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Chapter 20

Graphical Models

We have spent a lot of time looking at ways of figuring out how one variable (or set
of variables) depends on another variable (or set of variables) — this is the core idea in
regression and in conditional density estimation. We have also looked at how to esti-
mate the joint distribution of variables, both with kernel density estimation and with
models like factor and mixture models. The later two show an example of how to
get the joint distribution by combining a conditional distribution (observables given
factors; mixture components) with a marginal distribution (Gaussian distribution of
factors; the component weights). When dealing with complex sets of dependent vari-
ables, it would be nice to have a general way of composing conditional distributions
together to get joint distributions, and especially nice if this gave us a way of reason-
ing about what we could ignore, of seeing which variables are irrelevant to which
other variables. This is what graphical models let us do.

20.1 Conditional Independence and Factor Models
The easiest way into this may be to start with the diagrams we drew for factor anal-
ysis. There, we had observables and we had factors, and each observable depended
on, or loaded on, some of the factors. We drew a diagram where we had nodes,
standing for the variables, and arrows running from the factors to the observables
which depended on them. In the factor model, all the observables were conditionally
independent of each other, given all the factors:

p(X1,X2, . . .Xp |F1, F2, . . . Fq ) =
p
Y

i=1

p(Xi |F1, . . . Fq ) (20.1)

But in fact observables are also independent of the factors they do not load on, so
this is still too complicated. Let’s write loads(i ) for the set of factors on which the
observable Xi loads. Then

p(X1,X2, . . .Xp |F1, F2, . . . Fq ) =
p
Y

i=1

p(Xi |Floads(i )) (20.2)
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FIGURE 20.1: Illustration of a typical model with two latent factors (F1 and F2, in circles) and four
observables (X1 through X4).

Consider Figure 20.1. The conditional distribution of observables given factors
is

p(X1,X2,X3,X4|F1, F2) = p(X1|F1, F2)p(X2|F1, F2)p(X3|F1)p(X4|F 2) (20.3)

X1 loads on F1 and F2, so it is independent of everything else, given those two vari-
ables. X1 is unconditionally dependent on X2, because they load on common factors,
F1 and F2; and X1 and X3 are also dependent, because they both load on F1. In fact, X1
and X2 are still dependent given F1, because X2 still gives information about F2. But
X1 and X3 are independent given F1, because they have no other factors in common.
Finally, X3 and X4 are unconditionally independent because they have no factors in
common. But they become dependent given X1, which provides information about
both the common factors.

None of these assertions rely on the detailed assumptions of the factor model,
like Gaussian distributions for the factors, or linear dependence between factors and
observables. What they rely on is that Xi is independent of everything else, given the
factors it loads on. The idea of graphical models is to generalize this, by focusing on
relations of direct dependence, and the conditional independence relations implied
by them.

20.2 Directed Acyclic Graph (DAG) Models
We have a collection of variables, which to be generic I’ll write X1,X2, . . .Xp . These
may be discrete, continuous, or even vectors; it doesn’t matter. We represent these
visually as nodes in a graph. There are arrows connecting some of these nodes. If an
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arrow runs from Xi to Xj , then Xi is a parent of Xj . This is, as the name “parent”
suggests, an anti-symmetric relationship, i.e., Xj cannot also be the parent of Xi .
This is why we use an arrow, and why the graph is directed1. We write the set of
all parents of Xj as parents( j ); this generalizes the notion of the factors which an
observable loads on to. The joint distribution “decomposes according to the graph”:

p(X1,X2, . . .Xp ) =
p
Y

i=1

p(Xi |Xparents(i )) (20.4)

If Xi has no parents, because it has no incoming arrows, take p(Xi |Xparents(i )) just to
be the marginal distribution p(Xi ). Such variables are called exogenous; the others,
with parents, are endogenous. An unfortunate situation could arise where X1 is the
parent of X2, which is the parent of X3, which is the parent of X1. Perhaps, under
some circumstances, we could make sense of this and actually calculate with Eq. 20.4,
but the general practice is to rule it out by assuming the graph is acyclic, i.e., that it
has no cycles, i.e., that we cannot, by following a series of arrows in the graph, go
from one node to other nodes and ultimately back to our starting point. Altogether
we say that we have a directed acyclic graph, or DAG, which represents the direct
dependencies between variables.2

What good is this? The primary virtue is that if we are dealing with a DAG model,
the graph tells us all the dependencies we need to know; those are the conditional
distributions of variables on their parents, appearing in the product on the right hand
side of Eq. 20.4. (This includes the distribution of the exogeneous variables.) This fact
has two powerful sets of implications, for probabilistic reasoning and for statistical
inference.

Let’s take inference first, because it’s more obvious: all that we have to estimate
are the conditional distributions p(Xi |Xparents(i )). We do not have to estimate the
distribution of Xi given all of the other variables, unless of course they are all parents
of Xi . Since estimating distributions, or even just regressions, conditional on many
variables is hard, it is extremely helpful to be able to read off from the graph which
variables we can ignore. Indeed, if the graph tells us that Xi is exogeneous, we don’t
have to estimate it conditional on anything, we just have to estimate its marginal
distribution.

