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Chapter 21

Time Series

So far, we have assumed that all data points are pretty much independent of each
other. In the chapters on regression, we assumed that each Yi was independent of
every other, given its Xi , and we often assumed that the Xi were themselves indepen-
dent. In the chapters on multivariate distributions and even on causal inference, we
allowed for arbitrarily complicated dependence between the variables, but each data-
point was assumed to be generated independently. We will now relax this assumption,
and see what sense we can make of dependent data.

21.1 What Time Series Are
The simplest form of dependent data are time series, which are just what they sound
like: a series of values recorded over time. The most common version of this, in
statistical applications, is to have measurements of a variable or variables X at equally-
spaced time-points starting from t , written say Xt ,Xt+h ,Xt+2h , . . ., or X (t ),X (t +
h),X (t + 2h), . . .. Here h, the amount of time between observations, is called the
“sampling interval”, and 1/h is the “sampling frequency” or “sampling rate”.

Figure 21.1 shows two fairly typical time series. One of them is actual data (the
number of lynxes trapped each year in a particular region of Canada); the other is
the output of a purely artificial model. (Without the labels, it might not be obvious
which one was which.) The core idea of time series analysis is one which we’re al-
ready familiar with from the rest of statistics: we regard the actual time series we see
as one realization of some underlying, partially-random (“stochastic”) process, which
generated the data. We use the data to make guesses (“inferences”) about the process,
and want to make reliable guesses while being clear about the uncertainty involved.
The complication is that each observation is dependent on all the other observations;
in fact it’s usually this dependence that we want to draw inferences about.

Other kinds of time series One sometimes encounters irregularly-sampled time
series, X (t1),X (t2), . . ., where ti � ti�1 6= ti+1 � ti . This is mostly an annoyance,
unless the observation times are somehow dependent on the values. Continuously-
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par(mfrow = c(1, 2))
plot(lynx)
plot(y[1:100], xlab = "t", ylab = expression(y[t]), type = "l")
par(mfrow = c(1, 1))

FIGURE 21.1: Left: annual number of trapped lynxes in the Mackenzie River region of Canada.
Right: a toy dynamical model, simulated from Code Example 37.
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505 21.2. STATIONARITY

logistic.map <- function(x, r = 4) {
r * x * (1 - x)

}
logistic.iteration <- function(n, x.init, r = 4) {

x <- vector(length = n)
x[1] <- x.init
for (i in 1:(n - 1)) {

x[i + 1] <- logistic.map(x[i], r = r)
}
return(x)

}
x <- logistic.iteration(1000, x.init = runif(1))
y <- x + rnorm(1000, mean = 0, sd = 0.05)

CODE EXAMPLE 37: Code defining our synthetic data set. Exercise: why is this “logistic”?

observed processes are rarer — especially now that digital sampling has replaced ana-
log measurement in so many applications. (It is more common to model the process
as evolving continuously in time, but observe it at discrete times.) We skip both of
these in the interest of space.

Regular, irregular or continuous time series all record the same variable at every
moment of time. An alternative is to just record the sequence of times at which some
event happened; this is called a “point process”. More refined data might record the
time of each event and its type — a “marked point process”. Point processes include
very important kinds of data (e.g., earthquakes), but they need special techniques,
and we’ll skip them (though see §21.13).

Notation For a regularly-sampled time series, it’s convenient not to have to keep
writing the actual time, but just the position in the series, as X1,X2, . . ., or X (1),X (2), . . ..
This leads to a useful short-hand, that X j

i = (Xi ,Xi+1, . . .Xj�1,Xj ), a whole block of
time; some people write Xi : j with the same meaning.

21.2 Stationarity
In our old IID world, the distribution of each observation is the same as the distribu-
tion of every other data point. It would be nice to have something like this for time
series. The property is called stationarity, which doesn’t mean that the time series
never changes, but that its distribution doesn’t.

More precisely, a time series is strictly stationary or strongly stationary when
X k

1 and X t+k�1
t have the same distribution, for all k and t — the distribution of

blocks of length k is time-invariant. Again, this doesn’t mean that every block of
length k has the same value, just that it has the same distribution of values.

If there is strong or strict stationarity, there should be weak or loose (or wide-
sense) stationarity, and there is. All it requires is that E[X1] = E

⇥

Xt
⇤

, and that
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Cov
⇥

X1,Xk
⇤

= Cov
⇥

Xt ,Xt+k�1
⇤

. (Notice that it’s not dealing with whole blocks
of time any more, just single time-points.) Clearly (exercise!), strong stationarity
implies weak stationarity, but not, in general, the other way around, hence the names.
It may not surprise you to learn that strong and weak stationarity coincide when Xt
is a Gaussian process, but not,in general, otherwise.

You should convince yourself that an IID sequence is strongly stationary.

21.2.1 Autocorrelation
Time series are serially dependent: Xt is in general dependent on all earlier values
in time, and on all later ones. Typically, however, there is decay of dependence
(sometimes called decay of correlations): Xt and Xt+h become more and more nearly
independent as h!1. The oldest way of measuring this is the autocovariance,

� (h) =Cov
⇥

Xt ,Xt+h
⇤

(21.1)

which is well-defined just when the process is weakly stationary. We could equally
well use the autocorrelation,

⇢(h) =
Cov
⇥

Xt ,Xt+h
⇤

V⇥Xt
⇤

=
� (h)
� (0)

(21.2)

again using stationarity to simplify the denominator.
As I said, for most time series � (h) ! 0 as h grows. Of course, � (h) could be

exactly zero while Xt and Xt+h are strongly dependent. Figure 21.2 shows the auto-
correlation functions (ACFs) of the lynx data and the simulation model; the correla-
tion for the latter is basically never distinguishable from zero, which doesn’t accord
at all with the visual impression of the series. Indeed, we can confirm that some-
thing is going on the series by the simple device of plotting Xt+1 against Xt (Figure
21.3). More general measures of dependence would include looking at the Spearman
rank-correlation of Xt and Xt+h , or quantities like mutual information.

Autocorrelation is important for four reasons, however. First, because it is the
oldest measure of serial dependence, it has a “large installed base”: everybody knows
about it, they use it to communicate, and they’ll ask you about it. Second, in the
rather special case of Gaussian processes, it really does tell us everything we need
to know. Third, in the somewhat less special case of linear prediction, it tells us
everything we need to know. Fourth and finally, it plays an important role in a
crucial theoretical result, which we’ll go over next.
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par(mfrow = c(1, 2))
acf(lynx)
acf(y)
par(mfrow = c(1, 1))

FIGURE 21.2: Autocorrelation functions of the lynx data (above) and the simulation (below). The
acf function plots the autocorrelation function as an automatic side-effect; it actually returns the
actual value of the autocorrelations, which you can capture. The 95% confidence interval around
zero is computed under Gaussian assumptions which shouldn’t be taken too seriously, unless the
sample size is quite large, but are useful as guides to the eye.
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par(mfrow = c(1, 2))
plot(lag0 ~ lag1, data = design.matrix.from.ts(lynx, 1), xlab = expression(lynx[t]),

ylab = expression(lynx[t + 1]), pch = 16)
plot(lag0 ~ lag1, data = design.matrix.from.ts(y, 1), xlab = expression(y[t]),

ylab = expression(y[t + 1]), pch = 16)
par(mfrow = c(1, 1))

FIGURE 21.3: Plots of Xt+1 versus Xt , for the lynx (left) and the simulation (right); see Exercise 1.
Note that even though the correlation between successive iterates is next to zero for the simulation,
there is clearly a lot of dependence (see Appendix E.4).
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509 21.2. STATIONARITY

21.2.2 The Ergodic Theorem

With IID data, the ultimate basis of all our statistical inference is the law of large
numbers, which told us that

1
n

n
X

i=1

Xi !E[X1] (21.3)

For complicated historical reasons, the corresponding result for time series is
called the ergodic theorem1. The most general and powerful versions of it are quite
formidable, and have very subtle proofs, but there is a simple version which gives the
flavor of them all, and is often useful enough.

21.2.2.1 The World’s Simplest Ergodic Theorem

Suppose Xt is weakly stationary, and that

1
X

h=0

|� (h)|= � (0)⌧ <1 (21.4)

(Remember that � (0) = V⇥Xt
⇤

.) The quantity ⌧ is called the correlation time, or
integrated autocorrelation time.

