R is a free, open-source software package/programming language for statistical computing. You should have begun to learn it in 36-401 (if not before), and this class presumes that you have.

Here are some resources for learning R, or refreshing your memory, or learning to use it better. It makes no attempt to be comprehensive.

- The official intro, "An Introduction to R", available online in HTML and PDF
- John Verzani, "simpleR", in PDF
- Quick-R. This is primarily aimed at those who already know a commercial statistics package like SAS, SPSS or Stata, but it's very clear and well-organized, and others may find it useful as well.
- Patrick Burns, The R Inferno. "If you are using R and you think you're in hell, this is a map for you."
- Thomas Lumley, "R Fundamentals and Programming Techniques" (large PDF)
- Paul Teetor, The R Cookbook, explains how to use R to do many, many common tasks. (It's like the inverse to R's help: "What command does X?", instead of "What does command Y do?"). It is one of the required texts, and is available at the campus bookstore.
- The notes for 36-350, Introduction to Statistical Computing
- There are now many books about R. Some recommendable ones:
- Joseph Adler R in a Nutshell (O'Reilly, 2009; ISBN 9780596801700). Probably most useful for those with previous experience programming in another language.
- W. John Braun and Duncan J. Murdoch, A First Course in Statistical Programming with R (Cambridge University Press, 2008; ISBN 978-0-521-69424-7)
- John M. Chambers, Software for Data Analysis: Programming with R (Springer, 2008, ISBN 978-0-387-75935-7). The best book on writing clean and reliable R programs; probably more advanced than you will need.
- Norman Matloff, The Art of R Programming (No Starch Press, 2011, ISBN 978-1-59327-384-2). Good introduction to programming for complete novices using R. Less statistics than Braun and Murdoch, more programming skills.