
36-703 Homework #2 Tuesday 7 Feb 2006

1

Expected

Implications
Use the basic expected value rules to show the following:

1. If X ≤ Y and for both the expected value exists, then EX ≤ EY .

2. If A1, A2, . . . ∈ F are disjoint sets, then

P

(

⋃

i

Ai

)

=
∑

i

P(Ai).

3. Use the working definition of independence to show that when X

and Y are independent random variables: (a) pXY = pXpY if they

are discrete, and (b) fXY = fXfY if they are continuous. Then do

the same with the conditioning-based definition.

2

Useful Identities(a) G&S 1.4.2

(b) G&S 3.7.2

(c) Show that on the probability space (Ω,F , E),

E(X | {∅, Ω}) = EX.

(d) Let g be a suitable function (what is suitable?). Show that the

Enhanced Scaling Rule holds:

E(g(X)Y | X) = g(X)E(Y | X).

(You can use the definitions and claims given in class.) How is this

different from equation (14) in today’s handout? Describe intuitively

why this should be true.

Hint: Start with g as an indicator. From this, the identity holds

for any finite linear combination of indicators. Next, assume you can

approximate g in the limit by finite linear combinations of indicators.

(Don’t worry about exchanging limits and expected values; assume

you can do it. This is intended to be an informal argument.)

Using the formal definition (and subsequent claims) from class, we

can also show that this Enhanced Scaling Rule works more generally.

If G ⊂ F is a σ-field and G is a G-measurable random variable then

E(GY | G) = GE(Y | cG)
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Thinking of the σ-field G as representing an information set, as we

discussed, refine your intuitive argument to explain this case.

(e) Suppose that G1 ⊂ G2 ⊂ F are σ-fields. Then, the general form

of the Mighty Conditioning Identity is true:

E (E(Y | G1) | G2) = E (E(Y | G2) | G1) = E(Y | G1).

Explain why this should be true intuitively. Proving it is doable but

optional.

3

Binomial
Maneuvers

(a) For integer k ≥ 0, define the kth falling factorial power of a real

(or even complex) number by

zk = z(z − 1) · · · (z − k + 1),

where we take z0 = 1 because by convention the product of no factors

is 1. Notice that zk has k factors in the product.

What is mm for integer m? What is mm+1 for integer m? How might

the rising factorial power be defined, zk?

(b) The binomial coefficients that we know and love have a quite

general definition in terms of factorial powers.

For any integer k and any complex (including real!) number z:

(

z

k

)

=























rk

k!
if integer k ≥ 0

0 otherwise.

We have the general Binomial Theorem:

(x + y)z =
∑

k

(

z

k

)

xkyz−k if integer z ≥ 0 or |x/y| < 1.

Note the “or” in the condition above: the theorem holds for arbitrary

z as long as the resulting infinite sum converges.

Show the following Binomial Coefficient Identities for integers k and

m:

1. “Negating the Upper Index”
(

z

k

)

= (−1)k

(

k − z − 1

k

)

.

2
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(Hint: Express the falling factorial power in terms of a rising fac-

torial power.)

2. “Absorption/Extraction”

(

z

k

)

=
z

k

(

z − 1

k − 1

)

.

3. Pascal’s Triangle

(

z

k

)

=

(

z − 1

k

)

+

(

z − 1

k − 1

)

.

4. “Trinomial Revision”
(

z

m

)(

m

k

)

=

(

z

k

)(

z − k

m − k

)

.

5. From class: zk(z − 1/2)k = (2z)2k/22k and thus

(

2m

m

)

= 22m

(

m − 1/2

m

)

= (−1)m4m

(

−1/2

m

)

.

4

Generating

Function
Maneuvers

(a) Suppose that G(z) =
∑

k gkz
k is a generating function. Find the

corresponding sequences for the following functions:

1. G′(z)

2.
∫

z

0 G(t) dt

3. G(z)/(1 − z).

(b) Find the generating functions for the following sequences (index

starting at 0 for concreteness).

1. 1, 2, 3, 4, . . .

2. 0, 1,−1/2, 1/3,−1/4, 1/5,−1/6, . . .

3.
(

m+n

m

)

for n = 0, 1, 2, . . . and fixed integer m.

(c) Find the sequences corresponding to the following generating

functions:

1. 1/(1 + z)

2. 1/(1 − z)c for real c.

3. 1/(1 − zm) for an integer m ≥ 1.

