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Chapter 27

Estimating Causal Effects from
Observations

Chapter 25 gave us ways of identifying causal effects, that is, of knowing when quan-
tities like Pr (Y = y|d o(X = x)) are functions of the distribution of observable vari-
ables. Once we know that something is identifiable, the next question is how we can
actually estimate it from data.

27.1 Estimators in the Back- and Front- Door Criteria
The back-door and front-door criteria for identification not only show us when causal
effects are identifiable, they actually give us formulas for representing the causal ef-
fects in terms of ordinary conditional probabilities. When S satisfies the back-door
criterion, for instance,

Pr (Y = y|d o(X = x)) =
X

s
Pr (S = s )Pr (Y = y|X = x, S = s ) (27.1)

Everything on the right-hand side refers to the distribution of observables, following
the usual DAG without any surgery.

This is very handy, because we have spent the whole first part of the book learning
different ways of estimating distributions like Pr (S = s ) and Pr (Y = y|X = x, S = s ).
We can do fully non-parametric density estimation (Chapter 14), we can use para-
metric density models, we can model Y |X , S = f (X , S) + ✏Y and use regression, etc.
If bPr (Y = y|X = x, S = s ) is a consistent estimator of Pr (Y = y|X = x, S = s ), and
bPr (S = s ) is a consistent estimator of Pr (S = s ), then

X

s

bPr (S = s ) bPr (Y = y|X = x, S = s ) (27.2)

will be a consistent estimator of Pr (Y |d o(X = x)).
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607 27.1. ESTIMATORS IN THE BACK- AND FRONT- DOOR CRITERIA

In principle, I could end this section right here, but there are some special cases
and tricks which are worth knowing about. For simplicity, I will in this section only
work with the back-door criterion, since estimating with the front-door criterion
amounts to doing two rounds of back-door adjustment.

27.1.1 Estimating Average Causal Effects
Because Pr(Y |d o(X = x)) is a probability distribution, we can ask aboutE[Y |d o(X = x)],
when it makes sense for Y to have an expectation value; it’s just

E[Y |d o(X = x)] =
X

y
y Pr(Y = y|d o(X = x)) (27.3)

as you’d hope. This is the average effect, or sometimes just the effect of d o(X = x).
While it is certainly not always the case that it summarizes all there is to know about
the effect of X on Y , it is often useful.

If we identify the effect of X on Y through the back-door criterion, with control
variables S, then some algebra shows

E[Y |d o(X = x)] =
X

y
y Pr(Y = y|d o(X = x)) (27.4)

=
X

y
y
X

s
Pr(Y = y|X = x, S = s )Pr(S = s ) (27.5)

=
X

s
Pr(S = s )
X

y
y Pr(Y = y|X = x, S = s ) (27.6)

=
X

s
Pr(S = s )E[Y |X = x, S = s] (27.7)

The inner conditional expectation is just the regression function µ(x, s ), for when
we try to make a point-prediction of Y from X and S, so now all of the regression
methods from Part I come into play. We would, however, still need to know the
distribution Pr(S), so as to average appropriately. Let’s turn to this.

27.1.2 Avoiding Estimating Marginal Distributions
We’ll continue to focus on estimating the causal effect of X on Y using the back-door
criterion, i.e., assuming we’ve found a set of control variables S such that

Pr(Y = y|d o(X = x)) =
X

s
Pr(Y = y|X = x, S = s )Pr(S = s ) (27.8)

S will generally contain multiple variables, so we are committed to estimating two po-
tentially quite high-dimensional distributions, Pr(S) and Pr(Y |X , S). Even assuming
that we knew all the distributions, just enumerating possible values s and summing
over them would be computationally demanding. (Similarly, if S is continuous, we
would need to do a high-dimensional integral.) Can we reduce these burdens?

One useful short-cut is to use the law of large numbers, rather than exhaustively
enumerating all possible values of s . Notice that the left-hand side fixes y and x,
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27.1. ESTIMATORS IN THE BACK- AND FRONT- DOOR CRITERIA 608

so Pr(Y = y|X = x, S = s ) is just some function of s . If we have an IID sample
of realizations of S, say s1, s2, . . . sn , then the law of large numbers says that, for all
well-behaved function f ,

1
n

n
X

i=1

f (si )!
X

s
f (s )Pr(S = s ) (27.9)

Therefore, with a large sample,

Pr(Y = y|d o(X = x))⇡ 1
n

n
X

i=1

Pr(Y = y|X = x, S = si ) (27.10)

and this will still be (approximately) true when we use a consistent estimate of the
conditional probability, rather than its true value.