20.2.1 Conditional Independence and the Markov Property
The probabilistic implication of Eq. 20.4 is perhaps even more important, and that
has to do with conditional independence. Pick any two variables Xi and Xj , where
Xj is not a parent of Xi . Consider the distribution of Xi conditional on its parents
and Xj . There are two possibilities. (i) Xj is not a descendant of Xi . Then we can
see that Xi and Xj are conditionally independent. This is true no matter what the
actual conditional distribution functions involved are; it’s just implied by the joint

1See Appendix K for a brief review of the ideas and jargon of graph theory.
2See §20.6 for remarks on undirected graphical models, and graphs with cycles.
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X1 X2 X3 X4

FIGURE 20.2: DAG for a discrete-time Markov process. At each time t , Xt is the child of Xt�1 and
the parent of Xt+1.

distribution respecting the graph. (ii) Alternatively, Xj is a descendant of Xi . Then in
general they are not independent, even conditional on the parents of Xi . So the graph
implies that certain conditional independence relations will hold, but that others in
general will not hold.

As you know from your probability courses, a sequence of random variables
X1,X2,X3, . . . forms a Markov process3 when “the past is independent of the future
given the present”: that is,

Xt+1 |= (Xt�1,Xt�2, . . .X1)|Xt (20.5)

from which it follows that

(Xt+1,Xt+2,Xt+3, . . .) |= (Xt�1,Xt�2, . . .X1)|Xt (20.6)

which is called the Markov property. DAG models have a similar property: if we
take any collection of nodes I , it is independent of its non-descendants, given its
parents:

XI |= Xnon�descendants(I )|Xparents(I ) (20.7)

This is the directed graph Markov property. The ordinary Markov property is in
act a special case of this, when the graph looks like Figure 20.24.

On the other hand, if we condition on one of Xi ’s children, Xi will generally be
dependent on any other parent of that child. If we condition on multiple children of
Xi , we’ll generally find Xi is dependent on all its co-parents. It should be plausible,
and is in fact true, that Xi is independent of everything else in the graph if we condi-
tion on its parents, its children, and its children’s other parents. This set of nodes is
called Xi ’s Markov blanket.

20.3 Conditional Independence and d -Separation
It is clearly very important to us to be able to deduce when two sets of variables
are conditionally independent of each other given a third. One of the great uses of

3After the Russian mathematician A. A. Markov, who introduced the theory of Markov processes in
the course of a mathematical dispute with his arch-nemesis, to show that probability and statistics could
apply to dependent events, and hence that Christianity was not necessarily true (I am not making this up:
Basharin et al., 2004).

4To see this, take the “future” nodes, indexed by t + 1 and up, as the set I . Their parent consists just of
Xt , and all their non-descendants are the even earlier nodes at times t � 1, t � 2, etc.

00:13 Thursday 7th April, 2016



483 20.3. CONDITIONAL INDEPENDENCE AND D -SEPARATION

a

X Z Y

b

ZX Y

c

ZX Y

d

X Z Y

FIGURE 20.3: Four DAGs for three linked variables. The first two (a and b ) are called chains; c is
a fork; d is a collider. If these were the whole of the graph, we would have X 6 |= Y and X |= Y |Z.
For the collider, however, we would have X |= Y while X 6 |= Y |Z.

DAGs is that they give us a fairly simple criterion for this, in terms of the graph
itself. All distributions which conform to a given DAG share a common set of condi-
tional independence relations, implied by the Markov property, no matter what their
parameters or the form of the distributions.

Our starting point is that when we have a single directed edge, we can reason from
the parent to the child, or from the child to the parent. While (as we’ll see in Part IV)
it’s reasonable to say that influence or causation flows one way, along the direction of
the arrows, statistical information can flow in either direction. Since dependence is
the presence of such statistical information, if we want to figure out which variables
are dependent on which, we need to keep track of these information flows.

While we can do inference in either direction across any one edge, we do have to
worry about whether we can propagate this information further. Consider the four
graphs in Figure 20.3. In every case, we condition on X , which acts as the source of
information. In the first three cases, we can (in general) propagate the information
from X to Z to Y — the Markov property tells us that Y is independent of its non-
descendants given its parents, but in none of those cases does that make X and Y
independent. In the last graph, however, what’s called a collider5, we cannot prop-
agate the information, because Y has no parents, and X is not its descendant, hence
they are independent. We learn about Z from X , but this doesn’t tell us anything
about Z ’s other cause, Y .

All of this flips around when we condition on the intermediate variable (Z in
Figure 20.3). The chains (Figures 20.3a and b ), conditioning on the intermediate
variable blocks the flow of information from X to Y — we learn nothing more about
Y from X and Z than from Z alone, at least not along this path. This is also true
of the fork (Figure 20.3c ) — conditional on their common cause, the two effects are
uninformative about each other. But in a collider, conditioning on the common effect
Z makes X and Y dependent on each other, as we’ve seen before. In fact, if we don’t
condition on Z , but do condition on a descendant of Z , we also create dependence
between Z ’s parents.

