance between them is constant.

(c) For general p and additive £, consider the surfaces formed by the f b
8 P Y y
varying all but one of the coordinates. Prove that these surfaces are always
parallel to each other.

(d) Is the converse true? That is, do parallel regression surfaces imply an
additive model?
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[[TODO: write some more
exercises — turn footnotes into

problems?]]