The same reasoning applies for estimating E[Y |d o(X = x)]. Moreover, we can
use the same reasoning to avoid explicitly summing over all possible s if we do have
Pr(S), by simulating from it1. Even if our sample (or simulation) is not completely
IID, but is statistically stationary, in the sense we will cover in Chapter 21 (strictly
speaking: “ergodic”), then we can still use this trick.

None of this gets us away from having to estimate Pr(Y |X , S), which is still going
to be a high-dimensional object, if S has many variables.

27.1.3 Matching
Suppose that our causal variable of interest X is binary, or (almost equivalent) that we
are only interested in comparing the effect of two levels, d o(X = 1) and d o(X = 0).
Let’s call these the “treatment” and “control” groups for definiteness, though nothing
really hinges on one of them being in any sense a normal or default value (as “con-
trol” suggests) — for instance, we might want to know not just whether men get paid
more than women, but whether they are paid more because of their sex2. In situations
like this, we are often not so interested in the full distributions Pr (Y |d o(X = 1)) and
Pr (Y |d o(X = 0)), but just in the expectations,E[Y |d o(X = 1)] andE[Y |d o(X = 0)].

1This is a “Monte Carlo” approximation to the full expectation value.
2The example is both imperfect and controversial. It is imperfect because biological sex (never mind

cultural gender) is not quite binary, even in mammals, but it’s close enough for a good approximation. It
is controversial because many statisticians insist that there is no sense in talking about causal effects unless
there is some actual manipulation or intervention one could do to change X for an actually-existing “unit”
— see, for instance, Holland (1986), which seems to be the source of the slogan “No causation without
manipulation”. I will just note that (i) this is the kind of metaphysical argument which statisticians usually
avoid (if we can’t talk about sex or race as causes, because changing those makes the subject a “different
person”, how about native language? the shape of the nose? hair color? whether they go to college?); (ii)
genetic variables are highly manipulable with modern experimental techniques, though we don’t use those
techniques on people; (iii) real scientists routinely talk about causal effects with no feasible manipulation
(e.g., “continental drift causes earthquakes”), or even imaginable manipulation (e.g., “the solar system
formed because of gravitational attraction”). It appears to be merely coincidence that (iv) many of the
statisticians who make such pronouncements work or have worked for the Educational Testing Service,
an organization with an interest in asserting that, strictly speaking, sex and race cannot have any causal
role in the score anyone gets on the SAT. (Points (i)–(iii) follow Glymour (1986); Glymour and Glymour
(2014).)
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609 27.1. ESTIMATORS IN THE BACK- AND FRONT- DOOR CRITERIA

In fact, we are often interested just in the difference between these expectations,
E[Y |d o(X = 1)]�E[Y |d o(X = 0)], what is often called the average treatment ef-
fect, or ATE.

Suppose we are the happy possessors of a set of control variables S which satisfy
the back-door criterion. How might we use them to estimate this average causal
effect?

AT E =
X

s
Pr (S = s )E[Y |X = 1, S = s]�X

s
Pr (S = s )E[Y |X = 0, S = s](27.11)

=
X

s
Pr (S = s ) (E[Y |X = 1, S = s]�E[Y |X = 0, S = s]) (27.12)

Abbreviate E[Y |X = x, S = s] as µ(x, s ), so that the average treatment effect is
X

s
(µ(1, s )�µ(0, s ))Pr (S = s ) =E[µ(1, S)�µ(0, S)] (27.13)

Suppose we got to observe µ. Then we could use the law of large numbers argument
above to say

AT E ⇡ 1
n

n
X

i=1

µ(1, si )�µ(0, si ) (27.14)

Of course, we don’t get to see either µ(1, si ) or µ(0, si ). We don’t even get to see
µ(xi , si ). At best, we get to see Yi =µ(xi , si )+ ✏i , with ✏i being mean-zero noise.

