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Preserving the

Markov Property

1.7 Let b = h−1(j) and ar = h−1(ir). Then,

P(Yn+1 = j | Yr = ir for 0 ≤ r ≤ n) = P(Xn+1 = b | Xr = ar for 0 ≤ r ≤ n)

The result follows since Xn is Markovian. If h is not one-to-one, it

is not necessarily true that Yn is a Markov Chain. Suppose {Xn}

is Markovian on Z for n ≥ 1 and X0 = 0. Then, Yn = Xn + Xn−1

is a counterexample (see Exercise 6.1.11). One can see that Yn is

not Markovian by observing that Y3 depends on Y2 and Y1. So, Y3

is not indepedent from Y1 conditional on Y2.

1.8 Not necessarily true. See Yn = Xn + Xn−1. Exercise 6.1.3 gives an-

other counterexample in the sum Sn + Yn = Mn.

1.9 Part (a) can be easily shown using Markov property of Xn.

For Yn = X2m, let {even} = {X2r = i2r : 0 ≤ r ≤ m}, {odd} =

{X2r+1 = i2r+1 : 0 ≤ r ≤ m − 1}, and I contains all odd indices i.

Then,

P(X2m+2 | even) =
∑

xi: i∈I

P(X2m+2 = k, X2m+1 = x2m+1, even, odd)

P(even)

=
∑

xi: i∈I

P(X2m+2 = k, X2m+1 = x2m+1 | X2m = x2m)P(even, odd)

P(even)

= P(X2m+2 = k | X2m = i2m)

For Yn = (Xn, Xn+1),

P(Yn+1 = (k, `) | Y0 = (i0, i1), . . . , Yn = (in, k)) =

P(Yn+1 = (k, `) | Xn+1 = k) = P(Yn+1 = (k, `) | Yn = (in, k))

by Markov property of Xn.
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Card Trick
This phenomenon is called Kruskal Count. This is also the ”coupling

game” on page 235-236. One intuition behind the card trick is that

if at any point of the card trick, once the magician’s (your) key card

”clicks” with the audience’s (my) keycard, our keycards would remain

the same for the remainder of the trick,. How do we come up with a

Markov Chain to represent the ”clicking” and that our keycards staying

the same once they click? The latter appears to suggest an absorbing

state or class (once we have the same keycard, we will always have

the same keycard). One way to represent the ”clicking” is to define

states of the markov chain as the absolute difference between value of

your keycard, kn′ and my most recent keycard kn. Suppose kn, kn′ ∈

{1, . . . , 9} for n, n′ ≥ 0. Then, the states S = {0, . . . , 8}. Using our

definition of the states, state 0 represents the ”clicking” and is the

absorbing state of this finite chain. Therefore, once the chain reaches

state 0, it stays there. Since the finite chain has only one absorbing state

and 0 can be reached from the remaining states, the remaining states

are transient. In the context of the card trick, this means that given

an deck of infinite number of cards, our cards will eventually be the

same at some point during the trick by the definition of transience in

a finite Markov Chain. Transience property in this finite chain implies

that all states other than 0 will eventually not be visited in the long

run. This is confirmed by your simulations in which the probability of

performing your card trick with success increases with the deck size.

Another interesting discovery some of you may have found is that the

probability also increases as the value assigned to face cards decreases.

The intuition behind this is that by assigning low values to face cards

allows the cards to run out slower. In other words, the magician receives

more chances to have the same as the audience’s. Thus, the probability

of having the same keycard goes up.

The following are two notable references that explore Kruskal Count

through simulations and mathematical arguments. Haga and Robins

(1995). J. Lagarias and E. Rains and R. Vanderbei (2001). The former

paper explains the trick using a chain similar to the one we used here.

The latter paper explains the trick using a coupled chain. A coupled

chain is a chain that describes the joint behavior of independent copies
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of an original chain where each copy behaves according to the laws of

the original chain. This coupling argument is used by the text on pages

235-236 albeit nowhere as rigorous as the paper’s.

Note: The question didn’t seem to indicate how to treat 10. Whether

assigning the value of a face card or 10 to it shouldn’t affect the results

of your simulations by that much. The general relationships (between

deck size and probabilitiy of success, etc...) should remain the same.

