
Appendix L

Writing R Functions

The ability to read, understand, modify and write simple pieces of code is an
essential skill for modern data analysis. Lots of high-quality software already
exists for specific purposes, which you can and should use, but statisticians need
to grasp how such software works, tweak it to suit their needs, recombine existing
pieces of code, and, when needed, build their own tools. Someone who just knows
how to run canned routines is not a data analyst but a human interface to a
machine they do not understand.
Fortunately, writing code is not actually very hard, especially not in R. All it

demands is the discipline to think logically, and the patience to practice. This
appendix tries to illustrate what’s involved, starting from the very beginning. It
is redundant for many students, but included through popular demand.

L.1 Functions

Programming in R is organized around functions. You all know what a mathe-
matical function is, like log x or �(z) or sin ✓: it is a rule which takes some inputs
and delivers a definite output. A function in R, like a mathematical function,
takes zero or more inputs, also called arguments, and returns an output. The
output is arrived at by going through a series of calculations, based on the in-
put, which we specify in the body of the function. As the computer follows our
instructions, it may do other things to the system; these are called side-e↵ects.
(The most common sort of side-e↵ect, in R, is probably making or updating a
plot on the screen.) The basic declaration or definition of a function looks like
so:

my.function <- function(argument.1, argument.2, ...) {
# clever manipulations of arguments
return(the.return.value)

}

Strictly speaking, we often don’t need the return() command; without it, the
function will return the last thing it evaluated. But it’s usually clearer, and never
hurts, to be explicit.
We write functions because we often find ourselves going through the same

sequence of steps at the command line, perhaps with small variations. It saves
mental e↵ort on our part to take that sequence and bind it together into an
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integrated procedure, the function, so that then we can think about the function
as a whole, rather than the individual steps. It also reduces error, because, by
invoking the same function every time, we don’t have to worry about missing a
step, or wondering whether we forgot to change the third step to be consistent
with the second, and so on.

L.2 First Example: Pareto Quantiles

Let me give a really concrete example. In Chapter 6, I mentioned the Pareto
distribution, which has the probability density function
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and the quantile function is

Q(p;↵, x0) = x0(1� p)�
1

↵�1 (L.3)

Say I want to find the median of a Pareto distribution with ↵ = 2.33 and
x0 = 6⇥ 108. I can do that in R:

6e8 * (1-0.5)^(-1/(2.33-1))
## [1] 1010391288

If I decide I want the 40th percentile of the same distribution, I can do that:

6e8 * (1-0.4)^(-1/(2.33-1))
## [1] 880957225

If I decide to raise the exponent to 2.5, lower the threshold to 1⇥ 106, and ask
about the 92nd percentile, I can do that, too:

1e6 * (1-0.92)^(-1/(2.5-1))
## [1] 5386087

But doing this all by hand gets quite tiresome, and at some point I’m going to
mess up and (say) type when I meant ^. I’ll write a function to do this for me,
and so that there is only one place for me to make a mistake:

# Calculate quantiles of the Pareto distribution
# Inputs: desired quantile (p)

# exponent of the distribution (exponent)
# lower threshold of the distribution (threshold)

# Outputs: the pth quantile
qpareto.1 <- function(p, exponent, threshold) {

q <- threshold*((1-p)^(-1/(exponent-1)))
return(q)

}
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The name of the function is what goes on the left of the assignment <-, with
the declaration (beginning function) on the right. (I called this qpareto.1 to
distinguish it from later modifications.) The three terms in the parenthesis after
function are the arguments to qpareto — the inputs it has to work with. The
body of the function is just like some R code we would type into the command
line, after assigning values to the arguments. The very last line tells the function,
explicitly, what its output or return value should be. Here, of course, the body
of the function calculates the pth quantile of the Pareto distribution with the
exponent and threshold we ask for.
When I enter the code above, defining qpareto.1, into the command line, R

just accepts it without outputting anything. It thinks of this as assigning certain
value to the name qpareto.1, and it doesn’t produce outputs for assignments
when they succeed, just as if I’d said alpha <- 2.5.
All that successfully creating a function means, however, is that we didn’t make

a huge error in the syntax. We should still check that it works, by invoking the
function with values of the arguments where we know, by other means, what the
output should be. I just calculated three quantiles of Pareto distributions above,
so let’s see if we can reproduce them.

qpareto.1(p=0.5,exponent=2.33,threshold=6e8)
## [1] 1010391288
qpareto.1(p=0.4,exponent=2.33,threshold=6e8)
## [1] 880957225
qpareto.1(p=0.92,exponent=2.5,threshold=1e6)
## [1] 5386087

So, our first function seems to work successfully.

L.3 Functions Which Call Functions

If we examine other quantile functions (e.g., qnorm), we see that most of them
take an argument called lower.tail, which controls whether p is a probability
from the lower tail or the upper tail. qpareto.1 implicitly assumes that it’s the
lower tail, but let’s add the ability to change this.

# Calculate quantiles of the Pareto distribution
# Inputs: desired quantile (p)

# exponent of the distribution (exponent)
# lower threshold of the distribution (threshold)
# flag for whether to give lower or upper quantiles (lower.tail)

# Outputs: the pth quantile
qpareto.2 <- function(p, exponent, threshold, lower.tail=TRUE) {

if(lower.tail==FALSE) {
p <- 1-p

}
q <- threshold*((1-p)^(-1/(exponent-1)))
return(q)

}
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When, in a function declaration, an argument is followed by = and an expres-
sion, the expression sets the default value of the argument, the one which will
be used unless explicitly over-ridden. The default value of lower.tail is TRUE,
so, unless it is explicitly set to false, we will assume p is a probability counted
from �1 on up.
The if command is a control structure — if the condition in parenthesis

is true, then the commands in the following braces will be executed; if not, not.
Since lower tail probabilities plus upper tail probabilities must add to one, if we
are given an upper tail probability, we just find the lower tail probability and
proceed as before.
Let’s try it:

qpareto.2(p=0.5,exponent=2.33,threshold=6e8,lower.tail=TRUE)
## [1] 1010391288
qpareto.2(p=0.5,exponent=2.33,threshold=6e8)
## [1] 1010391288
qpareto.2(p=0.92,exponent=2.5,threshold=1e6)
## [1] 5386087
qpareto.2(p=0.5,exponent=2.33,threshold=6e8,lower.tail=FALSE)
## [1] 1010391288
qpareto.2(p=0.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
## [1] 1057162

First: the answer qpareto.2 gives with lower.tail explicitly set to true
matches what we already got from qpareto.1. Second and third: the default
value for lower.tail works, and it works for two di↵erent values of the other
arguments. Fourth and fifth: setting lower.tail to FALSE works properly (since
the 50th percentile is the same from above or from below, but the 92nd percentile
is di↵erent, and smaller from above than from below).
The function qpareto.2 is equivalent to this:

# Calculate quantiles of the Pareto distribution
# Inputs: desired quantile (p)

# exponent of the distribution (exponent)
# lower threshold of the distribution (threshold)
# flag for whether to give lower or upper quantiles (lower.tail)