Clearly, we need to estimate µ(1, si )�µ(0, si ). In principle, any consistent esti-
mator of the regression function, bµ, would do. If, for some reason, you were scared
of doing a regression, however, the following scheme might occur to you: First, find
all the units in the sample with S = s , and compare the mean Y for those who are
treated (X = 1) to the mean Y for those who are untreated (X = 0). Writing the the
set of units with X = 1 and S = s as Ts , and the set of units with X = 0 and S = s as
Cs , then

X

s

0

B

@

1
|Ts |
X

i2Ts

Yi �
1
|Cs |
X

j2Cs

Y j

1

C

A

Pr (S = s ) (27.15)

=
X

s

0

B

@

1
|Ts |
X

i2Ts

µ(1, s )+ ✏i �
1
|Cs |
X

j2Cs

µ(0, s )+ ✏ j

1

C

A

Pr (S = s ) (27.16)

=
X

s
(µ(1, s )�µ(0, s ))Pr (S = s )+

X

s

0

B

@

1
|Ts |
X

i2Ts

✏i �
1
|Cs |
X

j2Cs

✏ j

1

C

A

Pr (S = s )(27.17)

The first part is what we want, and the second part is an average of noise terms, so it
goes to zero as n!1. Thus we have a consistent estimator of the average treatment
effect.

We could however go further. Take any unit i where X = 1; it has some value
si for the covariates. Suppose we can find another unit i⇤ with the same value of the
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27.1. ESTIMATORS IN THE BACK- AND FRONT- DOOR CRITERIA 610

covariates, but with S = 0. Then

Yi �Yi⇤ =µ(1, si )+ ✏i �µ(0, si )� ✏i⇤ (27.18)

The comparison between the response of the treated unit and this matched control
unit is an unbiased estimate of µ(1, si )�µ(0, si ). If we can find a match i⇤ for every
unit i , then

1
n

n
X

i=1

Yi �Yi⇤ (27.19)

=
1
n

X

i = 1nµ(1, si )�µ(0, si )+
1
n

n
X

i=1

✏i (27.20)

The first average is, by the law-of-large-numbers argument, approximately the average
treatment effect, and the second is the average of noise terms, so it should be going
to zero as n!1. Thus, matching gives us a consistent estimate of the average treat-
ment effect, without any explicit regression. Instead, we rely on a paired comparison,
because members of the treatment group are being compared to with members of
the control group with matching values of the covariates S. This often works vastly
better than estimating µ through a linear model.

There are three directions to go from here. One is to deal with all of the technical
problems and variations which can arise. We might match each unit against multiple
other units, to get further noise reduction. If we can’t find an exact match, the usual
approach is to match each treated unit against the control-group unit with the closest
values of the covariates. Explore these details.

A second direction is to remember that matching does not solve the identification
problem. Computing Eq. 27.20 only gives us an estimate of the average treatment
effect if S satisfies the back door criterion. If it does not, then even if matching is
done perfectly, Eq. 27.20 does nothing of any particular interest. Matching is one
way of estimating identified average treatment effects; it can contribute nothing to
solving identification problems.

Third, and finally, matching is really doing nearest neighbor regression (§1.5.1).
To get the difference between the responses of treated and controlled units, we’re
comparing each treated unit to the control-group unit with the closest values of the
covariates. When people talk about matching estimates of average treatment effects,
they usually mean that the number of nearest neighbors we use for each treated unit
is fixed as n grows.

Once we realize that matching is really just nearest-neighbor regression, it may
become less compelling; at the very least many issues arise. As we saw in §1.5.1, to get
consistent estimates of µ out of k-nearest neighbors, we need to let k grow (slowly)
with n. If k is fixed, then the bias of bµ(x, s ) is either zero or goes quickly to zero as
n grows (quicker the smaller k is), but V[bµx, s] 6! 0 as n!1. If all we want to do
is estimate the average treatment effect, this remaining asymptotic variance at each s
will still average out, but it would be a problem if we wanted to look at anything more
detailed. More generally, the bias-variance tradeoff is a tradeoff, and it’s not always a
good idea to prioritize low bias over anything else. Moreover, it’s not exactly clear
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611 27.1. ESTIMATORS IN THE BACK- AND FRONT- DOOR CRITERIA

that we should use a fixed k, or for that matter should use nearest neighbors instead
of any other consistent regression method.