Now consider the average of the first n observations,

X n =
1
n

n
X

t=1
Xt (21.5)

This time average is a random variable. Its expectation value is

E
î

X n

ó

=
1
n

n
X

t=1
E⇥Xt
⇤

=E[X1] (21.6)

1In the late 1800s, the physicist Ludwig Boltzmann needed a word to express the idea that if you took
an isolated system at constant energy and let it run, any one trajectory, continued long enough, would
be representative of the system as a whole. Being a highly-educated nineteenth century German-speaker,
Boltzmann knew far too much ancient Greek, so he called this the “ergodic property”, from ergon “energy,
work” and hodos “way, path”. The name stuck.
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because the mean is stationary. What about its variance?

V
î

X n

ó

= V
2

4

1
n

n
X

t=1
Xt

3

5 (21.7)

=
1

n2

2

4

n
X

t=1
V⇥Xt
⇤

+ 2
n
X

t=1

n
X

s=t+1
Cov
⇥

Xt ,Xs
⇤

3

5 (21.8)

=
1

n2

2

4nV[X1]+ 2
n
X

t=1

n
X

s=t+1
� (s � t )

3

5 (21.9)

 1

n2

2

4n� (0)+ 2
n
X

t=1

n
X

s=t+1
|� (s � t )|
3

5 (21.10)

 1

n2

2

4n� (0)+ 2
n
X

t=1

n
X

h=1

|� (h)|
3

5 (21.11)

 1

n2

2

4n� (0)+ 2
n
X

t=1

1
X

h=1

|� (h)|
3

5 (21.12)

=
n� (0)(1+ 2⌧)

n2 (21.13)

=
� (0)(1+ 2⌧)

n
(21.14)

Eq. 21.9 uses stationarity again, and then Eq. 21.13 uses the assumption that the
correlation time ⌧ is finite.

Since E
î

Xn

ó

=E[X1], and V
î

X n

ó! 0, we have that

Xn!E[X1] (21.15)

exactly as in the IID case. (“Time averages converge on expected values.”) In fact, we
can say a bit more. Remember Chebyshev’s inequality: for any random variable Z ,

Pr (|Z �E[Z] |> ✏) V[Z]
✏2 (21.16)

so

Pr
Ä|X n �E[X1] |> ✏

ä � (0)(1+ 2⌧)
n✏2 (21.17)

which goes to zero as n grows for any given ✏.
You may wonder whether the condition that

P1
h=0 |� (h)|<1 is as weak as pos-

sible. It turns out that it can in fact be weakened to just limn!1 1
n

Pn
h=0 � (h) = 0, as

indeed the proof above might suggest.
The argument above can actually be extended to some non-stationary processes;

see Exercise 6.
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511 21.2. STATIONARITY

21.2.2.2 Rate of Convergence

If the Xt were all IID, or even just uncorrelated, we would have V
î

X n

ó

= � (0)/n
exactly. Our bound on the variance is larger by a factor of (1+ 2⌧), which reflects
the influence of the correlations. Said another way, we can more or less pretend
that instead of having n correlated data points, we have n/(1+ 2⌧) independent data
points, that n/(1+ 2⌧) is our effective sample size2

Generally speaking, dependence between observations reduces the effective sam-
ple size, and the stronger the dependence, the greater the reduction. (For an extreme,
consider the situation where X1 is randomly drawn, but thereafter Xt+1 = Xt .) In
more complicated situations, finding the effective sample size is itself a tricky under-
taking, but it’s often got this general flavor.

21.2.2.3 Why Ergodicity Matters

The ergodic theorem is important, because it tells us that a single long time series
becomes representative of the whole data-generating process, just the same way that
a large IID sample becomes representative of the whole population or distribution.
We can therefore actually learn about the process from empirical data.

Strictly speaking, we have established that time-averages converge on expectations
only for Xt itself, not even for f (Xt ) where the function f is non-linear. It might be
that f (Xt ) doesn’t have a finite correlation time even though Xt does, or indeed vice
versa. This is annoying; we don’t want to have to go through the analysis of the last
section for every different function we might want to calculate.

When people say that the whole process is ergodic, they roughly speaking mean
that

1
n

n
X

t=1
f (X t+k�1

t )!Eî f (X k
1 )
ó

(21.18)

for any reasonable function f . This is (again very roughly) equivalent to

1
n

n
X

t=1
Pr
Ä

X k
1 2A,X t+l�1

t 2 B
ä! Pr
Ä

X k
1 2A
ä

Pr
Ä

X l
1 2 B
ä

(21.19)

which is a kind of asymptotic independence-on-average3

2Some people like to define the correlation time as, in this notation, 1+ 2⌧ for just this reason.
3It’s worth sketching a less rough statement. Instead of working with Xt , work with the whole future

trajectory Yt = (Xt ,Xt+1,Xt+2, . . .). Now the dynamics, the rule which moves us into the future, can be
summed up in a very simple, and deterministic, operation T : Yt+1 = T Yt = (Xt+1,Xt+2,Xt+3, . . .). A
set of trajectories is invariant if it is left unchanged by T : for every y 2 A, there is another y 0 in A where
T y 0 = y. A process is ergodic if every invariant set either has probability 0 or probability 1. What this
means is that (almost) all trajectories generated by an ergodic process belong to a single invariant set, and
they all wander from every part of that set to every other part — they are metrically transitive. (Because:
no smaller set with any probability is invariant.) Metric transitivity, in turn, is equivalent, assuming
stationarity, to n�1Pn�1

t=0 Pr (Y 2A,T t Y 2 B)! Pr (Y 2A)Pr (Y 2 B). From metric transitivity follows
Birkhoff’s “individual” ergodic theorem, that n�1Pn�1

t=0 f (T t Y )! E[ f (Y )], with probability 1. Since a
function of the trajectory can be a function of a block of length k, we get Eq. 21.18.
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If our data source is ergodic, then what Eq. 21.18 tells us is that sample averages
of any reasonable function are representative of expectation values, which is what we
need to be in business statistically. This in turn is basically implied by stationarity.4
What does this let us do?

21.3 Markov Models
For this section, we’ll assume that Xt comes from a stationary, ergodic time series.
So for any reasonable function f , the time-average of f (Xt ) converges on E[ f (X1)].
Among the “reasonable” functions are the indicators, so

1
n

n
X

t=1
1A(Xt )! Pr (X1 2A) (21.20)

Since this also applies to functions of blocks,

1
n

n
X

t=1
1A,B (Xt ,Xt+1)! Pr (X1 2A,X2 2 B) (21.21)

and so on. If we can learn joint and marginal probabilities, and we remember how to
divide, then we can learn conditional probabilities.

It turns out that pretty much any density estimation method which works for
IID data will also work for getting the marginal and conditional distributions of time
series (though, again, the effective sample size depends on how quickly dependence
decays). So if we want to know p(xt ), or p(xt+1 | xt ), we can estimate it just as we
learned how to do in Chapter 14. Just as in that chapter, much the same techniques
apply whether x is discrete or continuous; for brevity, I’ll speak as though x is con-
tinuous and p(xt+1 | xt ) is a conditional pdf.

Now, the conditional distribution p(xt+1 | xt ) always exists, and we can always
estimate it. But why stop just one step back into the past? Why not look at p(xt+1 |
xt , xt�1), or for that matter p(xt+1 | x t

t�999)? There are three reasons, in decreasing
order of pragmatism.

• Estimating p(xt+1 | x t
t�999) means estimating a thousand-and-one-dimensional

distribution. The curse of dimensionality will crush us.

• Because of the decay of dependence, there shouldn’t be much difference, much
of the time, between p(xt+1 | x t

t�999) and p(xt+1 | x t
t�998), etc. Even if we could

4Again, a sketch of a less rough statement. Use Y again for whole trajectories. Every stationary
distribution for Y can be written as a mixture of stationary and ergodic distributions, rather as we wrote
complicated distributions as mixtures of simple Gaussians in Chapter 19. (This is called the “ergodic
decomposition” of the process: see Gray 2009.) We can think of this as first picking an ergodic process
according to some fixed distribution, and then generating Y from that process. Time averages computed
along any one trajectory thus converge according to Eq. 21.18. If we have only a single trajectory, it looks
just like a stationary and ergodic process. It is thus common to assume that the data source is not only
stationary but also ergodic. This only becomes a problem if we have multiple trajectories from the same
source, each of which one may be converging to a different ergodic component.
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go very far back into the past, it shouldn’t, usually, change our predictions very
much.

• Sometimes, a finite, short block of the past completely screens off the remote
past.

You will remember the Markov property from your previous probability classes:

Xt+1 |= X t�1
1 |Xt (21.22)

When the Markov property holds, there is simply no point in looking at p(xt+1 |
xt , xt�1), because it’s got to be just the same as p(xt+1 | xt ). If the process isn’t a
simple Markov chain but has a higher-order Markov property,

Xt+1 |= X t�k
1 |X t

t�k+1 (21.23)

then we never have to condition on more than the last k steps to learn all that there
is to know. The Markov property means that the current state screens off the future
from the past.