# Outputs: the pth quantile
qpareto.3 <- function(p, exponent, threshold, lower.tail=TRUE) {

if(lower.tail==FALSE) {
p <- 1-p

}
q <- qpareto.1(p, exponent, threshold)
return(q)

}

When R tries to execute this, it will look for a function named qpareto.1 in
the workspace. If we have already defined such a function, then R will execute it,
with the arguments we have provided, and q will become whatever is returned by
qpareto.1. When we give R the above function definition for qpareto.3, it does
not check whether qpareto.1 exists — it only has to be there at run time. If
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qpareto.1 changes, then the behavior of qpareto.3 will change with it, without
our having to redefine qpareto.3.
This is extremely useful. It means that we can take our programming problem

and sub-divide it into smaller tasks e�ciently. If I made a mistake in writing
qpareto.1, when I fix it, qpareto.3 automatically gets fixed as well — along
with any other function which calls qpareto.1, or qpareto.3 for that matter. If
I discover a more e�cient way to calculate the quantiles and modify qpareto.1,
the improvements are likewise passed along to everything else. But when I write
qpareto.3, I don’t have to worry about how qpareto.1 works, I can just assume
it does what I need somehow.

L.3.1 Sanity-Checking Arguments

It is good practice, though not strictly necessary, to write functions which check
that their arguments make sense before going through possibly long and compli-
cated calculations. For the Pareto quantile function, for instance, p must be in
[0, 1], the exponent ↵ must be at least 1, and the threshold x0 must be positive,
or else the mathematical function just doesn’t make sense.
Here is how to check all these requirements:

# Calculate quantiles of the Pareto distribution
# Inputs: desired quantile (p)

# exponent of the distribution (exponent)
# lower threshold of the distribution (threshold)
# flag for whether to give lower or upper quantiles (lower.tail)

# Outputs: the pth quantile
qpareto.4 <- function(p, exponent, threshold, lower.tail=TRUE) {

stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0)
q <- qpareto.3(p,exponent,threshold,lower.tail)
return(q)

}

The function stopifnot halts the execution of the code, with an error message,
if all of its arguments do not evaluate to TRUE. If all those conditions are met,
however, R just goes on to the next command, which here happens to be running
qpareto.3. Of course, I could have written the checks on the arguments directly
into the latter.
Let’s see this in action:

qpareto.4(p=0.5,exponent=2.33,threshold=6e8,lower.tail=TRUE)
## [1] 1010391288
qpareto.4(p=0.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)
## [1] 1057162
qpareto.4(p=1.92,exponent=2.5,threshold=1e6,lower.tail=FALSE)

## Error: p <= 1 is not TRUE

qpareto.4(p=-0.02,exponent=2.5,threshold=1e6,lower.tail=FALSE)

## Error: p >= 0 is not TRUE

qpareto.4(p=0.92,exponent=0.5,threshold=1e6,lower.tail=FALSE)
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## Error: exponent > 1 is not TRUE

qpareto.4(p=0.92,exponent=2.5,threshold=-1,lower.tail=FALSE)

## Error: threshold > 0 is not TRUE

qpareto.4(p=-0.92,exponent=2.5,threshold=-1,lower.tail=FALSE)

## Error: p >= 0 is not TRUE

The first two lines give the same results as our earlier functions — as they
should, because all the arguments are in the valid range. The third, fourth, fifth
and sixth lines all show that qpareto.4 stops with an error message when one
of the conditions in the stopifnot is violated. Notice that the error message
says which condition was violated. The seventh line shows one limitation of this:
the arguments violate two conditions, but stopifnot’s error message will only
mention the first one. (What is the other violation?)

L.4 Layering Functions and Debugging

Functions can call functions which call functions, and so on indefinitely. To il-
lustrate, I’ll write a function which generates Pareto-distributed random num-
bers, using the “quantile transform” method from §5.2.2.3. This first generates
a uniform random number U on [0, 1], and then returns Q(U), with Q being the
quantile function of the desired distribution.
The first version contains a deliberate bug, which I will show how to

track down and fix.

# Generate random numbers from the Pareto distribution
# Inputs: number of random draws (n)

# exponent of the distribution (exponent)
# lower threshold of the distribution (threshold)

# Outputs: vector of random numbers
rpareto <- function(n,exponent,threshold) {

x <- vector(length=n)
for (i in 1:n) {
x[i] <- qpareto.4(p=rnorm(1),exponent=exponent,threshold=threshold)

}
return(x)

}

Notice that this calls qpareto.4, which calls qpareto.3, which calls qpareto.1.
It doesn’t work:

rpareto(10)

## Error in qpareto.4(p = rnorm(1), exponent = exponent, threshold = threshold): argument
"exponent" is missing, with no default

This is a puzzling error message — the expression exponent > 1 never appears
in rpareto! The error is coming from further down the chain of execution. We
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can see where it happens by using the traceback() function, which gives the
chain of function calls leading to the latest error1:

traceback()
## 3: stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0) at #2
## 2: qpareto.4(p = rnorm(1), exponent = exponent, threshold = threshold) at #4
## 1: rpareto(10)

traceback() outputs the sequence of function calls leading up to the error in
reverse order, so that the last line, numbered 1, is what we actually entered on
the command line. This tells us that the error is happening when qpareto.4 tries
to check the arguments to the quantile function. And the reason it is happening
is that we are not providing qpareto.4 with any value of exponent. And the
reason that is happening is that we didn’t give rpareto any value of exponent
as an explicit argument when we called it, and our definition didn’t set a default.
Let’s try this again.

rpareto(n=10,exponent=2.5,threshold=1)

## Error: p >= 0 is not TRUE

[[TODO:
Fix font]]

traceback()
## 4: stop(sprintf(ngettext(length(r), "%s is not TRUE", "%s are not all TRUE"),

ch), call. = FALSE, domain = NA)
## 3: stopifnot(p >= 0, p <= 1, exponent > 1, threshold > 0) at #2
## 2: qpareto.4(p = rnorm(1), exponent = exponent, threshold = threshold) at #4
## 1: rpareto(n = 10, exponent = 2.5, threshold = 1)

This is progress! The stopifnot in qpareto.4 is at least able to evaluate all
the conditions — it just happens that one of them is false. (The line numbered 4
in this traceback comes from the internal workings of stopifnot.) The problem,
then, is that qpareto.4 is being passed a negative value of p. This tells us that
the problem is coming from the part of rpareto.1 which sets p. Looking at that,

p = rnorm(1)

the culprit is obvious: I stupidly wrote rnorm, which generates a Gaussian
random number, when I meant to write runif, which generates a uniform random
number.2

The obvious fix is just to replace rnorm with runif:

# Generate random numbers from the Pareto distribution
# Inputs: number of random draws (n)

# exponent of the distribution (exponent)
# lower threshold of the distribution (threshold)

1 For users of knitr/R Markdown: traceback is one of a number of highly-interactive commands

which don’t work properly in knitr. This is not much of a loss, since it’s for debugging, and you

shouldn’t be doing your debugging in your report.
2 I actually made this exact mistake the first time I wrote the function, in 2004.
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# Outputs: vector of random numbers
rpareto <- function(n,exponent,threshold) {

x <- vector(length=n)
for (i in 1:n) {
x[i] <- qpareto.4(p=runif(1),exponent=exponent,threshold=threshold)

}
return(x)

}

Let’s see if this is enough to fix things, or if I have any other errors:

rpareto(n=10,exponent=2.5,threshold=1)
## [1] 1.531522 1.071564 205.271253 1.384535 2.107365 1.105007
## [7] 5.927026 1.002124 2.221769 2.136964

This function at least produces numerical return values rather than errors! Are
they the right values?
We can’t expect a random number generator to always give the same results, so

I can’t cross-check this function against direct calculation, the way I could check
qpareto.1. (Actually, one way to check a random number generator is to make
sure it doesn’t give identical results when run twice!) It’s at least encouraging that
all the numbers are above threshold, but that’s not much of a test. However,
since this is a random number generator, if I use it to produce a lot of random
numbers, the quantiles of the output should be close to the theoretical quantiles,
which I do know how to calculate.

r <- rpareto(n=1e4,exponent=2.5,threshold=1)
qpareto.4(p=0.5,exponent=2.5,threshold=1)
## [1] 1.587401
quantile(r,0.5)
## 50%
## 1.588368
qpareto.4(p=0.1,exponent=2.5,threshold=1)
## [1] 1.072766
quantile(r,0.1)
## 10%
## 1.071659
qpareto.4(p=0.9,exponent=2.5,threshold=1)
## [1] 4.641589
quantile(r,0.9)
## 90%
## 4.641476

This looks pretty good. Figure L.1 shows a plot comparing all the theoretical
percentiles to the simulated ones, confirming that we didn’t just get lucky with
choosing particular percentiles above.
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simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)

Figure L.1 Theoretical percentiles of the Pareto distribution with ↵ = 2.5,
x0 = 1, and empirical percentiles from a sample of 104 values simulated from
it with the rpareto function. (The solid line is the x = y diagonal, for visual
reference.)
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L.4.1 More on Debugging

Everyone who writes their own code spends a lot of time debugging3. There are
some guidelines for making it easier and less painful.

Characterize the Bug

We’ve got a bug when the code we’ve written won’t do what we want. To fix this,
it helps a lot to know exactly what error we’re seeing. The first step to this is to
make the error reproducible. Can we always get the error when re-running the
same code and values? If we start the same code in a clean copy of R, does the
same thing happen? Once we can reproduce the error, we map its boundaries.
How much can we change the inputs and get the same error? A di↵erent error?
For what inputs (if any) does the bug go away? How big is the error?

Localize the Bug

The problem may be a di↵use all-pervading wrongness, but often it’s a lot more
localized, to a few lines or even just one line of code; it helps to know where! We
have seen some tools for localizing the bug above: traceback() and stopifnot().
Another very helpful one is to add print statements, so that our function gives
us messages about the progress of its calculations, selected variables, etc., as it
goes; the warning command can be used to much the same e↵ect4.

Fix the Bug

Once you know what’s going wrong and where it’s going wrong, it’s often not too
hard to spot the error, either one of syntax (say = vs. ==) or logic. Try a fix and
see if it makes it better. Do the inputs which gave you the bugs before now work
properly? Are you getting di↵erent errors?

L.5 Automating Repetition and Passing Arguments

The match between the theoretical quantiles and the simulated ones in Figure
L.1 is close, but it’s not perfect. On the one hand, this might indicate some subtle
mistake. On the other hand, it might just be random sampling noise — rpareto
is supposed to be a random number generator, after all. We could check this by
seeing whether we get di↵erent deviations around the line with di↵erent runs of
rpareto, or if on the contrary they all pull in the same direction. We could just
make many plots by hand, the way we made that plot by hand, but since we’re
doing almost exactly the same thing many times, let’s write a function.

# Compare random draws from Pareto distribution to theoretical quantiles
# Inputs: None
# Outputs: None

3 Those who don’t write their own code but use computers anyway spend a lot of time putting up

with other people’s bugs.
4 Real software engineers look down on this, in favor of more sophisticated tools, like interactive

debuggers. They have a point, but that’s usually over-kill for the purposes of this class.



L.5 Automating Repetition and Passing Arguments 823

# Side-effects: Adds points showing random draws vs. theoretical quantiles
# to current plot

pareto.sim.vs.theory <- function() {
r <- rpareto(n=1e4,exponent=2.5,threshold=1)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles)

}

This doesn’t return anything. All it does is draw a new sample from the same
Pareto distribution as before, re-calculate the simulated percentiles, and add them
to an existing plot — this is an example of a side-e↵ect. Notice also that the func-
tion presumes that theoretical.percentiles already exists. (The theoretical
percentiles won’t need to change from one simulation draw to the next, so it
makes sense to only calculate them once.)
Figure L.2 shows how we can use it to produce multiple simulation runs. We

can see that, looking over many simulation runs, the quantiles seem to be too
large about as often, and as much, as they are too low, which is reassuring.
One thing which that figure doesn’t do is let us trace the connections between

points from the same simulation. More generally, we can’t modify the plotting
properties, which is kind of annoying. This is easily fixed modifying the function
to pass along arguments:

# Compare random draws from Pareto distribution to theoretical quantiles
# Inputs: Graphical arguments, passed to points()
# Outputs: None
# Side-effects: Adds points showing random draws vs. theoretical quantiles

# to current plot
pareto.sim.vs.theory <- function(...) {

r <- rpareto(n=1e4,exponent=2.5,threshold=1)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

Putting the ellipses (...) in the argument list means that we can give pareto.sim.vs.theory.2
an arbitrary collection of arguments, but with the expectation that it will pass
them along unchanged to some other function that it will call with ... — here,
that’s the points function. Figure L.3 shows how we can use this, by passing
along graphical arguments to points — in particular, telling it to connect the
points by lines (type="b"), varying the shape of the points (pch=i) and the line
style (lty=i).
These figures are reasonably convincing that nothing is going seriously wrong

with the simulation for these parameter values. To check other parameter settings,
again, I could repeat all these steps by hand, or I could write another function:

# Check Pareto random number generator, by repeatedly generating random draws
# and comparing them to theoretical quantiles

# Inputs: Number of random points to generate per replication (n)
# exponent of distribution (exponent)
# lower threshold of distribution (threshold)
# number of replications to create (B)

# Outputs: None
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simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)
for (i in 1:10) { pareto.sim.vs.theory() }

Figure L.2 Comparing multiple simulated quantile values to the theoretical
quantiles.