Nearest neighbor regression, like every other nonparametric method, is subject
to the curse of dimensionality; therefore, so is matching3. It would be very nice if
there was some way of lightening the curse when estimating treatment effects. We’ll
turn to that next.

27.1.4 Propensity Scores
The problems of having to estimate high-dimensional conditional distributions and
of averaging over large sets of control values are both reduced if the set of control vari-
ables has in fact only a few dimensions. If we have two sets of control variables, S and
R, both of which satisfy the back-door criterion for identifying Pr (Y |d o(X = x)), all
else being equal we should use R if it contains fewer variables than S4

An important special instance of this is when we can set R = f (S), for some
function S, and have

X |= S |R (27.21)

In the jargon, R is a sufficient statistic5 for predicting X from S. To see why this
matters, suppose now that we try to identify Pr (Y = y|d o(X = x)) from a back-door
adjustment for R alone, not for S. We have6

X

r
Pr (Y |X = x, R= r )Pr (R= r ) (27.22)

=
X

r,s
Pr (Y, S = s |X = x, R= r )Pr (R= r )

=
X

r,s
Pr (Y |X = x, R= r, S = s )Pr (S = s |X = x, R= r )Pr (R= r )(27.23)

=
X

r,s
Pr (Y |X = x, S = s )Pr (S = s |X = x, R= r )Pr (R= r ) (27.24)

=
X

r,s
Pr (Y |X = x, S = s )Pr (S = s |R= r )Pr (R= r ) (27.25)

=
X

s
Pr (Y |X = x, S = s )

X

r
Pr (S = s , R= r ) (27.26)

=
X

s
Pr (Y |X = x, S = s )Pr (S = s ) (27.27)

= Pr (Y |d o(X = x)) (27.28)
3To see this, observe that if we can could do matching easily for high-dimensional S, then we could

match treated units to other treated units, and control-group units to control-group units, and do easy high-
dimensional regression. Since we know high-dimensional regression is hard, and we can reduce regression
to matching, high-dimensional matching must be at least as hard.

4Other things which might not be equal: the completeness of data on R and S; parametric assumptions
might be more plausible for the variables in S, giving a better rate of convergence; we might be more
confident that S really does satisfy the back-door criterion.

5This is not the same sense of the word “sufficient” as in “causal sufficiency”.
6Going from Eq. 27.23 to Eq. 27.24 uses the fact that R= f (S), so conditioning on both R and S is the

same as just conditioning on S. Going from Eq. 27.24 uses the fact that S |= X |R.
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27.1. ESTIMATORS IN THE BACK- AND FRONT- DOOR CRITERIA 612

That is to say, if S satisfies the back-door criterion, then so does R. Since R is a
function of S, both the computational and the statistical problems which come from
using R are no worse than those of using S, and possibly much better, if R has much
lower dimension.

It may seem far-fetched that such a summary score should exist, but really all
that’s required is that some combinations of the variables in S carry the same infor-
mation about X as the whole of S does. Consider for instance, the set-up where

X  
p
X

j=1

Vj + ✏X (27.29)

Y  f (X ,V1,V2, . . .Vp )+ ✏Y (27.30)

To identify the effect of X on Y , we need to block the back-door paths between them.
Each one of the Vj provides such a back-door path, so we need to condition on all of
them. However, if R =

Pp
j=1 Vj , then X |= ¶V1,V2, . . .Vp

© |R, so we could reduce a
p-dimensional set of control variables to a one-dimensional set.

Often, as here, finding summary scores will depend on the functional form, and
so not be available in the general, non-parametric case. There is, however, an im-
portant special case where, if we can use the back-door criterion at all, we can use a
one-dimensional summary.

This is the case where X is binary. If we set f (S) = Pr (X = 1|S = s ), and then
take this as our summary R, it is not hard to convince oneself that X |= S |R (Exer-
cise 1). This f (S) is called the propensity score. It is remarkable, and remarkably
convenient, that an arbitrarily large set of control variables S, perhaps with very com-
plicated relationships with X and Y , can always be boiled down to a single number
between 0 and 1, but there it is.