It is always an option to model Xt as a Markov process, or a higher-order Markov
process. If it isn’t exactly Markov, if there’s really some dependence between the past
and the future even given the current state, then we’re introducing some bias, but it
can be small, and dominated by the reduced variance of not having to worry about
higher-order dependencies.

21.3.1 Meaning of the Markov Property
The Markov property is a weakening of both being strictly IID and being strictly
deterministic.

That being Markov is weaker than being IID is obvious: an IID sequence satisfies
the Markov property, because everything is independent of everything else no matter
what we condition on.

In a deterministic dynamical system, on the other hand, we have Xt+1 = g (Xt )
for some fixed function g . Iterating this equation, the current state Xt fixes the
whole future trajectory Xt+1,Xt+2, . . .. In a Markov chain, we weaken this to Xt+1 =
g (Xt , Ut ), where the Ut are IID noise variables (which we can take to be uniform for
simplicity). The current state of a Markov chain doesn’t fix the exact future trajec-
tory, but it does fix the distribution over trajectories.

The real meaning of the Markov property, then, is about information flow: the
current state is the only channel through which the past can affect the future. [[TODO: Maximum likeli-

hood for Markov models]]
[[TODO: Variable length
Markov chains]]
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t x
1821 269
1822 321
1823 585
1824 871
1825 1475
1826 2821
1827 3928
1828 5943
1829 4950
. . .

)

lag0 lag1 lag2 lag3
871 585 321 269
1475 871 585 321
2821 1475 871 585
3928 2821 1475 871
5943 3928 2821 1475
4950 5943 3928 2821
. . .

FIGURE 21.4: Turning a time series (here, the beginning of lynx) into a regression-suitable matrix.

21.4 Autoregressive Models
Instead of trying to estimate the whole conditional distribution of Xt , we can just
look at its conditional expectation. This is a regression problem, but since we are
regressing Xt on earlier values of the series, it’s called an autoregression:

E
h

Xt |X t�1
t�p = x p

1

i

= r (x p
1 ) (21.24)

If we think the process is Markov of order p, then of course there is no point in
conditioning on more than p steps of the past when doing an autoregression. But
even if we don’t think the process is Markov, the same reasons which inclined us
towards Markov approximations also make limited-order autoregressions attractive.

Since this is a regression problem, we can employ all the tools we know for regres-
sion analysis: linear models, kernel regression, spline smoothing, additive models,
etc., mixtures of regressions, etc. Since we are regressing Xt on earlier values from
the same series, it is useful to have tools for turning a time series into a regression-style
design matrix (as in Figure 21.4); see Code Example 38.

Suppose p = 1. Then we essentially want to draw regression curves through plots
like those in Figure 21.3. Figure 21.5 shows an example for the artificial series.

21.4.1 Autoregressions with Covariates
Nothing keeps us from adding a variable other than the past of Xt to the regression:

E
î

Xt+1 |X t
t�k+1,Z
ó

(21.25)

or even another time series:

E
î

Xt+1 |X t
t�k+1,Z t

t�l+1

ó

(21.26)

These are perfectly well-defined conditional expectations, and quite estimable in prin-
ciple. Of course, adding more variables to a regression means having to estimate
more, so again the curse of dimensionality comes up, but our methods are very much
the same as in the basic regression analyses.
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design.matrix.from.ts <- function(ts, order, right.older = TRUE) {
n <- length(ts)
x <- ts[(order + 1):n]
for (lag in 1:order) {

if (right.older) {
x <- cbind(x, ts[(order + 1 - lag):(n - lag)])

}
else {

x <- cbind(ts[(order + 1 - lag):(n - lag)], x)
}

}
lag.names <- c("lag0", paste("lag", 1:order, sep = ""))
if (right.older) {

colnames(x) <- lag.names
}
else {

colnames(x) <- rev(lag.names)
}
return(as.data.frame(x))

}

CODE EXAMPLE 38: Example code for turning a time series into a design matrix, suitable for
regression.

aar <- function(ts, order) {
stopifnot(require(mgcv))
fit <- gam(as.formula(auto.formula(order)), data = design.matrix.from.ts(ts,

order))
return(fit)

}
auto.formula <- function(order) {

inputs <- paste("s(lag", 1:order, ")", sep = "", collapse = "+")
form <- paste("lag0 ~ ", inputs)
return(form)

}

CODE EXAMPLE 39: Fitting an additive autoregression of arbitrary order to a time series. See
online for comments.
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plot(lag0 ~ lag1, data = design.matrix.from.ts(y, 1), xlab = expression(y[t]),
ylab = expression(y[t + 1]), pch = 16)

abline(lm(lag0 ~ lag1, data = design.matrix.from.ts(y, 1)), col = "red")
yaar1 <- aar(y, order = 1)
points(y[-length(y)], fitted(yaar1), col = "blue")

FIGURE 21.5: Plotting successive values of the artificial time series against each other, along with
the linear regression, and a spline curve (see below for the aar function, which fits additive autore-
gressive models; with order=1, it just fits a spline.
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21.4.2 Additive Autoregressions
As before, if we want some of the flexibility of non-parametric smoothing, without
the curse of dimensionality, we can try to approximate the conditional expectation
as an additive function:

E
h

Xt |X t�1
t�p

i

⇡ ↵0+
p
X

j=1

gj (Xt� j ) (21.27)

My personal experience with applied projects is that additive autoregressions tend to
work surprisingly well.

Example: The lynx Let’s try fitting an additive model for the lynx. Code Example
39 shows some code for doing this. (Most of the work is re-shaping the time series
into a data frame, and then automatically generating the right formula for gam.) Let’s
try out p = 2.

lynx.aar2 <- aar(lynx, 2)

This inherits everything we can do with a GAM, so we can do things like plot
the partial response functions (Figure 21.6), plot the fitted values against the actual
(Figure 21.7), etc. To get a sense of how well it can actually extrapolate, Figure 21.8
re-fits the model to just the first 80 data points, and then predicts the remaining 34.

21.4.3 Linear Autoregression
When people talk about autoregressive models, they usually (alas) just mean linear
autoregressions. There is almost never any justification in scientific theory for this
preference, but we can always ask for the best linear approximation to the true au-
toregression, if only because it’s fast to compute and fast to converge.

The analysis we did in Chapter 2 of how to find the optimal linear predictor car-
ries over with no change whatsoever. If we want to predict Xt as a linear combination
of the last k observations, Xt�1,Xt�2, . . .Xt�p , then the ideal coefficients � are

�=
⇣

V
h

X t�1
t�p

i⌘�1
Cov
h

X t�1
t�p ,Xt

i

(21.28)

where V
h

X t
t�p

i

is the variance-covariance matrix of (Xt�1, . . .Xt�p ) and similarly

Cov
h

X t�1
t�p ,Xt

i

is a vector of covariances. Assume stationarity, V⇥Xt
⇤

is constant
in t , and so the common factor of the over-all variance goes away, and � could be
written entirely in terms of the correlation function ⇢. Stationarity also lets us esti-
mate these covariances, by taking time-averages.

A huge amount of effort is given over to using linear AR models, which in my
opinion is out of all proportion to their utility — but very reflective of what was
computationally feasible up to about 1980. My experience is that results like Figure
21.9 is pretty typical.
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plot(lynx.aar2, pages = 1)

FIGURE 21.6: Partial response functions for the second-order additive autoregression model of the
lynx. Notice that a high count last year predicts a higher count this year, but a high count two
years ago predicts a lower count this year. This is the sort of alternation which will tend to drive
oscillations.
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plot(lynx)
lines(1823:1934, fitted(lynx.aar2), lty = "dashed")

FIGURE 21.7: Actual time series (solid line) and predicted values (dashed) for the second-order
additive autoregression model of the lynx. The match is quite good, but of course every one of these
points was used to learn the model, so it’s not quite as impressive as all that. (Also, the occasional
prediction of a negative number of lynxes is less than ideal.)
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lynx.aar2b <- aar(lynx[1:80], 2)
out.of.sample <- design.matrix.from.ts(lynx[-(1:78)], 2)
lynx.preds <- predict(lynx.aar2b, newdata = out.of.sample)
plot(lynx)
lines(1823:1900, fitted(lynx.aar2b), lty = "dashed")
lines(1901:1934, lynx.preds, col = "grey")