# Side-effects: Creates new plot, plots simulated points vs. theory
check.rpareto <- function(n=1e4, exponent=2.5, threshold=1, B=10) {

# One set of percentiles for everything
theoretical.percentiles <- qpareto.4((0:99)/100, exponent=exponent,

threshold=threshold)
# Set up plotting window, but don't put anything in it:
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simulated.percentiles <- quantile(r,(0:99)/100)
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=2.5,threshold=1)
plot(theoretical.percentiles,simulated.percentiles)
abline(0,1)
for (i in 1:10) {

pareto.sim.vs.theory(pch=i,type="b",lty=i)
}

Figure L.3 As Figure L.2, but using the ability to pass along arguments to
a subsidiary function to distinguish separate simulation runs.

plot(0,type="n", xlim=c(0, max(theoretical.percentiles)),
# No more horizontal room than we need
ylim=c(0,1.1*max(theoretical.percentiles)),
# Allow some extra vertical room for noise



826 Programming

xlab="theoretical percentiles", ylab="simulated percentiles",
main = paste("exponent = ", exponent, ", threshold = ", threshold))

# Diagonal, for visual reference
abline(0,1)
for (i in 1:B) {
pareto.sim.vs.theory(n=n, exponent=exponent, threshold=threshold,

pch=i, type="b", lty=i)
}

}

R will accept this definition, but it won’t run properly until we re-defined
pareto.sim.vs.theory to take the arguments n, exponent and threshold.5

It seems like a simple modification of the old definition should do the trick:

# Compare random draws from Pareto distribution to theoretical quantiles
# Inputs: Graphical arguments, passed to points()
# Outputs: None
# Side-effects: Adds points showing random draws vs. theoretical quantiles

# to current plot
pareto.sim.vs.theory <- function(n, exponent, threshold,...) {

r <- rpareto(n=n, exponent=exponent, threshold=threshold)
simulated.percentiles <- quantile(r, (0:99)/100)
points(theoretical.percentiles, simulated.percentiles, ...)

}

After defining this, the checker function seems to work fine. The following
commands produce the plot in Figure L.4, which looks very like the manually-
created one. (Random noise means it won’t be exactly the same.) Putting in the
default arguments explicitly gives the same results (not shown).

check.rpareto()
check.rpareto(n=1e4, exponent=2.5, threshold=1)

Unfortunately, changing the arguments reveals a bug (Figure L.5). Notice that
the vertical coordinates of the points, coming from the simulation, look like they
have about the same range as the theoretical quantiles, used to lay out the plotting
window. But the horizontal coordinates are all pretty much the same (on a scale
of tens of billions, anyway). What’s going on?
The horizontal coordinates for the points being plotted are set in pareto.sim.vs.theory.3:

points(theoretical.percentiles, simulated.percentiles, ...)

Where does this function get theoretical.percentiles from? Since the vari-
able isn’t assigned inside the function, R tries to figure it out from context. Since
pareto.sim.vs.theory was defined on the command line, the context R uses to
interpret it is the global workspace — where there is, in fact, a variable called
theoretical.percentiles, which I set by hand for the previous plots. So the
plotted theoretical quantiles are all too small in Figure L.5, because they’re for a
distribution with a much lower threshold.

5 Try running check.rpareto(), followed by warnings().
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check.rpareto()

Figure L.4 Automating the checking of rpareto.

Didn’t check.rpareto assign is own value to theoretical.percentiles, which
it used to set the plot boundaries? Yes, but that assignment only applied in the
context of the function. Assignments inside a function have limited scope, they
leave values in the broader context alone. Try this:

x <- 7
x
## [1] 7
square <- function(y) { x <- y^2; return(x) }
square(7)
## [1] 49
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check.rpareto(n=1e4, exponent=2.33, threshold=9e8)

Figure L.5 A bug in check.rpareto.

x
## [1] 7

The function square assigns x to be the square of its argument. This assignment
holds within the scope of the function, as we can see from the fact that the
returned value is always the square of the argument, and not what we assigned
x to be in the global, command-line context. However, this does not over-write
that global value, as the last line shows.6

6 There are techniques by which functions can change assignments outside of their scope. They are
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There are two ways to fix this problem. One is to re-define pareto.sim.vs.theory
to calculate the theoretical quantiles:

# Compare random draws from Pareto distribution to theoretical quantiles
# Inputs: Number of random points to generate (n)

# exponent of distribution (exponent)
# lower threshold of distribution (threshold)
# graphical arguments, passed to points() (...)

# Outputs: None
# Side-effects: Adds points showing random draws vs. theoretical quantiles

# to current plot
pareto.sim.vs.theory <- function(n, exponent, threshold,...) {

r <- rpareto(n=n, exponent=exponent, threshold=threshold)
theoretical.percentiles <- qpareto.4((0:99)/100, exponent=exponent,

threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles, simulated.percentiles, ...)

}

This will work (try running check.rpareto(1e4,2.33,9e8) now), but it’s very
redundant — every time we call this, we’re recalculating the same percentiles,
which we already calculated in check.rpareto. A cleaner solution is to make the
vector of theoretical percentiles an argument to pareto.sim.vs.theory, and
change check.rpareto to provide it.

# Compare random draws from Pareto distribution to theoretical quantiles
# Inputs: Graphical arguments, passed to points()
# Outputs: None
# Side-effects: Adds points showing random draws vs. theoretical quantiles

# to current plot
check.rpareto <- function(n=1e4,exponent=2.5,threshold=1,B=10) {

# One set of percentiles for everything
theoretical.percentiles <- qpareto.4((0:99)/100,exponent=exponent,
threshold=threshold)

# Set up plotting window, but don't put anything in it:
plot(0,type="n", xlim=c(0,max(theoretical.percentiles)),
# No more horizontal room than we need
ylim=c(0,1.1*max(theoretical.percentiles)),
# Allow some extra vertical room for noise
xlab="theoretical percentiles", ylab="simulated percentiles",
main = paste("exponent = ", exponent, ", threshold = ", threshold))

# Diagonal, for visual reference
abline(0,1)
for (i in 1:B) {
pareto.sim.vs.theory(n=n,exponent=exponent,threshold=threshold,

theoretical.percentiles=theoretical.percentiles,
pch=i,type="b",lty=i)

}
}

# Compare random draws from Pareto distribution to theoretical quantiles
# Inputs: Number of random points to generate (n)

# exponent of distribution (exponent)

tricky, rare, and best avoided except by those who really know what they are doing. (If you think

you do, you are probably wrong.)
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# lower threshold of distribution (threshold)
# vector of theoretical percentiles (theoretical.percentiles)
# graphical arguments, passed to points()

# Outputs: None
# Side-effects: Adds points showing random draws vs. theoretical quantiles

# to current plot
pareto.sim.vs.theory <- function(n,exponent,threshold,

theoretical.percentiles,...) {
r <- rpareto(n=n,exponent=exponent,threshold=threshold)
simulated.percentiles <- quantile(r,(0:99)/100)
points(theoretical.percentiles,simulated.percentiles,...)