5Because two incoming arrows “collide” there.
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20.3. CONDITIONAL INDEPENDENCE AND D -SEPARATION 484

We are now in a position to work out conditional independence relations. We
pick our two favorite variables, X and Y , and condition them both on some third set
of variables S. If S blocks every undirected path6 from X to Y , then they must be
conditionally independent given S. An unblocked path is also called active. A path
is active when every variable along the path is active; if even one variable is blocked
by S, the whole path is blocked. A variable Z along a path is active, conditioning on
S, if

1. Z is a collider along the path, and in S; or,

2. Z is a descendant of a collider, and in S; or

3. Z is not a collider, and not in S.

Turned around, Z is blocked or de-activated by conditioning on S if

1. Z is a non-collider and in S; or

2. Z is collider, and neither Z nor any of its descendants is in S

In words, S blocks a path when it blocks the flow of information by conditioning
on the middle node in a chain or fork, and doesn’t create dependence by conditioning
on the middle node in a collider (or the descendant of a collider). Only one node in a
path must be blocked to block the whole path. When S blocks all the paths between
X and Y , we say it d-separates them7. A collection of variables U is d-separated from
another collection V by S if every X 2 U and Y 2V are d-separated.

In every distribution which obeys the Markov property, d-separation implies con-
ditional independence8. It is not always the case that the reverse implication, the one
from conditional independence to d -separation, holds good. We will see in Part IV,
that when the distribution is “faithful” to a DAG, causal inference is immensely sim-
plified. But going from d-separation to conditional independence is true in any DAG,
whether or not it has a causal interpretation.

20.3.1 D-Separation Illustrated
The discussion of d-separation has been rather abstract, and perhaps confusing for
that reason. Figure 20.4 shows a DAG which might make this clearer and more
concrete.

If we make the conditioning set S the empty set, that is, we condition on noth-
ing, we “block” paths which pass through colliders. For instance, there are three
exogenous variables in the graph, X2,X3 and X5. Because they have no parents,
any path from one to another must go over a collider (Exercises 1 and 2). If we
do not condition on anything, therefore, we find that the exogenous variables are
d-separated and thus independent. Since X3 is not on any path linking X2 and X5,

6Whenever I talk about undirected paths, I mean paths without cycles.
7The “d” stands for “directed”
8We will not prove this, though I hope I have made it plausible. You can find demonstrations in Spirtes

et al. (2001); Pearl (2000); Lauritzen (1996).
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FIGURE 20.4: Example DAG used to illustrate d-separation.
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20.3. CONDITIONAL INDEPENDENCE AND D -SEPARATION 486

or descended from a node on any such path, if we condition only on X3, then X2
and X5 are still d-separated, so X2 |= X5|X3. There are two paths linking X3 to X5:
X3!X1 X2!X4 X5, and X3!X1! Y  X5. Conditioning on X2 (and noth-
ing else) blocks the first path (since X2 is part of it, but is a fork), and also blocks the
second path (since X2 is not part of it, and Y is a blocked collider). Thus, X3 |= X5|X2.
Similarly, X3 |= X2|X5 (Exercise 4).

For a somewhat more challenging example, let’s look at the relation between X3
and Y . There are, again, two paths here: X3!X1! Y , and X3!X1 X2!X4 
X5! Y . If we condition on nothing, the first path, which is a simple chain, is open,
so X3 and Y are d-connected and dependent. If we condition on X1, we block the
first path. X1 is a collider on the second path, so conditioning on X1 opens the path
there. However, there is a second collider, X4, along this path, and just conditioning
on X1 does not activate the second collider, so the path as a whole remains blocked.

Y 6 |= X3 (20.8)
Y |= X3|X1 (20.9)

To activate the second path, we can condition on X1 and either X4 (a collider
along that path) or on X6 (a descendant of a collider) or on both:

Y 6 |= X3|X1,X4 (20.10)
Y 6 |= X3|X1,X6 (20.11)
Y 6 |= X3|X1,X4,X6 (20.12)

Conditioning on X4 and/or X6 does not activate the X3 ! X1 ! Y path, but it’s
enough for there to be one active path to create dependence.

To block the second path again, after having opened it in one of these ways, we
can condition on X2 (since it is a fork along that path, and conditioning on a fork
blocks it), or on X5 (also a fork), or on both X2 and X5. So

Y |= X3|X1,X2 (20.13)
Y |= X3|X1,X5 (20.14)
Y |= X3|X1,X2,X5 (20.15)
Y |= X3|X1,X2,X4 (20.16)
Y |= X3|X1,X2,X6 (20.17)
Y |= X3|X1,X2,X5,X6 (20.18)

etc., etc.
Let’s look at the relationship between X4 and Y . X4 is not an ancestor of Y , or a

descendant of it, but they do share common ancestors, X5 and X2. Unconditionally,
Y and X4 are dependent, both through the path going X4  X5 ! Y , and through
that going X4 X2!X1! Y . Along both paths, the exogenous variables are forks,
so not conditioning on them leaves the path unblocked. X4 and Y become d-separated
when we condition on X5 and X2.

X6 and X3 have no common ancestors. Unconditionally, they should be inde-
pendent, and indeed they are: the two paths are X6  X4  X2 ! X1  X3, and
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487 20.3. CONDITIONAL INDEPENDENCE AND D -SEPARATION

X6  X4  X5 ! Y  X1  X3. Both paths contain a single collider (X1 and Y ,
respectively), so if we do not condition on them the paths are blocked and X6 and X3
are independent. If we condition on either Y or X1 (or both), however, we unblock
the paths, and X6 and X3 become d-connected, hence dependent. To get back to d-
separation while conditioning on Y , we must also condition on X4 or X5, or both.
To get d-separation while conditioning on X1, we must also condition on X4, or on
X2, or on X4 and X2. If we condition on both X1 and Y and want d-separation, we
could just add conditioning on X4, or we could condition on X2 and X5, or all three.