FIGURE 21.8: Out-of-sample forecasting. The same model specification as before is estimated on the
first 80 years of the lynx data, then used to predict the remaining 34 years. Solid black line, data;
dashed line, the in-sample prediction on the training data; grey lines, predictions on the testing
data. The RMS errors are 723 lynxes/year in-sample, 922 lynxes/year out-of-sample.
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library(tseries)
yar8 <- arma(y, order = c(8, 0))
points(y[-length(y)], fitted(yar8)[-1], col = "red")

FIGURE 21.9: Adding the predictions of an eighth-order linear AR model (red dots) to Figure 21.5.
We will see the arma function in more detail in §21.9.1.2; for now, it’s enough to know that when
the second component of its order argument is 0, it estimates and fits a linear AR model.
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21.4.3.1 “Unit Roots” and Stationary Solutions

Suppose we really believed a first-order linear autoregression,

Xt+1 = ↵+�Xt + ✏t (21.29)

with ✏t some IID noise sequence. Let’s suppose that the mean is zero for simplicity,
so ↵= 0. Then

Xt+2 = �2Xt +�✏t + ✏t+1 (21.30)

Xt+3 = �3Xt +�
2✏t +�✏t+1+ ✏t+2 , (21.31)

etc. If this is going to be stationary, it’d better be the case that what happened at
time t doesn’t go on to dominate what happens at all later times, but clearly that
will happen if |�|> 1, whereas if |�|< 1, eventually all memory of Xt (and ✏t ) fades
away. The linear AR(1) model in fact can only produce stationary distributions when
|�|< 1.

For higher-order linear AR models, with parameters �1,�2, . . .�p , the corre-
sponding condition is that all the roots of the polynomial

p
X

j=1

� j z j � 1 (21.32)

must be outside the unit circle. When this fails, when there is a “unit root”, the linear
AR model cannot generate a stationary process5.

There is a fairly elaborate machinery for testing for unit roots, which is sometimes
also used to test for non-stationarity. It is not clear how much this really matters. A
non-stationary but truly linear AR model can certainly be estimated6; a linear AR
model can be non-stationary even if it has no unit roots7; and if the linear model is
just an approximation to a non-linear one, the unit-root criterion doesn’t apply to
the true model anyway.

See §21.6.1 for an alternative way of checking stationarity, which presumes no
particular parametric form.

21.4.4 Conditional Variance
Having estimated the conditional expectation, we can estimate the conditional vari-
ance V
h

Xt |X t�1
t�p

i

just as we estimated other conditional variances, in Chapter 7.

Example: lynx The lynx series seems ripe for fitting conditional variance functions
— presumably when there are a few thousand lynxes, the noise is going to be larger
than when there are only a few hundred.

5The same argument applies to ARMA models (§21.9.1.2) more generally.
6Because the correlation structure stays the same, even as the means and variances can change. Consider

Xt =Xt�1+ ✏t , with ✏t IID.
7Start it with X1 very far from the expected value.
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523 21.4. AUTOREGRESSIVE MODELS

sq.res <- residuals(lynx.aar2)^2
lynx.condvar1 <- gam(sq.res ~ s(lynx[-(1:2)]))
lynx.condvar2 <- gam(sq.res ~ s(lag1) + s(lag2), data = design.matrix.from.ts(lynx,

2))

I have fit two different models for the conditional variance here, just because.
Figure 21.10 shows the data, and the predictions of the second-order additive AR
model, but with just the standard deviation bands corresponding to the first of these
two models; you can try making the analogous plot for lynx.condvar2.

21.4.5 Regression with Correlated Noise; Generalized Least Squares
Suppose we have an old-fashioned regression problem

Yt = r (Xt )+ ✏t (21.33)

only now the noise terms ✏t are themselves a dependent time series. Ignoring this
dependence, and trying to estimate m by minimizing the mean squared error, is very
much like ignoring heteroskedasticity. (In fact, heteroskedastic ✏t are a special case.)
What we saw in Chapter 7 is that ignoring heteroskedasticity doesn’t lead to bias,
but it does mess up our understanding of the uncertainty of our estimates, and is
generally inefficient. The solution was to weight observations, with weights inversely
proportional to the variance of the noise.

With correlated noise, we do something very similar. Suppose we knew the co-
variance function � (h) of the noise. From this , we could construct the variance-
covariance matrix � of the ✏t (since �i j = � (i � j ), of course).

We can use this as follows. Say that our guess about the regression function is m.
Stacking y1, y2, . . . yn into a matrix y as usual in regression, and likewise creating m(x),
the Gauss-Markov theorem (Appendix J) tells us that the most efficient estimate is the
solution to the generalized least squares problem,

bmGLS = argmin
m

1
n
(y�m(x))T��1(y�m(x)) (21.34)

as opposed to just minimizing the mean-squared error,

bmOLS = argmin
m

1
n
(y�m(x))T (y�m(x)) (21.35)

Multiplying by the inverse of � appropriately discounts for observations which are
very noisy, and discounts for correlations between observations introduced by the
noise.8

This raises the question of how to get � (h) in the first place. If we knew the true
regression function r , we could use the covariance of Yt � r (Xt ) across different t .
Since we don’t know r , but have only an estimate m̂, we can try alternating between
using a guess at � to estimate m̂, and using m̂ to improve our guess at � . We used this
sort of iterative approximation for weighted least squares, and it can work here, too.

8If you want to use a linear model for m, this can be carried through to an explicit modification of the
usual ordinary-least-squares estimate — Exercise 2.
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plot(lynx, ylim = c(-500, 10000))
sd1 <- sqrt(fitted(lynx.condvar1))
lines(1823:1934, fitted(lynx.aar2) + 2 * sd1, col = "grey")
lines(1823:1934, fitted(lynx.aar2) - 2 * sd1, col = "grey")
lines(1823:1934, sd1, lty = "dotted")

FIGURE 21.10: The lynx data (black line), together with the predictions of the additive autore-
gression ±2 conditional standard deviations. The dotted line shows how the conditional standard
deviation changes over time; notice how it ticks upwards around the big spikes in population.
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21.5 Bootstrapping Time Series
The big picture of bootstrapping doesn’t change: simulate a distribution which is
close to the true one, repeat our estimate (or test or whatever) on the simulation, and
then look at the distribution of this statistic over many simulations. The catch is that
the surrogate data from the simulation has to have the same sort of dependence as the
original time series. This means that simple resampling is just wrong (unless the data
are independent), and our simulations will have to be more complicated.

21.5.1 Parametric or Model-Based Bootstrap
Conceptually, the simplest situation is when we fit a full, generative model — some-
thing which we could step through to generate a new time series. If we are confident
in the model specification, then we can bootstrap by, in fact, simulating from the
fitted model. This is the parametric bootstrap we saw in Chapter 6.

21.5.2 Block Bootstraps
Simple resampling won’t work, because it destroys the dependence between succes-
sive values in the time series. There is, however, a clever trick which does work, and
is almost as simple. Take the full time series xn

1 and divide it up into overlapping
blocks of length k, so xk

1 , xk+1
2 , . . . xn

n�k+1. Now draw m = n/k of these blocks with
replacement9, and set them down in order. Call the new time series x̃n

1 .
Within each block, we have preserved all of the dependence between observa-

tions. It’s true that successive observations are now completely independent, which
generally wasn’t true of the original data, so we’re introducing some inaccuracy, but
we’re certainly coming closer than just resampling individual observations (which
would be k = 1). Moreover, we can make this inaccuracy smaller and smaller by
letting k grow as n grows. One can show10 that the optimal k =O(n1/3); this gives a
growing number (O(n2/3)) of increasingly long blocks, capturing more and more of
the dependence. (We will consider how exactly to pick k in the next chapter.)

The block bootstrap scheme is extremely clever, and has led to a great many vari-
ants. Three in particular are worth mentioning.

1. In the circular block bootstrap (or circular bootstrap), we “wrap the time se-
ries around a circle”, so that it goes x1, x2, . . . xn1

, xn , x1, x2, . . .. We then sample
the n blocks of length k this gives us, rather than the merely n � k blocks of
the simple block bootstrap. This makes better use of the information we have
about dependence on distances < k.