}

Figure L.6 shows that this succeeds.
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Figure L.6 Using the corrected simulation checker.
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L.6 Avoiding Iteration: Manipulating Objects

Let’s go back to the declaration of rpareto, which I repeat here, unchanged, for
convenience:

# Generate random numbers from the Pareto distribution
# Inputs: number of random draws (n)

# exponent of the distribution (exponent)
# lower threshold of the distribution (threshold)

# Outputs: vector of random numbers
rpareto <- function(n,exponent,threshold) {

x <- vector(length=n)
for (i in 1:n) {
x[i] <- qpareto.4(p=runif(1),exponent=exponent,threshold=threshold)

}
return(x)

}

We’ve confirmed that this works, but it involves explicit iteration in the form
of the for loop. Because of the way R carries out iteration7, it is slow, and better
avoided when possible. Many of the utility functions in R, like replicate, are
designed to avoid explicit iteration. We could re-write rpareto using replicate,
for example:

# Generate random numbers from the Pareto distribution
# Inputs: number of random draws (n)

# exponent of the distribution (exponent)
# lower threshold of the distribution (threshold)

# Outputs: vector of random numbers
rpareto <- function(n,exponent,threshold) {

x <- replicate(n,qpareto.4(p=runif(1),exponent=exponent,threshold=threshold))
return(x)

}

(The outstanding use of replicate is when we want to repeat the same random
experiment many times — there are examples in the notes for Chapters ?? and
6.)
An even clearer alternative makes use of the way R automatically vectorizes

arithmetic:

# Generate random numbers from the Pareto distribution
# Inputs: number of random draws (n)

# exponent of the distribution (exponent)
# lower threshold of the distribution (threshold)

# Outputs: vector of random numbers
rpareto <- function(n,exponent,threshold) {

x <- qpareto.4(p=runif(n),exponent=exponent,threshold=threshold)
return(x)

}

7 Roughly speaking, it ends up having to create and destroy a whole copy of everything which gets

changed in the course of one pass around the iteration loop, which can involve lots of memory and

time.
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This feeds qpareto.4 a vector of quantiles p, of length n, which in turn gets
passed along to qpareto.1, which finally tries to evaluate

threshold*((1-p)^(-1/(exponent-1)))

With p being a vector, R hopes that threshold and exponent are also vectors,
and of the same length, so that it evaluates this arithmetic expression component-
wise. If exponent and threshold are shorter, it will “recycle” their values, in
order, until it has vectors equal in length to p. In particular, if exponent and
threshold have length 1, it will repeat both of them length(p) times, and
then evaluate everything component by component. (See the “Introduction to
R” manual for more on this “recycling rule”.) The quantile functions we have
defined inherit this ability to recycle, without any special work on our part. The
final version of rpareto we have written is not only faster, it is clearer and easier
to read. It focuses our attention on what is being done, and not on the mechanics
of doing it.

L.6.1 ifelse and which

Sometimes we want to do di↵erent things to di↵erent parts of a vector (or larger
structure) depending on its values. For instance, in robust regression one often
replaces the squared error loss with what’s called the Huber loss8,

 (x) =

⇢
x2 if |x|  1

2|x|� 1 if |x| > 1
(L.4)

which isn’t so vulnerable to outliers, as in Figure L.7.
We might code this up like so:

# Calculate Huber's loss function
# Input: vector of numbers x
# Return: x^2 for |x|<1, 2|x|-1 otherwise
huber <- function(x) {

n <- length(x)
y <- vector(n)
for (i in 1:n) {
if (abs(x) <= 1) {

y[i] <- x[i]^2
} else {

y[i] <- 2*abs(x[i])-1
}

}
return(y)

}

This is not very easy to follow. R provides a very useful function, ifelse, which
lets us apply a binary test to each element in a vector, and then draw from either
of two calculations. Using it, we re-write huber like so:

8 One applies this not to the residuals directly, but to residuals divided by some robust measure of

dispersion.
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Figure L.7 The Huber loss function  from Eq. L.4 (black) versus the
squared error loss (grey).

# Calculate Huber's loss function
# Input: vector of numbers x
# Return: x^2 for |x|<1, 2|x|-1 otherwise
huber <- function(x) {

return(ifelse(abs(x) <= 1, x^2, 2*abs(x)-1))
}

The first argument needs to produce a vector of TRUE/FALSE values; the sec-
ond argument provides the outputs for the TRUE positions, the third outputs for
the FALSE positions. Here all three are expressions involving the same variable,
but that’s not essential.
Another useful device is the which function, whose argument is a vector of

TRUE/FALSE values, returning a vector of the indices where the argument is
TRUE, e.g.,

incomplete.cases <- which(is.na(cholesterol))

would give us the positions at which the vector cholesterol had NA values.
This is equivalent to

incomplete.cases <- c()
for (i in 1:length(cholesterol)) {

if (is.na(cholesterol[i])) {
incomplete.cases <- c(incomplete.cases,i)

}
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}

L.6.2 apply and Its Variants

Particularly useful ways of avoiding iteration come from the function apply, and
the closely related sapply and lapply functions. (It particularly shows up apply
in Chapter 6.)

x <- replicate(10,rpareto(100,2.5,1))
apply(x,2,quantile,probs=0.9)

Each call to rpareto inside the replicate creates a vector of length 100.
Replicate then stacks these, as columns, into an array. The apply function applies
the same function to each row or column of the array, depending on whether its
second argument is 1 (rows) or 2 (columns). So this will find the 90th percentile
of each of the 10 random-number draws, and give that back to us as a vector.
array only works for arrays, matrices and data frames (and works on them

by treating them as arrays). If we want to apply the same function to every
element of a vector or list, we use lapply. This gives us back a list, which can
be inconvenient:

y <- c(0.9,0.99,0.999,0.99999)
lapply(y,qpareto.4,exponent=2.5,threshold=1)
## [[1]]
## [1] 4.641589
##
## [[2]]
## [1] 21.54435
##
## [[3]]
## [1] 100
##
## [[4]]
## [1] 2154.435

The function sapply works like lapply, but tries to simplify its output down
to a vector or array:

sapply(y,qpareto.4,exponent=2.5,threshold=1)
## [1] 4.641589 21.544347 100.000000 2154.434690

That last line just did the equivalent of qpareto.4(y,exponent=2.5,threshold=1),
but sapply can take considerably more complicated functions:

# Suppose we have models lm.1 and lm.2 hanging around
some.models <- list(model.1=lm.1, model.2=lm.2)
# Extract all the coefficients from all the models
sapply(some.models,coefficients)

sapply has a simplify argument, which defaults to TRUE; setting it to FALSE
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turns o↵ the simplification. replicate has the same argument. Usually, simpli-
fying the output of sapply or replicate is a good thing, but it can lead to
weirdness when what’s being repeated is a complicated value itself.
For instance, let’s revisit the data set about economic growth and currency

undervaluation across countries and times (Problem Set A.3), and try fitting a
di↵erent model for each five-year period.