3

Inventory ModelThe supply of rolls on a certain day depends on the supply of rolls

on previous day, amount of rolls used up, and number of rolls delivered

in the evening. But the latter are iid across days and indepedent from

the supply of rolls. The number of rolls used is constant across days. So

the supply of rolls on a certain day only depends on supply of rolls on

the previous day. Therefore, this scenario can be modeled by a Markov

Chain. The transition probabilities are given by

P (i, j) =





p(j) for i = 0, 1
p(j − i + 1) for i > 1 and i ≤ j + 1
0 otherwise

Let r be the price per roll, c be the extra cost of an emergency roll

and s be storage cost per roll. Then, we want to minimize the expected

cost, which in terms of the stationary distribution π is

(r + c)π0 + (r + s)
∞∑

k=1

kπk

Also observe that P is an Upper Hessenberg matrix. Few implications

result. If the expected value of number of rolls delivered is greater than

1, the supply increases indefinitely but the storage cost also increases. If

it is less than 1, eventually the supply would reach 0. So the probability

of having no roll in storage can be calculated. If it is equal to 1, the

same probability would not be able to be calculated since the chain

is not positive recurrent (stationary distribution fails to exist in this

case).
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Periodic LimitsThe homework has a typo: s and s0 have to belong to the same cyclic

class for the equality to hold. Second note that to find

lim
n→∞

P nd(s0, s)

it suffices to find the limiting behavior of a chain with transition matrix

P̃ = P d

However, P is the transition matrix of X. Therefore, P d is just the

transition matrix of a chain which observes X every d steps. Call this

chain, Xd. Then, Xd = (X0, Xd, X2d, . . .). We have seen in class that

this chain is ergodic. Therefore, the limiting distribution exists, i.e.

lim
n→∞

P̃ n(s0, s) =
1

M̃(s, s)

where M̃(s, s) is the mean recurrence time of Xd. Since X moves d

times more steps than Xd, intuitively speaking in terms of M(s, s),

M̃(s, s) = d−1M(s, s)

and the result follows. More mathematically: first let Ts and T ′
s be the

first return times to s for Xd and X respectively and observe

M̃(s, s) =
∞∑

n=0

nP(Ts = n) = d−1
∞∑

n=0

nd · P(T ′

s = nd)

= d−1M(s, s)
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Queue TipGiven Exponential(λ) service time and G is the distribution of in-

terarrival time. Chris’ notes give the transition probability matrix of a

GI/M/1 queue as:

P (j, j + 1 − k) =
∫

∞

0
e−λt (λt)k

k!
dG(t) k ≤ j

P (j, 0) =
∫

∞

0

∞∑

k=j+1

e−λt (λt)k

k!
dG(t)

where states Qn represents the number of people in the queue just

before the nth arrival. A few people asked how this was derived. So

here goes: First let Xn represent the number of departures between nth

and (n + 1)th arrival. It can be seen that

Qn+1 = Qn + 1 − Xn, for Xn < Qn + 1

So,

P (i, j) = P(Qn+1 = j | Qn = i) =
{

P(Xn = i − j + 1) if j > 0
P(Xn ≥ i + 1) if j = 0

=





∫
∞

0
e−λt (λt)i−j+1

(i − j + 1)!
dG(t) if j > 0

∫
∞

0

∞∑

k=i+1

e−λt (λt)k

k!
dG(t) if j = 0

Second equality follows from to the fact that exponential services times

imply the number of departures in any given interarrival time period is

Poisson distributed. Using law of total probability, integrate the Pois-

son density over all possible interarrival times t with distribution func-

tion G(t) to obtain the result.

Finally, express P (i, j) in terms of Chris’ notation: P (j, j + 1 − k)

and find they are equivalent. Now back to our main event.

Let µ be the expected value of the distribution defined by G and

assume [λµ]−1 < 1. λµ is called the traffic intensity. The traffic intensity

is defined as the ratio of the mean of service time to mean of interarrival

time. Intuitively, if it is greater than 1, the queue length would become

infinitely large since the service time is on average larger than the

interarrival time. So the states, Qn, become transient. We shall see that
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for traffic intensity less than 1, the queue length reaches an equilibrium,

i.e. limiting distribution exists and so the chain is positive recurrent

(thus chain is null recurrent when it equals 1). To make notation simple,

let

αk = eλt (λt)k

k!

Then our transition matrix is given by

P =




1 − α0 α0 0 0 · · · · · ·
1 − α0 − α1 α0 α1 0 · · · · · ·

1 − α0 − α1 − α2 α0 α1 α2 0 · · ·
... α0 · · · · · · α3 · · ·
... · · · · · · · · · · · · · · ·




π = πP yields the following system of equations:

π0 =
∞∑

i=0

πi


1 −

i∑

j=0

αj


 (1)

πk =
∞∑

i=0

πk+i−1αi for k > 0 (2)

with
∞∑

i=0

πi = 1 (3)

Let our guess for solution be

πk = cγk for k ≥ 0 (4)

Plugging in back into (2), we have

γ =
∞∑

i=1

αiγ
i

Now plug in the value of αi.