If the abstract variables are insufficiently concrete, consider reading them as fol-
lows:

Y , Grade in this class
X1 , Effort spent on this class
X2 , Enjoyment of statistics
X3 , Workload this term
X4 , Quality of work in linear regression class
X5 , Amount learned in linear regression class
X6 , Grade in linear regression

Pretending, for the sake of illustration, that this is accurate, how heavy your work-
load is this semester (X3) would predict, or rather retrodict, your grade in linear re-
gression last semester (X6), once we control for how much effort you put into this
class (X1). Changing your workload this semester would not, however, reach back-
wards in time to raise or lower your grade in regression.

20.3.2 Linear Graphical Models and Path Coefficients
We began our discussion of graphical models with factor analysis as our starting
point. Factor models are a special case of linear (directed) graphical models, a.k.a.
path models9 As with factor models, in the larger class we typically center all the
variables (so they have expectation zero) and scale them (so they have variance 1). In
factor models, the variables were split into two sets, the factors and the observables,
and all the arrows went from factors to observables. In the more general case, we do
not necessarily have this distinction, but we still assume the arrows from a directed
acyclic graph. The conditional expectation of each variable is a linear combination
of the values of its parents:

E
î

Xi |Xparents(i )

ó

=
X

j2parents(i )
wj i Xj (20.19)

just as in a factor model. In a factor model, the coefficients wj i were the factor load-
ings. More generally, they are called path coefficients.

9Some people use the phrase “structural equation models” for linear directed graphical models exclu-
sively.

00:13 Thursday 7th April, 2016



20.3. CONDITIONAL INDEPENDENCE AND D -SEPARATION 488

The path coefficients determine all of the correlations between variables in the
model. If all of the variables have been standardized to mean zero and variance 1, and
the path coefficients are calculated for these standardized variables, we can find the
correlation between Xi and Xj as follows:

• Find all of the undirected paths between Xi and Xj .

• Discard all of the paths which go through colliders.

• For each remaining path, multiply all the path coefficients along the path.

• Sum up these products over paths.

These rules were introduced by the great geneticist and mathematical biologist Sewall
Wright in the early 20th century (see further reading for details). These “Wright
path rules” often seem mysterious, particularly the bit where paths with colliders
are thrown out. But from our perspective, we can see that what Wright is doing is
finding all of the unblocked paths between Xi and Xj . Each path is a channel along
which information (here, correlation) can flow, and so we add across channels.

It is frequent, and customary, to assume that all of the variables are Gaussian. (We
saw this in factor models as well.) With this extra assumption, the joint distribution
of all the variables is a multivariate Gaussian, and the correlation matrix (which we
find from the path coefficients) gives us the joint distribution.

If we want to find correlations conditional on a set of variables S, corr(Xi ,Xj |S),
we still sum up over the unblocked paths. If we have avoided conditioning on collid-
ers, then this is just a matter of dropping the now-blocked paths from the sum. If on
the other hand we have conditioned on a collider, that path does become active (un-
less blocked elsewhere), and we in fact need to modify the path weights. Specifically,
we need to work out the correlation induced between the two parents of the collider,
by conditioning on that collider. This can be calculated from the path weights, and
some fairly tedious algebra10. The important thing is to remember that the rule of
d-separation still applies, and that conditioning on a collider can create correlations.

Path Coefficients and Covariances If the variables have not all been standardized,
but Eq. 20.19 still applies, it is often desirable to calculate covariances, rather than
correlation coefficients. This involves a little bit of extra work, by way of keeping
track of variances, and in particular the variances of “source” terms. Since many
references do not state the path-tracing rules for covariances, it’s worth going over
them here.

To find the marginal covariance between Xi and Xj , the procedure is as follows:

1. Find all of the unblocked paths between Xi and Xj (i.e., discard all paths which
go through colliders).

2. For each remaining path:

10See for instance Li et al. (1975).
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489 20.3. CONDITIONAL INDEPENDENCE AND D -SEPARATION

(a) multiply all the path coefficients along the path;
(b) find the node along that path which is the ancestor of all the other nodes

along that path11, and call it the path’s source;
(c) multiply the product of the coefficients by the variance of the source.

3. Sum the product of path coefficients and source variances over all remaining
paths.

(Notice that if all variables are standardized to variance 1, we don’t have to worry
about source variances, and these rules reduce to the previous ones.)

To find the conditional covariance between Xi and Xj given a set of variables S,
there are two procedures, depending on whether or not conditioning on S opens any
paths between Xi and Xj by including colliders. If S does not contain any colliders
or descendants of colliders (on paths between Xi and Xj ),

1. For each unblocked path linking Xi and Xj :

(a) multiply all the path coefficients along the path;
(b) find the source of each path12;
(c) multiply the product of the coefficients by the variance of the source.

2. Sum the product of path coefficients and source variances over all remaining
paths.

If, on the other hand, conditioning on S opens paths by conditioning on colliders
(or their descendants), then we would have to handle the consequences of condition-
ing on a collider. This is usually too much of a pain to do graphically, and one should
fall back on algebra. The next sub-section does however say a bit about what qualita- [[TODO: In final revision,

write out full graphical rules
for completeness]]

tively happens to the correlations.