2. In the block-of-blocks bootstrap, we first divide the series into blocks of length
k2, and then subdivide each of those into sub-blocks of length k1 < k2. To
generate a new series, we sample blocks with replacement, and then sample

9If n/k isn’t a whole number, round.
10I.e., I will not show.
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rblockboot <- function(ts, block.length, len.out = length(ts)) {
the.blocks <- as.matrix(design.matrix.from.ts(ts, block.length - 1, right.older = FALSE))
blocks.in.ts <- nrow(the.blocks)
stopifnot(blocks.in.ts == length(ts) - block.length + 1)
blocks.needed <- ceiling(len.out/block.length)
picked.blocks <- sample(1:blocks.in.ts, size = blocks.needed, replace = TRUE)
x <- the.blocks[picked.blocks, ]
x.vec <- as.vector(t(x))
return(x[1:len.out])

}

CODE EXAMPLE 40: The basic block bootstrap for univariate time series. See Exercise 4 for
variants and extensions.

t x
1821 269
1822 321
1823 585
1824 871
1825 1475
1826 2821
1827 3928
1828 5943

)

lag2 lag1 lag0
269 321 585
321 585 871
585 871 1475
871 1475 2821
1475 2821 3928
2821 3928 5943

)
lag2 lag1 lag0
269 321 585
871 1475 2821
585 871 1475

)

t x̃
1821 269
1822 321
1823 585
1824 871
1825 1475
1826 2821
1827 585
1828 871

FIGURE 21.11: Scheme for block bootstrapping: turn the time series (here, the first eight years of
lynx) into blocks of consecutive values; randomly resample enough of these blocks to get a series
as long as the original; then string the blocks together in order. See rblockboot online for code.
[[TODO: R-ify]]
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plot(lynx)
lines(1821:1934, rblockboot(lynx, 4), col = "blue")

FIGURE 21.12: The lynx time series, and one run of resampling it with a block bootstrap, block
length = 4. (See online for the code to rblockboot.)

00:02 Monday 18th April, 2016



21.6. CROSS-VALIDATION 528

sub-blocks within each block with replacement. This gives a somewhat better
idea of longer-range dependence, though we have to pick two block-lengths.

3. In the stationary bootstrap, the length of each block is random, chosen from
a geometric distribution of mean k. Once we have chosen a sequence of block
lengths, we sample the appropriate blocks with replacement. The advantage
of this is that the ordinary block bootstrap doesn’t quite give us a stationary
time series. (The distribution of X k

k�1 is not the same as the distribution of
X k+1

k
.) Averaging over the random choices of block lengths, the stationary

bootstrap does. It tends to be slightly slower to converge that the block or
circular bootstrap, but there are some applications where the surrogate data
really needs to be strictly stationary.

21.5.3 Sieve Bootstrap

A compromise between model-based and non-parametric bootstraps is to use a sieve
bootstrap. This also simulates from models, but we don’t really believe in them;
rather, we just want them to be reasonable easy to fit and simulate, yet flexible enough
that they can capture a wide range of processes if we just give them enough capacity.
We then (slowly) let them get more complicated as we get more data11. One popular
choice is to use linear AR( p) models, and let p grow with n — but there is nothing
special about linear AR models, other than that they are very easy to fit and simulate
from. Additive autoregressive models, for instance, would often work at least as well.

21.6 Cross-Validation

[[Straight-forward way on design matrix]]
[[Leave-out-buffers]]
[[Going-forward scheme, borrow from Fan and Yao §8.3.5 but also cite others]]
[[Fan and Yao suggest: divide series into Q chunks, with a look-ahead region of

length m following the first one; re-estimate on each chunk; then average forecasting
errors on the next m observations; suggest that good results are often obtained, with-
out too much computational cost, by using m = n/10 and Q = 4 — real reason not
to re-estimate every time step is just that it takes too long!]]

21.6.1 Testing Stationarity by Cross-Prediction

[[visual inspection, formal tests]]
[[TODO: Cross-ref to unit roots]]

11This is where the metaphor of the “sieve” comes in: the idea is that the mesh of the sieve gets finer and
finer, catching more and more subtle features of the data.
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21.7 Trends and De-Trending
The sad fact is that a lot of important time series are not even approximately station-
ary. For instance, Figure 21.13 shows US national income per person (adjusted for
inflation) over the period from 1952 (when the data series begins) until now. It is
possible that this is sample from a stationary process. But in that case, the correla-
tion time is evidently much longer than 50 years, on the order of centuries, and so
the theoretical stationarity is irrelevant for anyone but a very ambitious quantitative
historian.

More sensibly, we should try to treat data like this as a non-stationary time series.
The conventional approach is try separating time series like this into a persistent
trend, and stationary fluctuations (or deviations) around the trend,

Yt = Xt +Zt (21.36)
series = fluctuations+ trend

Since we could add or subtract a constant to each Xt without changing whether they
are stationary, we’ll stipulate that E⇥Xt

⇤

= 0, so E⇥Yt
⇤

= E⇥Zt
⇤

. (In other sit-
uations, the decomposition might be multiplicative instead of additive, etc.) How
might we find such a decomposition?

If we have multiple independent realizations Yi ,t of the same process, say m of
them, and they all have the same trend Zt , then we can try to find the common trend
by averaging the time series:

Zt =E
î

Y·,t
ó⇡

m
X

i=1

Yi ,t (21.37)

Multiple time series with the same trend do exist, especially in the experimental sci-
ences. Yi ,t might be the measurement of some chemical in a reactor at time t in the i th

repetition of the experiment, and then it would make sense to average the Yi ,t to get
the common Zt trend, the average trajectory of the chemical concentration. One can
tell similar stories about experiments in biology or even psychology, though those
are complicated by the tendency of animals to get tired and to learn12.

For better or for worse, however, we have only one realization of the post-WWII
US economy, so we can’t average multiple runs of the experiment together. If we
have a theoretical model of the trend, we can try to fit that model. For instance,
some (simple) models of economic growth predict that series like the one in Figure
21.13 should, on average, grow at a steady exponential rate13. We could then estimate
Zt by fitting a model to Yt of the form�0e�t , or even by doing a linear regression of
logYt on t . The fluctuations Xt are then taken to be the residuals of this model.

12Even if we do have multiple independent experimental runs, it is very important to get them aligned in
time, so that Yi ,t and Yj ,t refer to the same point in time relative to the start of the experiment; otherwise,
averaging them is just mush. It can also be important to ensure that the initial state, before the experiment,
is the same for every run. Chu et al. (2003) explains how the later problem can lead to complications in
studying gene regulation.

13This is not quite what is claimed by Solow (1970), which you should read anyway if this kind of
question is at all interesting to you.
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gdppc <- read.csv("gdp-pc.csv")
gdppc$y <- gdppc$y * 1e+06
plot(gdppc, log = "y", type = "l", ylab = "GDP per capita")

FIGURE 21.13: US GDP per capita, adjusted for inflation (consumer price index deflator), with a
log scale on the vertical axis. (The values were initially recorded in the file in millions of dollars per
person per year, hence the correction.)
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gdppc.exp <- lm(log(y) ~ year, data = gdppc)
beta0 <- exp(coefficients(gdppc.exp)[1])
beta <- coefficients(gdppc.exp)[2]
curve(beta0 * exp(beta * x), lty = "dashed", add = TRUE)

FIGURE 21.14: As in Figure 21.13, but with an exponential trend fitted.
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plot(gdppc$year, residuals(gdppc.exp), xlab = "year", ylab = "logged fluctuation around trend",
type = "l", lty = "dashed")

FIGURE 21.15: The hopefully-stationary fluctuations around the exponential growth trend in Fig-
ure 21.14. Note that these are log Yt

�̂0e�̂t
, and so unitless.

00:02 Monday 18th April, 2016



533 21.7. TRENDS AND DE-TRENDING

If we only have one time series (no replicates), and we don’t have a good theory
which tells us what the trend should be, we fall back on curve fitting. In other words,
we regress Yt on t , call the fitted values Zt , and call the residuals Xt . This is frankly
rests more on hope than on theorems. The hope is that the characteristic time-scale
for the fluctuations Xt (say, their correlation time ⌧) is short compared to the charac-
teristic time-scale for the trend Zt

14. Then if we average Yt over a band-width which
is large compared to ⌧, but small compared to the scale of Zt , we should get some-
thing which is mostly Zt — there won’t be too much bias from averaging, and the
fluctuations should mostly cancel out.
[[TODO: Formally introduce the moving average filter here]]
Once we have the fluctuations, and are reasonably satisfied that they’re stationary,

we can model them like any other stationary time series. Of course, to actually make
predictions, we need to extrapolate the trend, which is a harder business.

21.7.1 Forecasting Trends

The problem with making predictions when there is a substantial trend is that it is
usually hard to know how to continue or extrapolate the trend beyond the last data
point. If we are in the situation where we have multiple runs of the same process,
we can at least extrapolate up to the limits of the different runs. If we have an actual
model which tells us that the trend should follow a certain functional form, and
we’ve estimated that model, we can use it to extrapolate. But if we have found the
trend purely through curve-fitting, we have a problem.