That said, except in very special circumstances, there is no analytical formula for
f (S). This means that it must be modeled and estimated. The most common model
used is logistic regression, but so far as I can see this is just because many people
know no other way to model a binary outcome. Since accurate propensity scores
are needed to make the method work, it would seem to be worthwhile to model R
very carefully, and to consider GAM or fully non-parametric estimates. If S contains
a lot of variables, then estimating Pr (X = 1|S = s ) is a high-dimensional regression
problem, and so itself subject to the curse of dimensionality.

27.1.5 Propensity Score Matching
If the number of covariates in S is large, the curse of dimensionality settles upon us.
Many values of S will have few or no individuals at all, let alone a large number in
both the treatment and the control groups. Even if the real differenceE[Y |X = 1, S = s]�
E[Y |X = 0, S = s] is small, with only a few individuals in either sub-group we could
easily get a large difference in sample means. And of course with continuous covari-
ates in S, each individual will generally have no exact matches at all.

The very clever idea of Rosenbaum and Rubin (1983) is to solve this by matching
not on S, but on the propensity score defined in the last section. We have seen already
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613 27.1. ESTIMATORS IN THE BACK- AND FRONT- DOOR CRITERIA

that when X is binary, adjusting for the propensity score is just as good as adjusting
for the full set of covariates S. It is easy to double-check (Exercise 2) that

X

s
Pr (S = s ) (E[Y |X = 1, S = s]�E[Y |X = 0, S = s])

=
X

r
Pr (R= r ) (E[Y |X = 1, R= r ]�E[Y |X = 0, R= r ]) (27.31)

when R = Pr (X = 1|S = s ), so we lose no essential information by matching on the
propensity score R rather than on the covariates S. Intuitively, we now compare each
treated individual with one who was just as likely to have received the treatment, but,
by chance, did not7. On average, the differences between such matched individuals
have to be due to the treatment.

What have we gained by doing this? Since R is always a one-dimensional variable,
no matter how big S is, it is going to be much easier to find matches on R than on S.
This does not actually break the curse of dimensionality, but rather shifts its focus,
from the regression of Y on X and S to the regression of X on S. Still, this can be a
very real advantage.

It is important to be clear, however, that the gain here is in computational tractabil-
ity and (perhaps) statistical efficiency, not in fundamental identification. With R =
Pr (X = 1|S = s ), it will always be true that X |= S |R, whether or not the back-door
criterion is satisfied. If the criterion is satisfied, in principle there is nothing stopping
us from using matching on S to estimate the effect, except our own impatience. If the
criterion is not satisfied, having a compact one-dimensional summary of the wrong
set of control variables is just going to let us get the wrong answer faster.

Some confusion seems to have arisen on this point, because, conditional on the
propensity score, the treated group and the control group have the same distribution
of covariates. (Again, recall that X |= S |R.) Since treatment and control groups have
the same distribution of covariates in a randomized experiment, some people have
concluded that propensity score matching is just as good as randomization8. This is
emphatically not the case.

The propensity score matching method has become incredibly popular since Rosen-
baum and Rubin (1983), and there are a huge number of implementations of various
versions of it. The optmatch package in R is notable for doing the actual matching in
an extremely flexible and efficient way, but leaves defining matching criteria largely to
the user (Hansen and Klopfer, 2006). The MatchIt package (Ho et al., 2011) includes
more tools for actually calculating propensity scores or other mesures of similarity,
and then doing the matching. See Stuart (2010) for a fairly recent listing of relevant
software in R and other languages.

7Methods of approximate matching often work better on propensity scores than on the full set of
covariates, because the former are lower-dimensional.

8These people do not include Rubin and Rosenbaum, but it is easy to see how their readers could come
away with this impression. See Pearl (2009b, §11.3.5), and especially Pearl (2009a).
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27.2. INSTRUMENTAL-VARIABLES ESTIMATES 614

27.2 Instrumental-Variables Estimates
§25.3.3 introduced the idea of using instrumental variables to identify causal effects.
Roughly speaking, I is an instrument for identifying the effect of X on Y when I
is a cause of X , but the only way I is associated with Y is through directed paths
which go through X . To the extent that variation in I predicts variation in X and Y ,
this can only be because X has a causal influence on Y . More precisely, given some
controls S, I is a valid instrument when I 6 |= X |S, and every path from I to Y left
open by S has an arrow into X .