20.3.3 Positive and Negative Associations
We say that variables X and Y are positively associated if increasing X predicts, on
average, an increase in Y , and vice versa13; if increasing X predicts a decrease in Y ,
then they are negatively associated. If this holds when conditioning out other vari-
ables, we talk about positive and negative partial associations. Heuristically, positive
association means positive correlation in the neighborhood of any given x, though
the magnitude of the positive correlation need not be constant. Note that not all
dependent variables have to have a definite sign for their association.

We can multiply together the signs of positive and negative partial associations
along a path in a graphical model, the same we can multiply together path coeffi-
cients in a linear graphical model. Paths which contain (inactive!) colliders should
be neglected. If all the paths connecting X and Y have the same sign, then we know

11Showing that such an ancestor exists is Exercise 3a.
12Showing that the source of an unblocked, collider-free path cannot be in S is Exercise 3b.
13I.e., if dE[Y |X=x]

d x � 0
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20.4. INDEPENDENCE AND INFORMATION 490

that over-all association between X and Y must have that sign. If different paths have
different signs, however, then signs alone are not enough to tell us about the over-all
association.

If we are interested in conditional associations, we have to consider whether our
conditioning variables block paths or not. Paths which are blocked by conditioning
should be dropped from consideration. If a path contains an activated collider, we
need to include it, but we reverse the sign of one arrow into the collider. That is, if
X +! Z + Y , and we condition on Z , we need to replace one of the plus signs with
a � sign, because the two parents now have an over-all negative association.14 If on
the other hand one of the incoming arrows had a positive association and the other
was negative, we need to flip one of them so they are both positive or both negative;
it doesn’t matter which, since it creates a positive association between the parents15.[[TODO: Write out formal

proofs as appendix]]

20.4 Independence, Conditional Independence, and In-
formation Theory

[[TODO: Move to planned
appendix on information the-
ory]]

Take two random variables, X and Y . They have some joint distribution, which
we can write p(x, y). (If they are both discrete, this is the joint probability mass
function; if they are both continuous, this is the joint probability density function;
if one is discrete and the other is continuous, there’s still a distribution, but it needs
more advanced tools.) X and Y each have marginal distributions as well, p(x) and
p(y). X |= Y if and only if the joint distribution is the product of the marginals:

X |= Y , p(x, y) = p(x)p(y) (20.20)

We can use this observation to measure how dependent X and Y are. Let’s start with
the log-likelihood ratio between the joint distribution and the product of marginals:

log
p(x, y)

p(x)p(y)
(20.21)

This will always be exactly 0 when X |= Y . We use its average value as our measure of
dependence:

I [X ;Y ]⌘X
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(20.22)

(If the variables are continuous, replace the sum with an integral.) Clearly, if X |= Y ,
then I [X ;Y ] = 0. One can show16 that I [X ;Y ] � 0, and that I [X ;Y ] = 0 implies

14If both smoking and asbestos are positively associated with lung cancer, and we know the patient does
not have lung cancer, then high levels of smoking must be compensated for by low levels of asbestos, and
vice versa.

15If yellow teeth are positively associated with smoking and negatively associated with dental insurance,
and we know the patient does not have yellow teeth, then high levels of smoking must be compensated
for by excellent dental care, and conversely poor dental care must be compensated for by low levels of
smoking.

16Using the same type of convexity argument (“Jensen’s inequality”) we used §19.2.1 for understanding
why the EM algorithm works.
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X |= Y . The quantity I [X ;Y ] is clearly symmetric between X and Y . Less obvi-
ously, I [X ;Y ] = I [ f (X ); g (Y )] whenever f and g are invertible functions. This
coordinate-freedom means that I [X ;Y ] measures all forms of dependence, not just
linear relationships, like the ordinary (Pearson) correlation coefficient, or monotone
dependence, like the rank (Spearman) correlation coefficient. In information theory,
I [X ;Y ] is called the mutual information, or Shannon information, between X
and Y . So we have the very natural statement that random variables are independent
just when they have no information about each other.

There are (at least) two ways of giving an operational meaning to I [X ;Y ]. One,
the original use of the notion, has to do with using knowledge of Y to improve
the efficiency with which X can be encoded into bits (Shannon, 1948; Cover and
Thomas, 2006). While this is very important — it’s literally transformed the world
since 1945 — it’s not very statistical. For statisticians, what matters is that if we
test the hypothesis that X and Y are independent, with joint distribution p(x)p(y),
against the hypothesis that they dependent, with joint distribution p(x, y), then the
mutual information controls the error probabilities of the test. To be exact, if we fix
any power we like (90%, 95%, 99.9%, . . . ), the size or type I error rate ↵n , of the best
possible test shrinks exponentially with the number of IID samples n, and the rate of
exponential decay is precisely I [X ;Y ] (Kullback, 1968, §4.3, theorem 4.3.2):

lim
n!1�

1
n

log↵n  I [X ;Y ] (20.23)

So positive mutual information means dependence, and the magnitude of mutual
information tells us about how detectable the dependence is17.

Suppose we conditioned X and Y on a third variable (or variables) Z . For each
realization z, we can calculate the mutual information,

I [X ;Y |Z = z]⌘X
x,y

p(x, y|z) log
p(x, y|z)

p(x|z)p(y|z) (20.24)

And we can average over z,

I [X ;Y |Z]⌘X
z

p(z)I [X ;Y |Z = z] (20.25)

This is the conditional mutual information. It will not surprise you at this point to
learn that X |= Y |Z if and only if I [X ;Y |Z] = 0. The magnitude of the conditional
mutual information tells us how easy it is to detect conditional dependence.