Suppose that we’ve found the trend by spline smoothing, as in Figure 21.16. The
fitted spline model will cheerfully make predictions for the what the trend of GDP
per capita will be in, say, 2252, far outside the data. This will be a simple linear ex-
trapolation, because splines are always linear outside the data range (Chapter 8, p.
195). This is just because of the way splines are set up, not because linear extrapola-
tion is such a good idea. Had we used kernel regression, or any of many other ways
of fitting the curve, we’d get different extrapolations. People in 2252 could look back
and see whether the spline had fit well, or some other curve would have done better.
(But why would they want to?) Right now, if all we have is curve-fitting, we are in a
dubious position even as regards next year, never mind 225215 [[TODO: Mention result of

Bosq (1998, §3.4.2) that just
blindly doing a regression of
Yt+1 on Yt can actually work
perfectly well in some situ-
ations, e.g., when the trend
is periodic or asymptotically
constant]]

14I am being deliberately vague about what “the characteristic time scale of Zt ” means. Intuitively,
it’s the amount of time required for Zt to change substantially. You might think of it as something like
n�1Pn�1

t=1 1/|Zt+1�Zt |, if you promise not to treat that too seriously. Trying to get an exact statement of
what’s involved in identifying trends requires being very precise, and getting into topics at the intersection
of statistics and functional analysis which are beyond the scope of this class.

15Yet again, we hit a basic philosophical obstacle, which is the problem of induction. We have so far
evaded it, by assuming that we’re dealing with IID or a stationary probability distribution; these assump-
tions let us deductively extrapolate from past data to future observations, with more or less confidence.
(For more on this line of thought, see Hacking (2001); Spanos (2011); Gelman and Shalizi (2013).) If we
assume a certain form or model for the trend, then again we can deduce future behavior on that basis. But
if we have neither probabilistic nor mechanistic assumptions, we are, to use a technical term, stuck with
induction. Whether there is some principle which might help — perhaps a form of Occam’s Razor (Kelly,
2007)? — is a nice question.
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gdp.spline <- fitted(gam(y ~ s(year), data = gdppc))
lines(gdppc$year, gdp.spline, lty = "dotted")

FIGURE 21.16: Figure 21.14, but with the addition of a spline curve for the time trend (dotted line).
This is, perhaps unsurprisingly, not all that different from the simple exponential-growth trend.
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lines(gdppc$year, log(gdppc$y/gdp.spline), xlab = "year", ylab = "logged fluctuations around trend",
lty = "dotted")

FIGURE 21.17: Adding the logged deviations from the spline trend (dotted) to Figure 21.15.
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21.7.2 Seasonal Components
Sometimes we know that time series contain components which repeat, pretty ex-
actly, over regular periods. These are called seasonal components, after the obvious
example of trends which cycle each year with the season. But they could cycle over
months, weeks, days, etc.

The decomposition of the process is thus

Yt =Xt +Zt + St (21.38)

where Xt handles the stationary fluctuations, Zt the long-term trends, and St the
repeating seasonal component.

If Zt = 0, or equivalently if we have a good estimate of it and can subtract it out,
we can find St by averaging over multiple cycles of the seasonal trend. Suppose that
we know the period of the cycle is T , and we can observe m = n/T full cycles. Then

St ⇡
1
m

m�1
X

j=0

Yt+ j T (21.39)

This works because, with Zt out of the picture, Yt = Xt + St , and St is periodic,
St = St+T . Averaging over multiple cycles, the stationary fluctuations tend to cancel
out (by the ergodic theorem), but the seasonal component does not.

For this trick to work, we need to know the period. If the true T = 355, but we
use T = 365 without thinking16, we can get mush.

We also need to know the over-all trend. Of course, if there are seasonal compo-
nents, we really ought to subtract them out before trying to find Zt . So we have yet
another vicious cycle, or, more optimistically, another case for iterative approxima-
tion.

21.7.3 Detrending by Differencing
Suppose that Yt has a linear time trend:

Yt =�0+�t +Xt (21.40)

with Xt stationary. Then if we take the difference between successive values of Yt ,
the trend goes away:

Yt �Yt�1 =�+Xt �Xt�1 (21.41)

Since Xt is stationary,�+Xt�Xt�1 is also stationary. Taking differences has removed
the trend.

Differencing will not only get rid of linear time trends. Suppose that

Zt = Zt�1+ ✏t (21.42)

where the “innovations” or “shocks” ✏t are IID, and that

Yt = Zt +Xt (21.43)
16Exercise: come up with an example of a time series where the periodicity should be 355 days.
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with Xt stationary, and independent of the ✏t . It is easy to check that (i) Zt is not
stationary (Exercise 3), but that (ii) the first difference

Yt �Yt�1 = ✏t +Xt �Xt�1 (21.44)

is stationary. So differencing can get rid of trends which are built out of the summa-
tion of persistent random shocks.

Differencing gives us another way of making a time series stationary: instead of
trying to model the time trend, take the difference between successive values, and see
if that is stationary. (The diff() function in R does this; see Figure 21.18.) If such
“first differences” don’t look stationary, take differences among differences, third dif-
ferences, etc., until you have something satisfying.

Differencing is like taking the discrete version of a derivative. Repeated differenc-
ing will eventually get rid of trends if they correspond to curves (e.g., polynomials)
with only finitely many non-zero derivatives. It fails for trends which aren’t like
that, like exponentials or sinusoids, though you can hope that eventually the higher
differences are small enough that they don’t matter much.

Notice that now we can continue to the trend (a little): once we predict Yt+1�Yt ,
we add it on to Yt (which we observed) to get Yt+1.

21.7.4 Cautions with Detrending

The fact that I’ve explained multiple different ways of detrending non-stationary time
series may have made you uneasy: how are you to know which one to use? My
unhelpful answer is “it depends”, namely, on what you think is a plausible about
the trend and the fluctuations around it. (E.g., if you think the trend is linear, then
differencing should work.) My advice is to try several different ways of detrending
your data, and to examine them very carefully if they give substantially different
results.

Finally, it is worth considering how much damage you might do by de-trending
if the process really is stationary. E.g., if the original series is really uncorrelated,
differencing will create correlations (Exercise 5). See also §21.10.1 on the Yule-

Slutsky effect
[[TODO: Move Yule-Slutsky
here]]21.7.5 Bootstrapping with Trends

All the bootstraps discussed in §21.5 work primarily for stationary time series. (Para-
metric bootstraps are an exception, since we could include trends in the model.) If
we have done extensive de-trending, the reasonable thing to do is to use a bootstrap
to generate a series of fluctuations, add it to the estimated trend, and then repeat the
whole analysis on the new, non-stationary surrogate series, including the de-trending.
This works on the same sort of principle as resampling residuals in regressions (§6.4,
especially 6.4.3).
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plot(gdppc$year[-1], diff(log(gdppc$y)), type = "l", xlab = "year", ylab = "differenced log GDP per capita")

FIGURE 21.18: First differences of log GDP per capita, i.e., the year-to-year growth rate of GDP
per capita.
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21.8 Breaks in Time Series
Figure 21.19 shows the employment to population ratio17 for the US since 1990.
There are fairly periodic oscillations — it’s not seasonally adjusted — but it seems to
be fluctuating within a not-too-wide band, and then 2008 happens, and the Lesser
Depression begins.

What should we, as time series analysts, do with something like this? It goes
against intuition to say that this sort of abrupt and dramatic break is all part of a
single stationary process, but by this point I hope you are all thoroughly suspicious
of that sort of intuition. The two big routes to dealing with series which look like
this are (1) to treat them as stationary, never mind our gut, or (2) to give up on global
stationarity, to say that sometimes things just change abruptly.

21.8.1 Long Memory Series
The simplest option for dealing with series that look like Figure 21.19 is to say that
they are fairly ordinary stationary time series, except that the decay of dependence
is very slow — that the time series has a long memory. A formal definition of a
long-memory time series is one where the covariance function � (h) = O(h�↵) for
some ↵> 0. If ↵ is big enough,

P1
h=0 |� (h)| is still finite — but the slow decay of � (h)

means that the sum, and so the correlation time, is quite large. A large correlation
time means that we need to wait a very long time before any one trajectory becomes
representative of the whole system — in this case, perhaps, several centuries.18

[[TODO: Example of a generative model]]

21.8.2 Change Points and Structural Breaks
We could of course give up on the idea that all the data come from a single stationary
process. The most popular alternative is the idea of a change point or structural
break. Up to some time, call it tb , the process followed one stationary process. Af-
ter this change point, it follows a different stationary process, perhaps bearing no
relationship at all to what went before.