In the simplest case, of Figure 25.7, we saw that when everything is linear, we can
find the causal coefficient of Y on X as

�=
Cov[I ,Y ]
Cov[I ,X ]

(27.32)

A one-unit change in I causes (on average) an ↵-unit change in X , and an ↵�-unit
change in Y , so � is, as it were, the gearing ratio or leverage of the mechanism con-
necting I to Y .

Estimating � by plugging in the sample values of the covariances into Eq. 27.32
is called the Wald estimator of �. In more complex situations, we might have mul-
tiple instruments, and be interested in the causal effects of multiple variables, and
we might have to control for some covariates to block undesired paths and get valid
instruments. In such situations, the Wald estimator breaks down.

There is however a more general procedure which still works, provided the linear-
ity assumption holds. This is called two-stage regression, or two-stage least squares
(2SLS).

1. Regress X on I and S. Call the fitted values x̂.

2. Regress Y on x̂ and S, but not on I . The coefficient of Y on x̂ is a consistent
estimate of �.

The logic is very much as in the Wald estimator: conditional on S, variations in I
are independent of the rest of the system. The only way they can affect Y is through
their effect on X . In the first stage, then, we see how much changes in the instruments
affect X . In the second stage, we see how much these I -caused changes in X change
Y ; and this gives us what we want.

To actually prove that this works, we would need to go through some heroic lin-
ear algebra to show that the population version of the two-stage estimator is actually
equal to �, and then a straight-forward argument that plugging in the appropriate
sample covariance matrices is consistent. The details can be found in any economet-
rics textbook, so I’ll skip them. (But see Exercise 4.)

As mentioned in §27.2, there are circumstances where it is possible to use in-
strumental variables in nonlinear and even nonparametric models. The technique
becomes far more complicated, however, because finding Pr (Y = y|d o(X = x)) re-
quires solving Eq. 25.15,

Pr (Y |d o(I = i )) =
X

x
Pr (Y |d o(X = x))Pr (X = x|d o(I = i ))
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615 27.3. UNCERTAINTY AND INFERENCE

and likewise finding E[Y |d o(X = x)]means solving

E[Y |d o(I = i )] =
X

x
E[Y |d o(X = x)]Pr (X = x|d o(I = i )) (27.33)

When, as is generally the case, x is continuous, we have rather an integral equation,

E[Y |d o(I = i )] =
Z

E[Y |d o(X = x)] p(x|d o(I = i ))d x (27.34)

Solving such integral equations is not (in general) impossible, but it is hard, and the
techniques needed are much more complicated than even two-stage least squares. I
will not go over them here, but see Li and Racine (2007, chs. 16–17).

27.3 Uncertainty and Inference
The point of the identification strategies from Chapter 25 is to reduce the problem
of causal inference to that of ordinary statistical inference. Having done so, we can
assess our uncertainty about any of our estimates of causal effects the same way we
would assess any other statistical inference. If we want confidence intervals or stan-
dard errors for E[Y |d o(X = 1)]�E[Y |d o(X = 0)], for instance, we can treat our
estimate of this like any other point estimate, and proceed accordingly. In particu-
lar, we can use the bootstrap (Chapter 6), if analytical formulas are unavailable or
unappealing.

The one wrinkle to the use of analytical formulas comes from two-stage least-
squares. Taking standard errors, confidence intervals, etc., for � from the usual for-
mulas for the second regression neglects the fact that this estimate of � comes from
regressing Y on x̂, which is itself an estimate and so uncertain.

27.4 Recommendations
Instrumental variables are a very clever idea, but they need to be treated with caution.
They only work if the instruments are valid, and that validity is rests just as much on
assumptions about the underlying DAG as any of the other identification strategies.
The crucial point, after all, is that the instrument is an indirect cause of Y , but only
through X , with no other (unblocked) paths connecting I to Y . This can only too
easily fail, if some indirect path has been neglected.