17Symmetrically, if we follow the somewhat more usual procedure of fixing a type I error rate ↵,
the type II error rate �n (= 1�power) also goes to zero exponentially, and the exponential rate is
P

x,y p(x)p(y) log p(x)p(y)
p(x,y) , a quantity called the “lautam information” (Palomar and Verdú, 2008). (For

proofs of the exponential rate, see Palomar and Verdú (2008, p. 965), following Kullback (1968, §4.3, the-
orem 4.3.3).)
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Z

X

FIGURE 20.5: DAG for a mixture model. The latent class Z is exogenous, and the parent of the
observable random vector X . (If the components of X are conditionally independent given Z, they
could be represented as separate boxes on the lower level.

20.5 Examples of DAG Models and Their Uses
Factor models are examples of DAG models (as we’ve seen). So are mixture models
(Figure 20.5) and Markov chains (see above). DAG models are considerably more
flexible, however, and can combine observed and unobserved variables in many ways.

Consider, for instance, Figure 20.6. Here there are two exogeneous variables,
labeled “Smoking” and “Asbestos”. Everything else is endogenous. Notice that “Yel-
low teeth” is a child of “Smoking” alone. This does not mean that (in the model)
whether someone’s teeth get yellowed (and, if so, how much) is a function of smok-
ing alone; it means that whatever other influences go into that are independent of
the rest of the model, and so unsystematic that we can think about those influences,
taken together, as noise.

Continuing, the idea is that how much someone smokes influences how yellow
their teeth become, and also how much tar builds up in their lungs. Tar in the lungs,
in turn, leads to cancer, as does by exposure to asbestos.

Now notice that, in this model, teeth-yellowing will be unconditionally depen-
dent on, i.e., associated with, the level of tar in the lungs, because they share a com-
mon parent, namely smoking. Yellow teeth and tarry lungs will however be condi-
tionally independent given that parent, so if we control for smoking we should not
be able to predict the state of someone’s teeth from the state of their lungs or vice
versa.

On the other hand, smoking and exposure to asbestos are independent, at least
in this model, as they are both exogenous18. Conditional on whether someone has

18If we had two variables which in some physical sense were exogenous but dependent on each other,
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Smoking

Yellow teeth Tar in lungs

Cancer

Asbestos

FIGURE 20.6: DAG model indicating (hypothetical) relationships between smoking, asbestos, can-
cer, and covariates.
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cancer, however, smoking and asbestos will become dependent.
To understand the logic of this, suppose (what is in fact true) that both how much

someone smokes and how much they are exposed to asbestos raises the risk of can-
cer. Conditional on not having cancer, then, one was probably exposed to little of
either tobacco smoke or asbestos. Conditional on both not having cancer and having
been exposed to a high level of asbestos, one probably was exposed to an unusually
low level of tobacco smoke. Vice versa, no cancer plus high levels of tobacco tend to
imply especially little exposure to asbestos. We thus have created a negative associa-
tion between smoking and asbestos by conditioning on cancer. Naively, a regression
where we “controlled for” cancer would in fact tell us that exposure to asbestos keeps
tar from building up in the lungs, prevents smoking, and whitens teeth.

More generally, conditioning on a third variable can create dependence between
otherwise independent variables, when what we are conditioning on is a common
descendant of the variables in question.19 This conditional dependence is not some
kind of finite-sample artifact or error — it’s really there in the joint probability dis-
tribution. If all we care about is prediction, then it is perfectly legitimate to use it. In
the world of Figure 20.6, it really is true that you can predict the color of someone’s
teeth from whether they have cancer and how much asbestos they’ve been exposed
to, so if that’s what you want to predict20, why not use that information? But if you
want to do more than just make predictions without understanding, if you want to
understand the structure tying together these variables, if you want to do science, if
you don’t want to go around telling yourself that asbestos whitens teeth, you really
do need to know the graph.21

20.5.1 Missing Variables
Suppose that we do not observe one of the variables, such as the quantity of tar in
the lungs, but we somehow know all of the conditional distributions required by
the graph. (Tar build-up in the lungs might indeed be hard to measure for living
people.) Because we have a joint distribution for all the variables, we could estimate
the conditional distribution of one of them given the rest, using the definition of
conditional probability and of integration:

p(Xi |X1,X2,Xi�1,Xi+1,Xp ) =
p(X1,X2,Xi�1,Xi ,Xi+1,Xp )
R

p(X1,X2,Xi�1, xi ,Xi+1,Xp )d xi
(20.26)

We could in principle do this for any joint distribution. When the joint distribution
comes from a DAG model, however, we can simplify this considerably. Recall from

we would represent them in a DAG model by either a single vector-valued random variable (which would
get only one node), or as children of a latent unobserved variable, which was truly exogenous.

19Economists, psychologists, and other non-statisticians often repeat the advice that if you want to
know the effect of X on Y , you should not condition on Z when Z is endogenous. This is bit of folklore
is a relic of the days of ignorance, when our ancestors groped towards truths they could not grasp. If we
want to know whether asbestos is associated with tar in the lungs, conditioning on the yellowness of teeth
is fine, even though that is an endogenous variable.