If we think we’re dealing with a change point, the natural questions are, When
did it change?, and What does the process look like after the change?

21.8.2.1 Change Points and Long Memory

Suppose that the change-point manifests itself by a shift in the expectation value of
Xt , say from µ1 before the change to µ2 after. The global mean of the time series
n�1P

t Xt is the somewhere between µ1 and µ2. If h is not too large, then for most
t , Xt and Xt+h will be on the same side of the change point. If they are both before,
then Xt and Xt+h will both be somewhere around µ1, and if both times are after the

17That is, the ratio of the total number of employed people to all people. This is not one minus the
unemployment rate, because the denominator in the unemployment rate excludes those who wouldn’t be
looking for paid work anyway, such as retirees.

18See also §21.9.1.3 on “regime switching” models.
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epr <- read.csv("employment-pop-ratio.csv")[, 2]
epr <- ts(data = epr, start = 1990, deltat = 1/12)
plot(epr, ylim = c(50, 70), main = "Employment to population ratio", type = "l")

FIGURE 21.19: Monthly employment to population ratio for the US, in percent, without seasonal
adjustment. (Source: series LNU02300000 from FRED, , for 1990-01-01 to 2012-04-01 (retrieved
2012-05-04)..
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point, both values will be around µ2. Therefore, it will tend to be the case that either
both Xt and Xt+h are above the global mean, or both of them are below it — and so
they’re correlated. This argument applies even if the Xt are really all independent, as
in Figure 21.20.

This phenomenon makes it very hard to distinguish empirically between time
series which have change points and those which have a slow decay of dependence.

21.8.3 Change Point Detection
It is often reasonable to set aside such scruples, assume there are change points, and
try to find them. A large number of methods have been developed for this purpose,
often under very strong parametric restrictions — say that Xt ⇠I I D N (µ1,�2) when
t < tb , and Xt ⇠I I D N (µ2,�2) when t � tb . Many of these have the flavor of
looking for “runs” of values which are cumulatively very unlikely — for instance, we
might look for a long run of values which are far from µ1 and on the same side of
it. Other procedures boil down to “will dividing this time series here, and letting the
parameters change, work better?”
[[Cross-validation test for change points, due to Arlot and Celisse (2011)]]
[[Alternately, use the cross-prediction approach; should see a block-diagonal struc-

ture]]

21.9 Time Series with Latent Variables
[[Not all variables in time series get observed]]
[[Good reasons to add latent components: interpretability; realism; less good

reason: flexibility; not good reason: soak up mis-specification error]]
[[General schemes for handling hidden variables: sum up everything we need

from the past in a state which evolves according to a Markov process, but which we
don’t directly observe, thus HMM or CCC.]]
[[graphical models]]
[[The problems: (a) simulation; (b) state estimation (filtering or smoothing); (c)

parameter inference (estimation or testing); (d) prediction]]

21.9.1 Examples
21.9.1.1 General Gaussian-Linear State Space Model

21.9.1.2 Autoregressive-Moving Average (ARMA) Models

[[Wold decomposition]]
[[Try combining AR and MA parts:

Xt =� ·X t�1
t�p +Zt +✓1Zt�1+ . . .+✓q Zt�q (21.45)

= � ·X t�1
t�p + "t (21.46)
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par(mfrow = c(2, 2))
pre <- rnorm(228, mean(epr[1:228]), sd(epr[1:228]))
post <- rnorm(40, mean(epr[-(1:228)]), sd(epr[-(1:228)]))
change <- ts(c(pre, post), start = 1990, deltat = 1/12)
plot(change, ylab = "")
acf(change, lag.max = 50)
acf(epr, lag.max = 50)
par(mfrow = c(1, 1))

FIGURE 21.20: A time series with a change-point. Before and after the change point, the series is an
IID sequence of Gaussians, but both the expected value and the variance switch at the change-point.
(These are matched to the employment-population ratio’s values up to 2008 and after 2008.) The
middle panel shows the resulting autocorrelation function. The bottom panel shows the actual ACF
of the employment-population ratio. There is more correlation in the data than the change-point
alone can account for, but it comes surprisingly close.
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where "t is serially correlated and correlated with Xt ]]
[[but

E
h

Xt |X t�1
t�p

i

�Xt

is always uncorrelated with X t�1
t�p , so this won’t estimate � — OTOH it’s not clear if

that’s actually a problem for fixed-memory prediction!]]
[[The �ARMA model from UAI in 2004 to simplify stuff...]]

21.9.1.3 Regime Switching

Hidden-state models give us another way of dealing with apparent non-stationarity,
in addition to change-points and long memory processes (§21.8), namely regime
switching. The idea is that there observed time series is in some sense driven or
controlled by a discrete latent variable, the regime, and can show very different dy-
namics in different regimes. The regime itself evolves according to its own dynamics,
often taken to be Markovian. If every regime has a high probability of transitioning
to itself, we will see long stretches of time where the observables seem to follow one
stationary process, punctuated by rare but rapid transitions to what looks like a real-
ization of a different stationary process. If the Markov chain for regimes is stationary,
the over-all process will also be stationary, but one would, so to speak, need to look
over very long time scales to see it.
[[Concrete model]]
[[References]]

21.9.1.4 Noisily-Observed Dynamical Systems

[[Define]]
[[Example with, say, Lotka-Volterra but observe Poisson counts based on true

values]]

21.9.2 State Estimation
[[definitions; filtering, smoothing]]
[[formal solution via Bayes’s rule]]

p(xn
1 |s n

1 ) =
n
Y

t=1
p(xt |st ) (21.47)

p(xn
1 ) =
X

p(xn
1 |s n

1 )p(s
n
1 ) (21.48)

p(s n
1 |xn

1 ) =
p(xn

1 |s n
1 )p(s

n
1 )

p(xn
1 )

(21.49)

=
p(xn

1 |s n
1 )p(s

n
1 )

P

p(xn
1 |s n

1 )p(s
n
1 )

(21.50)

which is unpleasant-looking, but there are tricks...
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[[Limited special cases: Kalman filter, Baum-Welch algorithm]]
[[Mention deterministic approximation (e.g., LGF) but don’t go into details]]

21.9.2.1 Particle Filtering

[[A direct stochastic implementation of the formal solution]]
[[Start with an initial guess set of particles]]
[[Move each particle independently according to the Markovian state evolution]]
[[Calculate likelihood of next evolution per the observation model]]
[[Resample particles with weights proportional to the likelihoods]]
[[Repeat]]
[[Demo: Lotka-Volterra?]]

21.9.2.2 Parameter Estimation

[[maximize some tractable approximation to the likelihood]]
[[Generally, EM]]
[[Need/want to infer hidden state, also to optimize parameters]]
[[e.g., particle Monte Carlo EM]]
[[Numerical details involved; punt by reference to Douc/Moulines/Stoffer]]
Much of the effort of the EM algorithm and of particle filtering goes into esti-

mating the time-evolution of the latent state. If what we are willing to ignore that,
and just focus on estimating the parameters, we can sometimes save greatly on time
and effort by using techniques of simulation-based inference, basically adjusting the
parameters until simulated trajectories of the model look like the data; see Chapter
23 for details. We could then always go back and estimate the states for one parameter
value.

21.9.2.3 Prediction

[[Take the filtering distribution and extrapolate it forward via simulation]]

21.10 Moving Averages and Cycles
[[TODO: Originally written
as start of a separate chapter;
integrate into new context]]

[[Moving average, what it is]]
The basic equation for a moving average (MA) model of order q is

Xt = Zt +
q
X

i=1

✓i Zt�i (21.51)

with the Zt being IID noise terms. That is, what we observe is a weighted average19

of the q + 1 most recent noise variables.

19The right-hand side would look more like a weighted average if we wrote it Xt =
Zt+
Pq

i=1 ✓i Zt�i

1+
Pq

i=1 ✓i
, but

since the Zt are latent we could just re-scale each of them by the denominator. (Likewise, we can always
impose weight 1 on the most recent Z .)
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FIGURE 21.21: The DAG for a first-order moving average model.

Figure 21.21 shows the graphical model for an MA(1) model. It’s evident from
it that Xt 6 |= Xt�1, but Xt |= Xt�k , k > 1 — observables are only dependent on each
other through the hidden noise variables, and Xt and Xt�k have no common parents.
In general, in an MA(q), Xt |= Xt�k when k > q .

Suppose that we try to predict Xt from its past values. We condition Xt on Xt�1,
and ask whether there is still more information to be had about Xt from Xt�2. This
is asking whether Xt and Xt�2 are dependent, given Xt�1. The answer is clearly yes
from Figure 21.21: there is one path linking Xt to Xt�2, and Xt�1 is a collider on that
path, so conditioning on it activates the path.