Matching, especially propensity score matching, is just as ingenious, and just as
much at the mercy of the correctness of the DAG. Whether we match directly on
covariates, or indirectly through the propensity score, what matters is whether the
covariates really block off the back-door pathways between X and Y . If the covariates
block those pathways, well and good; any consistent form of regression will work,
including one called “matching” because “nonparametric nearest-neighbor smooth-
ing” sounds too scary. If the covariates do not block the back-door pathways, then
no amount of statistical ingenuity is going to help you.
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There is a curious divide, among practitioners, between those who lean mostly
on instrumental variables, and those who lean mostly on matching. The former
tend to suspect that (in our terms) the covariates used in matching are not enough
to block all the back-door paths9, and to think that the business is more or less over
once an exogenous variable has been found. The matchers, for their part, think the
instrumentalists are too quick to discount the possibility that their instruments are
connected to Y through unmeasured pathways10, but that if you match on enough
variables, you’ve got to block the back-door paths. (They don’t often worry that they
might be conditioning on colliders, or blocking front-door paths, as they do so.) As
is often the case in science, there is much truth to each faction’s criticism of the other
side. You are now in a position to think more clearly about these matters, and to act
more intelligently, than many practitioners.

Throughout these chapters, we have been assuming that we know the correct
DAG. Without such assumptions, or ones equivalent to them, none of these ideas can
be used. In the next chapter, then, we will look at how to actually begin discovering
causal structure from data.

27.5 Further Reading
The material in §27.1 is largely “folklore”, though see Morgan and Winship (2007),
which also treats instrumental variable estimation, and a number of other, more spe-
cialized techniques, like “regression discontinuity designs” and “difference in differ-
ences”. It does not, however, consider nonparametric regression methods.

On matching, Stuart (2010) is another good review. For some of the asymptotic
theory, including the connection to nearest neighbor methods, see Abadie and Im-
bens (2006).

Rubin and Waterman (2006) is an extremely clear and easy-to-follow introduction
to propensity score matching as a method of causal inference; Imbens and Rubin

9As an example for their side, Arceneaux et al. (2010) applied matching methods to an actual ex-
periment, where the real causal relations could be worked out straightforwardly for comparison. Well-
conduced propensity-score “matching suggests that [a] pre-election phone call that encouraged people to
wear their seat belts also generated huge increases in voter turnout”. The paper gives a convincing expla-
nation of where this illusory effect comes from, i.e., of what the unblocked back-door path is, which I will
not spoil for you.

10[[TODO: Mention the rainfall-as-instrument paper?]] For instance, a recent and widely-promoted
preprint by three economists argued that watching television caused autism in children. (I leave tracking
down the paper as an exercise for the reader.) The economists used the variation in how much it rains
across different locations in California, Oregon and Washington as an instrument to predict average TV-
watching (X ) and its affects on the prevalence of autism (Y ). It is certainly plausible that kids watch more
TV when it rains, and that neither TV-watching nor autism causes rain. But this leaves open the question
of whether rain and the prevalence of autism might not have some common cause, and for the West Coast
in particular it is easy to find one. It is well-established that the risk of autism is higher among children
of older parents, and that more-educated people tend to have children later in life. All three states have,
of course, a striking contrast between large, rainy cities full of educated people (San Francisco, Portland,
Seattle), and very dry, very rural locations on the other side of the mountains. Thus there is a (potential)
uncontrolled common cause of rain and autism, namely geographic location, and the situation is as in
Figure 25.8. — For a rather more convincing effort to apply ideas about causal inference to understanding
the changing prevalence of autism, see Liu et al. (2010).
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(2015) is a more comprehensive presentation of the estimation work done by Rubin,
Imbens and collaborators on estimating causal effects by matching, propensity scores,
and instrumental variables. (Much of the original work is reprinted in Rubin 2006.)

King and Nielsen (2016) is an interesting argument against matching on propen-
sity scores, in favor of matching on the full set of covariates, related to the extra
variance of estimating the propensity scores.

27.6 Exercises
1. Suppose X is binary, and define R= Pr (X = 1|S). Show that X |= S |R. .

2. Prove Eq. 27.31.

3. Suppose that X has three levels, say 0,1,2. Let R be the vector (Pr (X = 0|S = s ) ,Pr (X = 1|S = s )).
Prove that X |= S |R. (This is how to generalize propensity scores to non-binary
X .)

4. For the situation in Figure 25.7, prove that the two-stage least-squares estimate
of � is the same as the Wald estimate.
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