3
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5

Double Heads
Revisited

Suppose we flip a coin until two consecutive heads appear. Assume

that the coin flips are all independent. and that the coin comes up

heads with probability 0 < p < 1.

Let Hi be the indicator of heads on the ith roll, for i ∈ Z+.

Let N be the number of flips (inclusive) until heads first appears on

two consecutive flips.

In class we found p
N

when p = 1/2. Carry out the same analysis for

general 0 < p < 1.

6

Elevator StopsDescribe the Experiment.

An elevator opens on the ground floor and a random number of

passengers enter it. Each passenger selects one floor (above the ground

floor), and the elevator proceeds upward, stopping at each selected

floor.

Specify your assumptions.

Assume the following:

• There are n floors above the ground floor.

• The number of passengers entering the elevator has a Poisson〈λ〉

distribution for some λ > 0.

• Each passenger is equally likely to choose any of the n floors.

• All passenger choices are independent.

If no passengers enter, then the elevator makes zero stops.

Using the mighty conditioning identity, find the expected

number of stops that the elevator makes (not counting

the ground floor)

Do the following set-up steps in your write-up:

• Define relevant random variables.

• State what you know.

• State what you want to find.

Hint: For each of the n floors, consider separately whether the ele-

vator stops at that floor. Then, relate these to the number of stops

the elevator makes.

4
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7

Random TriangleDescribe the Experiment

Two points are chosen at random within the unit disk (the set of

points of distance ≤ 1 from the origin).

Specify your assumptions

Assume that the two points are independent and that they each have

a Uniform distribution over the disk.

Find the expected value of the area of the triangle formed

by the two points and the origin.

Note: If the three points (including the origin), fall on a line, then

the resulting triangle has area 0.

Hint: Consider conditioning: what would make the problem simpler

to hold fixed. Then, exploit the rotational symmetry of the problem:

you can always rotate the situation so that one point lies on the

positive horizontal axis.

You should do the following in your writeup: Define Relevant Ran-

dom Variables, State what you know, State what you want to

find.

8

Monk AgainIf you did this during the survey, note that and move on. Otherwise,

try it here.

Describe the Experiment.

A thirteenth century monk who has not gotten enough sleep is hur-

rying to copy a manuscript. Each page takes many hours to copy. Un-

fortunately, in his haste, he makes a random number of typographic

errors.

Specify your assumptions.

Assume that the manuscript being copied has n pages. If there are

one or more errors on a page, the monk must recopy the page in its

entirety. (White-out was not invented until the fourteenth century.)

You may assume the following about the typographic errors:

5



36-703 Homework #2 Tuesday 7 Feb 2006

• The total number of errors the monk makes has a Poisson〈λ〉

distribution for some λ > 0.

• Each error is equally likely to end up on any page.

• The position of all errors are independent.

Find the expected number of pages the monk must re-

copy after he gets some sleep.

Be sure to do the following set-up steps:

• Define relevant random variables.

• State what you know.

• State what you want to find.

Hint: The mighty conditioning identity might be useful here.

Hint: Consider separately for each page whether there is a typo-

graphic error on that page. Then, relate these to the number of pages

that must be recopied.

9

Sure Thing

(Optional)
In many real betting situations, the chances of events occuring are

often expressed in terms of odds. We hear that the horse is 5-to-1 to win

or that it is a million-to-1 shot that he will make the basket. Sometimes

we do see odds like 4-to-3 or 7-to-2. Suppose the odds are c-to-a that

an event occurs. Loosely, speaking we think of there as being c + a

equally likely possibilities for which the event of interest occurs in c of

them.

If A is an event in our model for a random experiment, then the

chance odds of that event are given by the ratio

chance odds(A) =
P(A)

1 − P(A)
. (1)

Colloquially, if the chance odds of an event give c, we say that the odds

are c-to-1.

It follows by a little algebra that

P(A) =
chance odds(A)

chance odds(A) + 1
, (2)

6
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as we saw above. Hence, we can use chance odds and probabilities

interchangeably, although probabilities are often easier to work with.

There is another notion of odds, payoff odds. A casino pays d-to-1

odds (payoff odds of d) if winning a $1 bet gives an additional payoff

of $d. In practice, the player pays the $1 (called the stake) before the

game. Upon winning, the player receives that $1 back as well as $d

extra, for a net gain of $d. Upon losing, the player loses the $1 stake.

The payoff odds for a bet on the occurrence of an event A is the

ratio of the payoff (not including the stake) the bettor receives if the

event occurs to the size of the bet.

With this in mind, do G&S 3.3.7

7