uv <- read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/16/hw/02/uv.csv")
uv.lm.fiveyear <- function(fiveyear) {

lm(growth ~ log(gdp) + underval,data=uv[uv$year==fiveyear,])
}
# What are all the five-year periods in the data?
fiveyears <- sort(unique(uv$year))
fiveyear.models.1 <- sapply(fiveyears, uv.lm.fiveyear)

Working with fiveyear.models.1 is going to be very hard, because it wants
to be an array, but isn’t quite, and is generally very confused. (Try it!) Instead
do it this way:

fiveyear.models.2 <- sapply(fiveyears, uv.lm.fiveyear, simplify=FALSE)

fiveyear.models.2 is simply a list with 10 elements, each one of which is an
lm-style model. Now it’s easy extract information about any particular one, or
use sapply:

sapply(fiveyear.models.2, coefficients)
## [,1] [,2] [,3] [,4]
## (Intercept) -0.04635778 -0.045134479 -0.040404844 -0.045820302
## log(gdp) 0.00843245 0.008659137 0.008534740 0.009419719
## underval -0.00738292 0.003926747 -0.007497302 -0.007846092
## [,5] [,6] [,7] [,8]
## (Intercept) -0.022554554 -0.011886137 -0.028066634 -0.10547596
## log(gdp) 0.005690720 0.002667598 0.004361408 0.01358393
## underval 0.004461034 0.013164665 0.007724422 0.01808939
## [,9] [,10]
## (Intercept) -0.038967138 -0.054008775
## log(gdp) 0.006042791 0.008512894
## underval -0.011033117 0.019044209

L.7 More Complicated Return Values

So far, all the functions we have written have returned either a single value,
or a simple vector, or nothing at all. The built-in functions return much more
complicated things, like matrices, data frames, or lists, and we can too.
To illustrate, let’s switch gears away from the Pareto distribution, and think

about the Gaussian for a change. As you know, if we have data x1, x2, . . . xn and
we want to fit a Gaussian distribution to them by maximizing the likelihood, the
best-fitting Gaussian has mean

µ̂ =
1

n

nX

i=1

xi (L.5)
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which is just the sample mean, and variance

�̂2 =
1

n

nX

i=1

(xi � µ̂)2 (L.6)

which di↵ers from the usual way of defining the sample variance by having a
factor of n in the denominator, instead of n � 1. Let’s write a function which
takes in a vector of data points and returns the maximum-likelihood parameter
estimates for a Gaussian.

gaussian.mle <- function(x) {
n <- length(x)
mean.est <- mean(x)
var.est <- var(x)*(n-1)/n
est <- list(mean=mean.est, sd=sqrt(var.est))
return(est)

}

There is one argument, which is the vector of data. To be cautious, I should
probably check that it is a vector of numbers, but skip that to be clear here.
The first line figures out how many data points we have. The second takes the
mean. The third finds the estimated variance — the definition of the built-in var
function uses n�1 in its denominator, so I scale it down by the appropriate factor9.
The fourth line creates a list, called est, with two components, named mean and
sd, since those are the names R likes to use for the parameters of Gaussians. The
first component is our estimated mean, and the second is the standard deviation
corresponding to our estimated variance10. Finally, the function returns the list.
As always, it’s a good idea to check the function on a case where we know the

answer.

x <- 1:10
mean(x)
## [1] 5.5
var(x) * (length(x)-1)/length(x)
## [1] 8.25
sqrt(var(x) * (length(x)-1)/length(x))
## [1] 2.872281
gaussian.mle(x)
## $mean
## [1] 5.5
##
## $sd
## [1] 2.872281

9 Clearly, if n is large, n�1
n = 1� 1/n will be very close to one, but why not be precise?

10 If n is large,
q

n�1
n =

q
1� 1

n ⇡ 1� 1
2n (using the binomial theorem in the last step). For

reasonable data sets, the error of just using sd(x) would have been small — but why have it at all?
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L.8 Re-Writing Your Code: An Extended Example

Suppose we want to find a standard error for the median of a Gaussian distri-
bution. We know, somehow, that the mean of the Gaussian is 3, the standard
deviation is 2, and the sample size is one hundred. If we do

x <- rnorm(n=100,mean=3,sd=2)

we’ll get a draw from that distribution in x. If we do

x <- rnorm(n=100,mean=3,sd=2)
median(x)
## [1] 3.044783

we’ll calculate the median on one random draw. Following the general idea of
Monte Carlo (§5.4.1) we can approximate the standard error of the median by
repeating this calculation many times, on many random draws, and taking the
standard deviation. We’ll do this by explicitly iterating, so we need to set up a
vector to store our intermediate results first.

medians <- vector(length=100)
for (i in 1:100) {

x <- rnorm(n=100,mean=3,sd=2)
medians[i] <- median(x)

}
se.in.median <- sd(medians)

Well, how do we know that 100 replicates is enough to get a good approxima-
tion? We’d need to run this a couple of times, typing it in or at least pasting it in
many times. Instead, we can write a function which just gives everything we’ve
done a single name. (I’ll add comments as I go on.)

# Inputs: None (everything is hard-coded)
# Output: the standard error in the median
find.se.in.median <- function() {

# Set up a vector to store the simulated medians
medians <- vector(length=100)
# Do the simulation 100 times
for (i in 1:100) {
x <- rnorm(n=100,mean=3,sd=2) # Simulate
medians[i] <- median(x) # Calculate the median of the simulation

}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

If we decide that 100 replicates isn’t enough and we want 1000, we need to
change this function. We could just change the first two appearances of “100” to
“1000”, but we have to catch all of them; we have to remember that the 100 in
rnorm is there for a di↵erent reason and leave it alone; and if we later decide that
actually 500 replicates would be enough, we have to do everything all over again.
It is easier, safer, clearer and more flexible to abstract a little and add an
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argument to the function, which is the number of replicates. I’ll add comments
as I go.

# Inputs: Number of replicates (B)
# Output: the standard error in the median
find.se.in.median <- function(B) {

# Set up a vector to store the simulated medians
medians <- vector(length=B)
# Do the simulation B times
for (i in 1:B) {
x <- rnorm(n=100,mean=3,sd=2) # Simulate
medians[i] <- median(x) # Calculate median of the simulation

}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

Now suppose we want to find the standard error of the median for an ex-
ponential distribution with rate 2 and sample size 37. We could write another
function,

find.se.in.median.exp <- function(B) {
# Set up a vector to store the simulated medians
medians <- vector(length=B)
# Do the simulation B times
for (i in 1:B) {
x <- rexp(n=37,rate=2) # Simulate
medians[i] <- median(x) # Calculate median of the simulation

}
se.in.median <- sd(medians) # Take standard deviation
return(se.in.median)

}

but it is wasteful to define two functions which do almost the same job. It’s
not just inelegant; it invites mistakes, it’s harder to read (imagine coming back
to this in two weeks — was there a big reason why we had two separate functions
here?), and it’s harder to improve. We need to abstract a bit more.
We could put in some kind of switch which would simulate from either of these

two distributions, maybe like this:

# Inputs: number of replicates (B)
# flag for whether to use a normal or an exponential (use.norm)

# Output: The standard error in the median
find.se.in.median <- function(B,use.norm=TRUE) {

medians <- vector(length=B)
for (i in 1:B) {
if (use.norm) {

x <- rnorm(100,3,2)
} else {

x <- rexp(37,2)
}
medians[i] <- median(x)

}
se.in.median <- sd(medians)
return(se.in.median)
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}

But why just these two? If we wanted any other distribution whatsoever, plainly
all we’d have to do is change how x is simulated. So we really want to be able to
give a simulator to the median-finding function as an argument.
Fortunately, in R you can give one function as an argument to another, so we’d

do something like this.