γ =
∞∑

i=1

∫
∞

0

(λγt)i

i!
e−λtdG(t)

=
∫

∞

0

[
∞∑

i=1

(λγt)i

i!

]
e−λtdG(t)

=
∫

∞

0
eλγte−λtdG(t)

= EG

[
e(λγ−λ)t

]
= M[λ(γ − 1)]
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where M is the moment generating function of G. Now we proceed to

find γ that solves this equality. Let B(γ) = M[λ(γ−1)]. One can verify

that B(γ) is a convex function and nondecreasing on [0, 1] by observing

the derivatives of B(γ).

Also, B(0) > 0, B(1) = 1, and B ′(1) = µλ. By our assumption that

traffic intensity is less than 1, B ′(1) = µλ > 1. Now consider two

functions, y = γ and y = B(γ). We know they must intersect in at

least one point, at 1. Is the line y = γ merely tangent to B(γ)? Since

B′(1), the slope of the tangent line at 1, is greater than 1, it is not true

γ only intersects B(γ) at 1 but is true that y = γ intersects B(γ) at 2

points on [0, 1] by properties of convexity. Call ν the other intersecting

point, i.e. B(ν) = ν 6= 1. Because B(0) > 0 and B(γ) is nondecreasing

on [0, 1], 0 < ν < 1.

Recall that γ = 1 also satisfies B(γ) = γ. But γ = 1 is useless

because the solutions to π = πP would not be normalizable under this

case. γ = ν does not have this problem. So γ = ν is the solution to

B(γ) = γ we care about. Also, note that (4) satisfies (1) because we

can easily derive (1) from (2) and (3). In other words, (4) satisfies (1)

because of the dependence between balance equations. Using (4), we

have

1 =
∞∑

j=0

πj = c
∞∑

j=0

νj =
c

1 − ν

⇒ c = 1 − ν. Therefore, the stationary distribution is given by

πk = (1 − ν)νk, for k ≥ 0

where M[λ(ν − 1)] − ν = 0 for ν ∈ (0, 1).

6

Finite RecurrenceThe proof makes use of a number-theoretic fact that the textbook

calls postage stamp lemma which states that: for positive and coprime

integers, i1 and i2, there exists N such that ∀n ≥ N , we can find p, q ∈

N such that n = p · i1 + q · i2.

More generally, it states that if i1, . . . , ik are positive and coprime,

there exists a positive integer N such that for all n ≥ N , we can find

non-negative integers nj such that n =
k∑

j=1

njij
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Let a finite, irreducible and aperiodic chain be given. By definition

of aperiodic chains, we know that

gcd{d ≥ 1 : P d
ii > 0} = 1

Now choose r1, . . . , rk ∈ {d ≥ 1 : P d
ii > 0}. Then, by the Lemma above,

we know there exists a positive integer N such that for all n ≥ N , we

can find αj such that n =
k∑

j=1

αkrk. Then, by Chapman Kolmogorov,

for any state `

P n(`, `) ≥
k∏

j=1

[P rj(`, `)]αj > 0

Therefore, P n(`, `) > 0 ∀n ≥ N .

Since every state communicates with each other, we can find m such

that P m(γ, `) > 0 for some given pair of states γ and `. It follows that

P n+m(γ, `) ≥ P m(γ, `)P n(`, `) > 0

The chain is finite, irreducible and aperiodic. The states in this chain

need to be recurrent. Why? Well, if not, then all states are transient

by irreducibility property. But by finiteness, transience implies that

eventually we will run out of states to travel and that creates a con-

tradiction. Also, recurrent states in a finite chain are always positive

recurrent. The proof of this is given in Section 6.3 Lemma (5). There-

fore, the stationary distribution always exists.
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Markov FluThe transition probabilities are given by

P (i, j) =





p for j = 0
1 − p for j = i + 1
0 otherwise

The stationary distribution, ρ can be obtained by solving

ρ = ρP

which gives

ρ0 = p
∞∑

j=0

ρj = p

8
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ρk = (1 − p)ρk−1

Now do the Plug-N’-Chug and we obtain that for each k ≥ 0,

ρk = p(1 − p)k

People interpreted this question two different ways, both of which

are acceptable. The second interpreation has the following transition

probability matrix:

P (i, j) =





p for j = 0, i > 0
1 for i = 0, j = 1
1 − p for j = i + 1, i > 0
0 otherwise

The more important message of this question is that by treating the

outbreak of the flu as arrivals (or successes in a sequence of Bernoulli

trials) we define a renewal process whose interarrival times are geomet-

rically distributed.
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Murkiest PointsAs long as there’s no gobbledygook here, you received credit.
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