20Maybe you want to guess who’d be interested in buying whitening toothpaste.
21We return to this example in §24.2.2.
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§20.2.1 that Xi is independent of all the other variables given its Markov blanket, i.e.,
its parents, its children, and the other parents of its children. We can therefore drop
from the conditioning everything which isn’t in the Markov blanket. Actually doing
the calculation then boils down to a version of the EM algorithm.22

If we observe only a subset of the other variables, we can still use the DAG to de-
termine which ones actually matter to estimating Xi , and which ones are superfluous.
The calculations then however become much more intricate.23

20.6 Non-DAG Graphical Models: Undirected Graphs
and Directed Graphs with Cycles

This section is optional, as, for various reasons, we will not use these models in this
course.

20.6.1 Undirected Graphs

There is a lot of work on probability models which are based on undirected graphs, in
which the relationship between random variables linked by edges is completely sym-
metric, unlike the case of DAGs24. Since the relationship is symmetric, the preferred
metaphor is not “parent and child”, but “neighbors”. The models are sometimes
called Markov networks or Markov random fields, but since DAG models have a
Markov property of their own, this is not a happy choice of name, and I’ll just call
them “undirected graphical models”.

The key Markov property for undirected graphical models is that any set of nodes
I is independent of the rest of the graph given its neighbors:

XI |= Xnon�neighbors(I )|Xneighbors(I ) (20.27)

This corresponds to a factorization of the joint distribution, but a more complex one
than that of Eq. 20.4, because a symmetric neighbor-of relation gives us no way of
ordering the variables, and conditioning the later ones on the earlier ones. The trick
turns out to go as follows. First, as a bit of graph theory, a clique is a set of nodes
which are all neighbors of each other, and which cannot be expanded without los-
ing that property. We write the collection of all cliques in a graph G as cliques(G).
Second, we introduce potential functions  c which take clique configurations and
return non-negative numbers. Third, we say that a joint distribution is a Gibbs dis-

22Graphical models, especially directed ones, are often called “Bayes nets” or “Bayesian networks”, be-
cause this equation is, or can be seen as, a version of Bayes’s rule. Since of course it follows directly
from the definition of conditional probability, there is nothing distinctively Bayesian here — no subjective
probability, or assigning probabilities to hypotheses.

23There is an extensive discussion of relevant methods in Jordan (1998).
24I am told that this is more like the idea of causation in Buddhism, as something like “co-dependent

origination”, than the asymmetric one which Europe and the Islamic world inherited from the Greeks
(especially Aristotle), but you would really have to ask a philosopher about that.
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tribution25 when
p(X1,X2, . . .Xp )/

Y

c2cliques(G)
 c (Xi2c ) (20.28)

That is, the joint distribution is a product of factors, one factor for each clique. Fre-
quently, one introduces what are called potential functions, Uc = log c , and then
one has

p(X1,X2, . . .Xp )/ e�
P

c2cliques(G)Ui (Xi2c ) (20.29)

The key correspondence is what is sometimes called the Gibbs-Markov theorem:
a distribution is a Gibbs distribution with respect to a graph G if, and only if, it obeys
the Markov property with neighbors defined according to G.26.

In many practical situations, one combines the assumption of an undirected graph-
ical model with the further assumption that the joint distribution of all the random
variables is a multivariate Gaussian, giving a Gaussian graphical model. An im-
portant consequence of this assumption is that the graph can be “read off” from the
inverse of the covariance matrix ⌃, sometimes called the precision matrix. Specifi-
cally, there is an edge linking Xi to Xj if and only if (⌃�1)i j 6= 0. (See Lauritzen (1996)
for an extensive discussion.) These ideas sometimes still work for non-Gaussian dis-
tributions, when there is a natural way of transforming them to be Gaussian (Liu
et al., 2009), though it is unclear just how far that goes.

20.6.2 Directed but Cyclic Graphs
Much less work has been done on directed graphs with cycles. It is very hard to give
these a causal interpretation, in the fashion described in the next chapter. Feedback
processes are of course very common in nature and technology, and one might think
to represent these as cycles in a graph. A model of a thermostat, for instance, might
have variables for the set-point temperature, the temperature outside, how much the
furnace runs, and the actual temperature inside, with a cycle between the latter two
(Figure 20.7).

Thinking in this way is however simply sloppy. It always takes some time to tra-
verse a feedback loop, and so the cycle really “unrolls” into an acyclic graph link-
ing similar variables at different times (Figure 20.8). Sometimes27, it is clear that
when people draw a diagram like Figure 20.7, the incoming arrows really refer to

25After the American physicist and chemist J. W. Gibbs, who introduced such distributions as part
of statistical mechanics, the theory of the large-scale patterns produced by huge numbers of small-scale
interactions.

26This theorem was proved, in slightly different versions, under slightly different conditions, and by
very different methods, more or less simultaneously by (alphabetically) Dobrushin, Griffeath, Grimmett,
and Hammersley and Clifford, and almost proven by Ruelle. In the statistics literature, it has come
to be called the “Hammersley-Clifford” theorem, for no particularly good reason. In my opinion, the
clearest and most interesting version of the theorem is that of Griffeath (1976), an elementary exposi-
tion of which is given by Pollard (http://www.stat.yale.edu/~pollard/Courses/251.spring04/
Handouts/Hammersley-Clifford.pdf). (On the other hand, Griffeath was one of my teachers, so dis-
count accordingly.) Calling it the “Gibbs-Markov theorem” says more about the content, and is fairer to
all concerned.

