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1

LIF-tingSince we are interested in just T (z), F is the identity function, i.e.

F (x) = x.

So, F ′(x) = 1. Let u = T (z) ⇒ G(u) = eu. Then the coefficients tn

satisfy

[zn]T (z) =
1

n

[

un−1
]

enu

Generating function of enu equals

∑

n≥0

nn

n!
un

It follows that
1

n

[

un−1
]

enu =
nn−1

n!

2

Matrix Expansion(a) In Pentagon example, we’ve basically witnessed that for each m

elements in pn,

pnm = p0I{n=0} +
∑

i

P(Xn = m | Xn−1 = i)P(Xn−1 = i)

Therefore,

pn = p0I{n=0} + pn−1P

Plug in the above value of pn into the definition of generating

function G(z), i.e.

G(z) =
∑

n

pnzn

and the result follows after a little algebra.

(b) This is very similar to the one-dimensional case,
1

1 − pz
. So one

guess would be
∞
∑

k=0

Pkzk

In the general case, given an invertible matrix P and scalar a,

(I ± aP)−1 = I +
∞
∑

k=1

(∓1)kPkak
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Let I = P0z0 and substitute a with z. Our guess is confirmed.

(c) It is given by the coefficients of p0(I − zP)−1, which is p0P
n .

3

Double RootsIn double roots case, we end up with a system of equations that

has one equation but two unknowns. One alternative solution involves

using the fact that the derivative of a polynomial of order 2 evaluates

to zero if its root has multiplicity 2. Using this fact, we can differentiate

G(z)(az2 + bz + c) = zP (z; g1, gm−1)

and evaluate it at its root to get a second equation.

If one of the roots is zero, then c = 0. So cg1 = 0 and as a result, we

only have to solve for gm−1. When both are zero, then b = c = 0. The

recurrence equations become

agk−1 = uk

g0 = u0

gm = um

Using boundary conditions, we can determine all of the gk recursively.

Therefore, we don’t have anything to solve! Not very interesting...

4

Poisson Naturally(a) First divide (0, t] into n intervals of length t/n.

Next, let εi = 1 if 1 event occurs on the interval ((i − 1)t/n, it/n],

and 0 otherwise.

So, Sn = ε1 + . . . + εn ∼ Bin(n, p) where p =
λt

n
+ o(t/n).

Using the Poisson approximation of Binomial probabilities,

P(Sn = k) =
e−np(np)k

k!

=
e−λt−tz(λt + tz)k

k!
note z =

o(t/n)

t/n

2
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→
e−λt(λt)k

k!
as n → ∞

(b) P(S1 ≤ s | Nt = 1)

= P(Ns = 1 | Nt = 1)

=
P(Ns = 1 ∩ Nt = 1)

P(Nt = 1)

=
P(Nt = 1 | Ns = 1)P(Ns = 1)

P(Nt = 1)

= s/t for s < t

This is the cdf of Uniform(0, t).

(c) We’ll solve the general case in part (d). The argument is essentially

the same.

(d) For simplicity, let s0 = 0. For 0 ≤ s1 ≤ s2 . . . ≤ sn ≤ t,

P(S1 ≤ s1, . . . , Sn ≤ sn | Nt = n)

=
P(S1 ≤ s1, . . . , Sn ≤ sn, Nt = n)

P(Nt = n)

=
P(Nt − Nsn

= 0)P(Nsn
− Nsn−1

= 1) · · ·P(Ns1
− Ns0

= 1)

P(Nt = n)

=
exp{−λ(t − sn)}

(

∏n
j=1 exp{−λ(sj − sj−1)}λ(sj − sj−1)

)

(λt)ne−λt

n!

=
λne−λt ∏n

j=1(sj − sj−1)
(λt)ne−λt

n!

=
n!

tn

n
∏

j=1

(sj − sj−1)

Take derivative with respect to s1, · · · , sn to get the joint pdf.

The resulting conditional joint pdf is
n!

tn
, for t > 0

This is the pdf of the order statistics for a random sample of n

Uniform(0, t) random variables.

3
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5

A Poisson Diet

Plan

Let N(t), N1(t) and N2(t) denote the number of customers entering

the building, ”Good Eats”, and ”Eat Good” in [0, t]. The claim is N1(t)

is a Poisson process with rate pλ and N2(t) is a Poisson process with

rate qλ. Using law of total probability,

P(N1(t) = k) =
∞
∑

i=0

P(N1(t) = k|N(t) = i)P(N(t) = i)

=
∑

i

(

i

k

)

pkqi−k e−λt(λt)i

i!

=
(pλt)ke−λt

k!

∑

i

[(1 − p)λt]i−k

(i − k)!

=
(pλt)ke−λt

k!
e(1−p)λt

=
(pλt)ke−pλt

k!

We can do the same for N2(t).

6

Martingales(a) Let Fn = σ(X0, . . . , Xn),Gn = σ(Y0, . . . , Yn)

E(Xn+1 | Fn) = E[E(Z | Gn+1) | Fn]

= E(E[E(Z | Gn+1) | Gn] | Fn)

= E[E(Z | Gn) | Fn]

= E[Xn | Fn] = Xn

Second equality holds because Fn ⊂ Gn. The subset relationship is

due to the fact that Xn is a function of the random variables in Gn.

Third equality holds by the Mighty Conditioning Identity.

(b)

E(Xn+1 | Fn) = E

(

Xn
f1(Yn+1)

f0(Yn+1)

∣

∣

∣

∣

Fn

)

= XnE

(

f1(Yn+1)

f0(Yn+1)

∣

∣

∣

∣

Fn

)
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= XnE

(

f1(Yn+1)

f0(Yn+1)

)

= Xn

∫

f1(Yn+1)

f0(Yn+1)
· f0(Yn+1)∂Yn+1

= Xn

Second and third equalities follow from Enhanced Scaling Rule and

i.i.d. of Yk’s respectively.

(c)

E(Xn+1 | Fn) =
1

n + 3
· E
[

Yn+1

∣

∣

∣

∣

Y0

2
, . . . ,

Yn

n + 2

]

=
1

n + 3

[

Yn +
Yn

n + 2

]

=
Yn

n + 2
= Xn

7

Lemma Time

? : Sk(t) ≥ 0

◦ : Sk(t) is only nonzero for one value of k and zero everywhere else

sup
t

|fn(t) − f(t)| = sup
t

∣

∣

∣

∣

∣

∣

∞
∑

k=n+1

akSk(t)

∣

∣

∣

∣

∣

∣

≤ sup
t

∞
∑

`=i

2`+1−1
∑

k=2`

|ak|Sk(t) where ` < log2(n + 1) (by ?)

≤ sup
t

∞
∑

`=i

2`+1−1
∑

k=2`

M(2`)γSk(t)
(

since k is at most 2`
)

= sup
t

∞
∑

`=i

M(2`γ)
2`+1−1
∑

k=2`

Sk(t)

≤ sup
t

∞
∑

`=i

M(2`γ)
[

2−
1

2
·(`+1)

]

by ◦ and that the value is
[

2−
1

2
·(`+1)

]
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= sup
t

∞
∑

`=i

M ′ · 2`[γ−1/2]

→ 0 as n → ∞ since 0 ≤ γ < 1/2
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