# Inputs: Number of replicates (B)
# Simulator function (simulator)

# Presumes: simulator is a no-argument function which produce a vector of
# numbers

# Output: The standard error in the media
find.se.in.median <- function(B,simulator) {

median <- vector(length=B)
for (i in 1:B) {
x <- simulator()
medians[i] <- median(x)

}
se.in.medians <- sd(medians)
return(se.in.medians)

}

Now to repeat our original calculations, we define a simulator function:

# Inputs: None
# Output: ten draws from the mean 3, s.d. 2 Gaussian
simulator.1 <- function() {

return(rnorm(100,3,2))
}

If we now call this function, then every time find.se.in.median goes through
the for loop, it will call simulator.1, which in turn will produce the right
random numbers.

find.se.in.median(B=100,simulator=simulator.1)
## [1] 0.2563862

If we also define

# Inputs: None
# Output: 37 draws from the rate 2 exponential
simulator.2 <- function() {

return(rexp(37,2))
}

then to find the standard error in the median of this, we just call

find.se.in.median(B=100, simulator=simulator.2)
## [1] 0.07961322

This same approach works if we want to sample from a much more complicated
distribution. If we fit a kernel regression to the data on economic growth and
currency undervaluation (Problem Set A.3), and want a standard error in the
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median of the predicted growth rate, with noise coming from resampling cases,
we would do something like this for the simulator

# Perturb the currency-undervaluation data by re-sampling and fit a kernel
# regression for growht on initial GDP and undervaluation

# Inputs: None
# Output: The fitted growth rates from a new kernel regression
simulator.3 <- function() {

# Make sure the np library is loaded
require(np)
# If we haven't already loaded the data, load it
if (!exists("uv")) {
uv <- read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/16/hw/02/uv.csv")

}
# How big is the data set?
n <- nrow(uv)
# Treat the data set like a population and draw a sample
resampled.rows <- sample(1:n,size=n,replace=TRUE)
uv.r <- uv[resampled.rows,]
# See the chapter on smoothing for the following incantation
fit <- npreg(growth~log(gdp)+underval, data=uv.r, tol=1e-2, ftol=1e-2)
growth.rates <- fitted(fit)
return(growth.rates)

}

and then this to find the standard error in the median: [[TODO:
Increase
number
of repli-
cates for
production
draft]]

find.se.in.median(B=10, simulator=simulator.3)
## [1] 0.9334962

By breaking up the task this way, if we encounter errors or just general trouble
when we run that last command, it is easier to localize the problem. We can check
whether find.se.in.median seems to work properly with other simulator func-
tions. (For instance, we might write a “simulator” that either does rep(10,1) or
rep(10,-1) with equal probability, since then we can work out what the stan-
dard error of the median ought to be.) We can also check whether simulator.3
is working properly, and finally whether there is some issue with putting them
together, say that the output from the simulator is not quite in a format that
find.se.in.median can handle. If we just have one big ball of code, it is much
harder to read, to understand, to debug, and to improve.
To turn to that last point, one of the things R does poorly is explicit iteration

with for loops. As mentioned in §L.6, it’s generally better to replace such loops
with “vectorized” functions, which do the iteration using fast code outside of R.
One of these, especially for this situation, is the function replicate. We can
re-write find.se.in.median using it:

# Inputs: number of replicates (B)
# Simulator function (simulator)

# Presumes: simulator is a no-argument function which produces a vector of
# numbers

# Outputs: Standard error in the median of the output of simulator
find.se.in.median <- function(B,simulator) {

medians <- replicate(B, median(simulator()))
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se.in.median <- sd(medians)
return(se.in.median)

}

Again: shorter, faster, and easier to understand (if you know what replicate
does). Also, because we are telling this what simulation function to use, and
writing those functions separately, we do not have to change any of our simulators.
They don’t care how find.se.in.median works. In fact, they don’t care that
there is any such function — they could be used as components in many other
functions which can also process their outputs. So long as these interfaces are
maintained, the inner workings of the functions are irrelevant to each other.
Suppose for instance that we want not the standard error of the median, but

the interquartile range of the median — the median is after all a “robust”, outlier-
resistant measure of the central tendency, and the IQR is likewise a robust mea-
sure of dispersion. This is now easy:

# Inputs: number of replicates (B)
# Simulator function (simulator)

# Presumes: simulator is a no-argument function which produces a vector of
# numbers

# Outputs: Interquartile range of the median of the output of simulator
find.iqr.of.median <- function(B,simulator) {

medians <- replicate(B,median(simulator()))
iqr.of.median <- IQR(medians)
return(iqr.of.median)

}

Or for that matter the good old standard error of the mean:

# Inputs: number of replicates (B)
# Simulator function (simulator)

# Presumes: simulator is a no-argument function which produces a vector of
# numbers

# Outputs: Standard error of the mean of the output of simulator
find.se.of.mean <- function(B,simulator) {

means <- replicate(B,mean(simulator()))
se.of.mean <- sd(means)
return(se.of.mean)

}

These last few examples suggest that we could abstract even further, by swap-
ping in and out di↵erent estimators (like median and mean) and di↵erent sum-
marizing functions (like se or IQR).

# Inputs: number of replicates (B)
# Simulator function (simulator)
# Estimator function (estimator)
# Sample summarizer function (summarizer)

# Presumes: simulator is a no-argument function which produces a vector of
# numbers
# estimator is a function that takes a vector of numbers and produces one
# output
# summarizer takes a vector of outputs from estimator
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# Outputs: Summary of the simulated distribution of estimates
summarize.sampling.dist.of.estimates <- function(B,simulator,estimator,

summarizer) {
estimates <- replicate(B,estimator(simulator()))
return(summarizer(estimates))

}

The name is too long, of course, so we should replace it with something catchier
(Chapter 6):

bootstrap <- function(B,simulator,estimator,summarizer) {
estimates <- replicate(B,estimator(simulator()))
return(summarizer(estimates))

}

Our very first example in this section is equivalent to

bootstrap(B=100,simulator=simulator.1, estimator=median, summarizer=sd)
## [1] 0.2471905

bootstrap is just two lines: one simulates and re-estimates, the other summa-
rizes the re-estimates. This is the essence of what we are trying to do, and is
logically distinct from the details of particular simulators, estimators and sum-
maries.
We started with a particular special case and generalized it. The alternative

route is to start with a very general framework — here, writing bootstrap —
and then figure out what lower-level functions we would need to make it work in
a the case at hand, writing them if necessary. (We need to write a simulator, but
someone’s already written median for us.) Getting the first stage right involves a
certain amount of reflection on how to solve the problem — it’s rather like doing
a “show that” math problem by starting from the desired conclusion and working
backwards.
It is still somewhat clunky to have to write a new function every time we want

to change the settings in the simulation, but this has gone on long enough.