Why does Xt�2 give us information about Xt , conditional on Xt�1? To determine
Xt , we’d need to know Zt and Zt�1. Since Xt�1 is a child of Zt�1 and Zt�2, knowing
Xt�1 tells us something about Zt�1, but we learn even more from also knowing Xt�2.

Nothing daunted, we try conditioning Xt on X t�1
t�2 . Is Xt |= Xt�3|X t�1

t�2 ? Clearly
not. There is again only a single path, which goes over two colliders — and we con-
dition on both of them, activating the path. Knowing Xt�3 would tell us more about
Zt�3, and that, with Xt�2, tells us more about Zt�2, which, together with Xt�1, helps
us pin down Zt�1 even better. The chain of inferences is getting longer and longer,
but it’s not breaking, and it’s evident that it will never break, no matter how many
steps back into the past we condition.

To sum up, an MA(1) process, and by extension any MA(q), is not Markov, no
matter what order of Markov chain we consider. Nonetheless, all of the dependence
of future on the past is carried by a simple, low-dimensional variable, (Zt�1,Zt ). Con-
ditional on that, Xt is independent of all other Xs ’s

20.

20Because Zt�1 and Zt are the only parents of Xt , which has no descendants.
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21.10.1 Yule-Slutsky

That applying a moving average to independent noise creates a process with compli-
cated dependence was noticed independently by two pioneers of time series analysis,
[[G. Udny Yule]] and [[E. Slutsky]]. It is therefore known as the Yule-Slutsky ef-
fect. But Yule and Slutsky gave very different interpretations to it — both are valid
in their own circumstances, but the contrast is instructive.

Slutsky Slutsky was primarily interested under the fluctuations of the economy
— in the business cycle. The way he thought of a moving average process was that
the economy is (under capitalism) continually subjected to random, unpredictable
shocks, but it takes time for the economy to respond to them, for them to work
through the system, as it were. The coefficients ✓ represent how the economy re-
sponds over time to any given shock. That this leads to fluctuations with a character-
istic amplitude and (nearly) duration was a feature, not a bug — it was how Slutsky
proposed to explain the business cycle21. It is not at all clear that any subsequent
theory of the business cycle has any more predictive power.

Yule Moving averages are of course a very common way of smoothing time series.
We can think of them as being rather like kernel smoothing, but with a one-sided
kernel. That is, we start with our original data Zt , and then average it together locally
to get a smoother series Xt , with some of the noise removed. What Yule recognized
is that doing this will, all by itself, create correlations among the Xt (cf. Chapter 4),
and complicated predictive relationships. Indeed, even if the Zt are all independent
of each other, the Xt will be correlated, and will have non-zero linear regression
coefficients (or other regression functions, if you use them). Part of what we infer on
the Xt is then just the effects of our smoothing.

This Yule effect is very basic, and very easy to understand as soon as one sees
Figure 21.21, but it continues to trip up researchers in a wide range of applied fields22

Don’t be like that.

21.11 Longitudinal Data
[[Basically: multiple, not necessarily stationary, time series (e.g., growth curves)]]

21.12 Multivariate Time Series
[[dynamic “Bayesian” networks]]
[[Granger causality, a distraction]]
[[Real causality a possibility]]

21The USSR in the 1920s being what it was, Slutsky had to do some fast talking to try to reconcile this
with Marxism, and was lucky to be allowed to escape into pure probability theory.

22For instance, Martindale (1990); see discussion at http://bactra.org/weblog/666.html.
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gdppc.ma4 <- arma(x = residuals(gdppc.exp), order = c(0, 4))
plot(1952:2011, residuals(gdppc.exp), type = "l", xlab = "year", ylab = "logged fluctuations in real US GDP per capita")
lines(1952:2011, fitted(gdppc.ma4), col = "grey", lwd = 2)

FIGURE 21.22: Logged fluctuations for the United States’s GDP per capita (with exponential trend
removed, as in Figure 21.15), versus a fourth-order moving average model. (Since each unit of time
is a quarter, four quarters is a year.) The mean squared-error, in sample, is 4.5⇥10�4, corresponding
to an R2 of 0.72. [[TODO: replace numbers with R]]
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21.13 Further Reading
Shumway and Stoffer (2000) is a good introduction to conventional time series anal-
ysis, covering R practicalities. In particular, it includes both ARMA models, and
the very important subject of frequency-domain methods, which I have deliberately
omitted because it relies on Fourier analysis, otherwise not needed for this book.
Lindsey (2004) surveys a broader range of situations in less depth; it is readable, but
opinionated, and I don’t always agree with the opinions. Fan and Yao (2003) is a
deservedly-standard reference on nonparametric time series models. The theoretical
portions would be challenging for most readers of this book, but the methodology
isn’t, and it devotes about the right amount of space (no more than a quarter of the
book) to the usual linear-model theory. Douc et al. (2014) plays a similar role for para-
metric nonlinear statistical models; part II in particular is a self-contained treatment
of stochastic process theory, and part III of particle filters.

The best introduction to stochastic processes I know of, by a very wide mar-
gin, is Grimmett and Stirzaker (1992). However, like most textbooks on stochastic
processes, it says next to nothing about how to use them as models of data. A no-
table exception is the excellent Guttorp (1995), which both introduces the theory of
a range of highly-applicable stochastic processes, and covers their statistical inference
with real scientific examples. Bartlett (1955), while similar in intent, is old enough
that it now makes a better second book than a first.

The basic ergodic theorem in §21.2.2.1 follows a continuous-time argument in
Frisch (1995); see Exercise 6 for an extension to non-stationary processes. My general
treatment of ergodicity is heavily shaped by Gray (1988) and Shields (1996).

The block bootstrap was introduced by Künsch (1989). Davison and Hinkley
(1997, §8.2) has a characteristically-clear treatment of the main flavors of bootstrap
for time series; Lahiri (2003) is thorough but theoretical. Bühlmann (2002) is also
useful.
[[CV for time series references]]
ARMA models have spawned a huge number of modifications, extensions, and

re-interpretations. Holan et al. (2010) is a recent survey of this “alphabet soup” of a
lineage.

In parallel to the treatment of time series by statisticians, physicists and mathe-
maticians developed their own tradition of time-series analysis (Packard et al., 1980),
where the basic models are not stochastic processes but deterministic, yet unstable,
dynamical systems. Perhaps the best treatment of this are Abarbanel (1996); Kantz
and Schreiber (2004). There are in fact very deep connections between this approach
and the question of why probability theory works in the first place (Ruelle, 1991),
but that’s not a subject for data analysis.
[[Point-process references]]

21.14 Exercises
1. Write a function which takes in a time series X and makes a plot of Xt+1 versus

Xt , as in Figure 21.3. Hint: Use Code Example 38.
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549 21.14. EXERCISES

2. In Eq. 21.34, assume that m(x) has to be a linear function, m(x) =� · x. Solve
for the optimal� in terms of y, x, and �. This “generalized least squares” (GLS)
solution should reduce to ordinary least squares when �= �2I.

3. If Zt = Zt�1 + ✏t , with ✏t IID, prove that Zt is not stationary. Hint: consider
V⇥Zt
⇤

.

4. Start with rblockboot from Code Example 40.

(a) Modify the function to perform the circular block bootstrap. (Hint: Ex-
tend ts.)

(b) Modify the function to work with multivariate time series, given as an
array with time points as the rows and variables as the columns. Ensure
that the same blocks are used for all variables, to preserve dependencies
across them.

(c) Modify the function to work with multivariate time series, given as a
collection of univariate time series. Again, make sure the same blocks are
used for all series. (Hint: Reduce to the previous sub-exercise.)

5. Suppose that Xi are IID, but we difference them and so look at Yi =Xi�Xi�1.
Find the autocovariance function of the Y series, in terms of the moments of
the Xi .

6. A non-stationary ergodic theorem Suppose that the Xt are non-stationary, but
they all have finite (not necessarily equal) means E⇥Xt

⇤

, and finite covariances
Cov
⇥

Xt ,Xs
⇤

. Define

mn ⌘
1
n

n
X

t=1
E⇥Xt
⇤

(21.52)

and

Vn ⌘
n
X

t=1

n
X

s=1
Cov
⇥

Xt ,Xs
⇤

(21.53)

Show that if Vn = o(n2), then

E
h

Ä

mn �X n

ä2i! 0 (21.54)

and so that X n ! mn . Does this result imply Eq. 21.15 under the conditions
of §21.2.2.1? Could you deduce this result from Eq. 21.15?
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