27As in Puccia and Levins (1985), and the LoopAnalyst package based on it (Dinno, 2009).
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Set point
on thermostat Furnace+ Interior

temperature
+
-

Exterior
temperature

+

FIGURE 20.7: Directed but cyclic graphical model of a feedback loop. Signs (+, � on arrows are
“guides to the mind”. Cf. Figure 20.8.

the change, or rate of change, of the variable in question, so it is merely a visual
short-hand for something like Figure 20.8.

Directed graphs with cycles are thus primarily useful when measurements are so
slow or otherwise imprecise that feedback loops cannot be unrolled into the actual
dynamical processes which implement them, and one is forced to hope that one can
reason about equilibria instead28. If you insist on dealing with cyclic directed graphi-
cal models, see Richardson (1996); Lacerda et al. (2008) and references therein.

20.7 Further Reading
The paper collection Jordan (1998) is actually extremely good, unlike most collec-
tions of edited papers; Jordan and Sejnowski (2001) is also useful. Lauritzen (1996)
is thorough but more mathematically demanding. The books by Spirtes et al. (1993,
2001) and by Pearl (1988, 2000, 2009b) are deservedly classics, especially for their
treatment of causality, of which much more in Part IV. Glymour (2001) discusses
applications to psychology.

While I have presented DAG models as an outgrowth of factor analysis, their
historical ancestry is actually closer to the “path analysis” models introduced, start-
ing around 1918, by the great geneticist and mathematical biologist Sewall Wright
to analyze processes of development and genetics. Wright published his work in a
series of papers which culminated in Wright (1934). That paper is now freely avail-
able online, and worth reading. (See also http://www.ssc.wisc.edu/soc/class/
soc952/Wright/wright_biblio.htm for references to, and in some cases copies of,
related papers by Wright.) Path analysis proved extremely influential in psychology
and sociology. Loehlin (1992) is user-friendly, though aimed at psychologists who
know less math anyone taking this course. Li (1975), while older, is very enthusi-
astic and has many interesting applications in biology. Moran (1961) is a very clear
treatment of the mathematical foundations, extended by Wysocki (1992) to the case
where each variable is itself multi-dimensional vector, so that path “coefficients” are
themselves matrices.

Markov random fields where the graph is a regular lattice are used extensively in
spatial statistics. Good introductory-level treatments are provided by Kindermann

28Economists are fond of doing so, generally without providing any rationale, based in economic theory,
for supposing that equilibrium is a good approximation (Fisher, 1983, 2010).
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Set point
on thermostat

Furnace
at time t

+

Furnace
at time t+1

+

Interior
temperature
at time t+1

+

Exterior
temperature

+
Interior

temperature
at time t

+

-+

FIGURE 20.8: Directed, acyclic graph for the situation in Figure 20.7, taking into account the fact
that it takes time to traverse a feedback loop. One should imagine this repeating to times t + 2,
t + 3, etc., and extending backwards to times t � 1, t � 2, etc., as well. Notice that there are no
longer any cycles.
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and Snell (1980) (the full text of which is free online), and by Guttorp (1995), which
also covers the associated statistical methods. Winkler (1995) is also good, but pre-
sumes more background in statistical theory. (I would recommend reading it after
Guttorp.) Griffeath (1976), while presuming more probability theory on the part
of the reader, is extremely clear and insightful, including what is simultaneously one
of the deepest and most transparent proofs of the Gibbs-Markov theorem. Lauritzen
(1996) is a mathematically rigorous treatment of graphical models from the viewpoint
of theoretical statistics, covering both the directed and undirected cases.

If you are curious about Gibbs distributions in, so to speak, their natural habitat,
the book by Sethna (2006), also free online, is the best introduction to statistical me-
chanics I have seen, and presumes very little knowledge of actual physics on the part
of the reader. Honerkamp (2002) is less friendly, but tries harder to make connec-
tions to statistics. If you already know what an exponential family is, then Eq. 20.29
is probably extremely suggestive, and you should read Mandelbrot (1962).

On information theory (§20.4), the best book is Cover and Thomas (2006) by
a large margin. References specifically on the connection between causal graphical
models and information theory are given in Chapter 24.

20.8 Exercises
1. Find all the paths between the exogenous variables in Figure 20.4, and verify

that every such path goes through at least one collider .

2. Is it true that in any DAG, every path between exogenous variables must go
through at least one collider, or descendant of a collider? Either prove it or
construct a counter-example in which it is not true. Does the answer change
we say “go through at least one collider”, rather than “collider or descendant
of a collider”? .

3. (a) Take any two nodes, say X1 and X2, which are linked in a DAG by a path
which does not go over colliders. Prove that there is a unique node along
the path which is an ancestor of all other nodes on that path. (Note that
this shared ancestor may in fact be X1 or X2.) Hint: do exercise 2.

(b) Take any two nodes which are linked in a DAG by a path which remains
open when conditioning on a set of variables S containing no colliders.
Prove that for every open path between X1 and X2, there is a unique node
along the path which is an ancestor of all other nodes on that path, and
that this ancestor is not in S.

4. Prove that X2 |= X3|X5 in Figure 20.4.
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