L.9 General Advice on Programming

Programming is an act of communication: with the computer, of course, but
also with your co-workers, and with yourself in the future11. Clear and e↵ective
communication is a valuable skill in itself; it also tends to make it easier to do
the job, and to make debugging easier.

L.9.1 Comment your code

Comments lengthen your file, but they make it immensely easier for other people
to understand. (“Other people” includes your future self; there are few experiences
more frustrating than coming back to a program after a break only to wonder

11 And, in this class, with your graders.
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what you were thinking.) Comments should say what each part of the code does,
and how it does it. The “what” is more important; you can change the “how”
more often and more easily.
Every function (or subroutine, etc.) should have comments at the beginning

saying:

• what it does;
• what all its inputs are (in order);
• what it requires of the inputs and the state of the system (“presumes”);
• what side-e↵ects it may have (e.g., “plots histogram of residuals”);
• what all its outputs are (in order)

Listing what other functions or routines the function calls (“dependencies”) is
optional; this can be useful, but it’s easy to let it get out of date.
You should treat “Thou shalt comment thy code” as a commandment which

Moses brought down from Mt. Sinai, written on stone by a fiery Hand.

L.9.2 Use meaningful names

Unlike some older languages, R lets you give variables and functions names of
essentially arbitrary length and form. So give them meaningful names. Writing
loglikelihood, or even loglike, instead of L makes your code a little longer,
but generally a lot clearer, and it runs just the same.
This rule is lower down in the list because there are exceptions and qualifica-

tions. If your code is tightly associated to a mathematical paper, or to a field
where certain symbols are conventionally bound to certain variables, you may as
well use those names (e.g., call the probability of success in a binomial p). You
should, however, explain what those symbols are in your comments. In fact, since
what you regard as a meaningful name may be obscure to others (e.g., those
grading your work), you should use comments to explain variables in any case.
Finally, it’s OK to use single-letter variable names for counters in loops (but see
the advice on iteration in §L.6).

L.9.3 Check whether your program works

It’s not enough — in fact it’s very little — to have a program which runs and
gives you some output. It needs to be the right output. You should therefore
construct tests, which are things that the correct program should be able to do,
but an incorrect program should not. This means that:

• you need to be able to check whether the output is right;
• your tests should be reasonably severe, so that it’s hard for an incorrect pro-
gram to pass them;

• your tests should help you figure out what isn’t working;
• you should think hard about programming the test, so it checks whether the
output is right, and you can easily repeat the test as many times as you need.
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Try to write tests for the component functions, as well as the program as a
whole. That way you can see where failures are. Also, it’s easier to figure out
what the right answers should be for small parts of the problem than the whole.
Try to write tests as very small functions which call the component you’re

testing with controlled input values. For instance, we tested qpareto by looking
at what it returned for selected arguments with manually carrying out the com-
putation. With statistical procedures, tests can look at average or distributional
results — we saw an example of this with checking rpareto.
Of course, unless you are very clever, or the problem is very simple, a program

could pass all your tests and still be wrong, but a program which fails your tests
is definitely not right.
(Some people would actually advise writing your tests before writing any actual

functions. They have a point, but I think that’s overkill for this class.)

L.9.4 Avoid writing the same thing twice

Many data-analysis tasks involve doing the same thing multiple times, either as
iteration, or to slightly di↵erent pieces of data, or with some parameters adjusted,
etc. Try to avoid writing two pieces of code to do the same job. If you find yourself
copying the same piece of code into two places in your program, look into writing
one function, and calling it twice.
Doing this means that there is only one place to make a mistake, rather than

many. It also means that when you fix your mistake, you only have one piece of
code to correct, rather than many. (Even if you don’t make a mistake, you can
always make improvements, and then there’s only one piece of code you have to
work on.) It also leads to shorter, more comprehensible and more adaptable code.

L.9.5 Start from the beginning and break it down

When you have a big problem, start by thinking about what you want your
program to do. Then figure out a set of slightly smaller steps which, put together,
would accomplish that. Then take each of those steps and break them down into
yet smaller ones. Keep going until the pieces you’re left with are so small that
you can see how to do each of them with only a few lines of code. Then write
the code for the smallest bits, check it, once it works write the code for the next
larger bits, and so on.
In slogan form:

• Think before you write.

• What first, then how.

• Design from the top down, code from the bottom up.

(Not everyone likes to design code this way, and it’s not in the written-in-stone-
atop-Sinai category, but there are many much worse ways to start.)
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L.9.6 Break your code into many short, meaningful functions

Since you have broken your programming problem into many small pieces, try
to make each piece a short function. (In other languages you might make them
subroutines or methods, but in R they should be functions.)
Each function should achieve a single coherent task — its function, if you will.

The division of code into functions should respect this division of the problem
into sub-problems. More exactly, the way you break your code into functions is
how you have divided your problem.
Each function should be short, generally less than a page of print-out. The

function should do one single meaningful thing. (Do not just break the calculation
into arbitrary thirty-line chunks and call each one a function.) These functions
should generally be separate, not nested one inside the other.
Using functions has many advantages:

• you can re-use the same code many times, either at di↵erent places in this
program or in other programs

• the rest of your code only has to care about the inputs and outputs to the
function (its interfaces), not about the internal machinery that turns inputs
into outputs. This makes it easier to design the rest of the program, and it
means you can change that machinery without having to re-design the rest of
the program.

• it makes your code easier to test (see below), to debug, and to understand.

Of course, every function should be commented, as described above.12

L.10 Further Reading

Matlo↵ (2011) is a good introduction to programming for total novices using R.
Braun and Murdoch (2008) has more on statistical calculations and related topics,
but can also work as an introduction for absolute beginners. Adler (2009) is an
introduction to R for those with some prior knowledge of other programming
languages. For sheer data manipulation, see Spector (2008). Chambers (2008)
and Wickham (2015) are both essential for anyone who wants to be serious about
programming in R.
If you are going to do a lot of computational work, it is worthwhile learning

some of what programmers are taught. The “Software Carpentry” website (http:
//software-carpentry.org) provides good introduction to key tools, like the
Unix shell and version control. It is also worth learning about common data
structures and the algorithms for working with them, since the right choices
there can make dramatic di↵erences; I like Cormen et al. (2001), but there are
many fine alternatives.

12 §26.5 goes over how I used these principles when writing code to implement simulation-based

estimation for a time-series model.


