
36-703 Homework #6 Solutions Thursday 6 April 2006

Unless otherwise stated, for the remainder of the solutions, define

Fm = σ(Y0, . . . , Ym)

1

Exercise 12.1.1We will show EYm = EY0 using induction. m = 0 is obviously true.

For base case m = 1: EY1 = E[E(Y1 | Y0)] = EY0. Now assume the

property is true for k < m. Applying the Mighty Conditioning property

and inductive hypothesis,

E(Ym) = E [E(Ym | Fm−1)] = EYm−1 = EY0

The second equality holds by the definition of martingale. Therefore,

the property holds for all natural numbers. By definition of submartin-

gale,

E(Ym) ≤ E [E(Ym+1 | Fm)] = EYm+1 (1)

For the case of supermartingale, use its basic definition and flip the

inequality in (1). Finally, use these inequalities in a similar inductive

proof to show that EYm ≥ EY0 and EYm ≤ EY0, ∀m ∈ N .

2

Exercise 12.1.2By Mighty Conditioning Identity and definition of martingale

E(Yn+m | Fn) = E [E(Yn+m | Fn+m−1) | Fn] = E[Yn+m−1 | Fn]

Now keep repeating this argument until

E(Yn+m | Fn) = E(Yn+1 | Fn)

and the result follows by applying the definition of martingale.
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Exercise 12.1.4For a symmetric gambler’s ruin, Sn+1 = Sn + Xn+1 where

Xi ∼ p(x) =
{

1/2 if x = ±1
0 otherwise

So E(Xi) = 0 and E(X2
i ) = 1 ∀i ≥ 1. Therefore,

E[Sn | σ(S0, . . . , Sn−1)] = Sn−1 + E[Xn | σ(S0, . . . , Sn−1)] = Sn−1

Now for Tn = S2
n − n and T = σ(T0, . . . , Tn−1),

E[Tn | σ(T0, . . . , Tn−1)] = E

[

(Sn−1 + Xn)2 − n

∣

∣

∣

∣

T
]

= E

[

(S2

n−1 − n + 1 − 1 + 2Sn−1Xn + X2

n

∣

∣

∣

∣

T
]

= E

[

(S2

n−1 − (n − 1) − 1 + 2Sn−1Xn + X2

n

∣

∣

∣

∣

T
]

= E

[

Tn−1 + 2Sn−1Xn + X2

n − 1

∣

∣

∣

∣

T
]

= Tn−1 + 2Sn−1 · 0 + E[X2

n | T ] − 1 = Tn−1

Let pk be the ruin probability given that we start from k and T be

T = min{n ≥ 1 : Sn = 0 or Sn = N}

Assume S0 = k. Optional stopping theorem says E(ST ) = E(S0) = k.

By this result,

E(ST ) = N(1 − pk) + 0 · pk = k ⇒ pk = 1 − k/N

Similarly it is also true that E(S2
T − T ) = k2. By this result,

k2 = E(S2

T − T ) = E(S2

T ) − ET

= N2(1 − pk) + 02 · pk − ET

= N2(1 − pk) − ET

Next, do the Plug-N’-Chug with pk (i.e. 1 − k/N) and solve for ET ,

whose solution turns out to be k(N − k).
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Exercise 12.1.5For r ≥ i, E(Yr | Fi) = Yi by Exercise 12.1.2. For r ≥ i,

⇒ E(YrYi) = E[E(YrYi | Fi)] (2)

= E[YiE(Yr | Fi)] by Enhanced Scaling (3)

= E(Y 2

i ) (4)

⇒ E[(Yk−Yj)Yi] = 0 for i ≤ j ≤ k. For the next part, expand (Yk−Yj)
2

and notice that

E(YkYj | Fi) = E[E(YkYj | Fj) | Fi]

= E[YjE(Yk | Fj) | Fi]

= E(Y 2

j | Fi)

The three equalities follow from Mighty Conditioning Identity, En-

hanced Scaling and Exercise 12.1.2. Expanding out (Yk − Yj)
2 as sug-

gested:

E

[

(Yk − Yj)
2

∣

∣

∣

∣

Fi

]

= E

(

Y 2

k

∣

∣

∣

∣

Fi

)

− 2E(YkYj | Fi) + E
(

Y 2

j

∣

∣

∣

∣

Fi

)

= E

(

Y 2

k

∣

∣

∣

∣

Fi

)

− E
(

Y 2

j

∣

∣

∣

∣

Fi

)

Take expectation on both sides of the previous claim. What we have is

0 ≤ E

[

(Yk − Yj)
2
]

= E

(

Y 2

k

)

− E
(

Y 2

j

)

We know the sequence {E (Y 2
n )} is bounded by assumption and is non-

decreasing. Therefore, it is a covergent sequence. Thus, as k, j → ∞,

E (Y 2
k ) − E

(

Y 2
j

)

→ 0 and so E [(Yk − Yj)
2] → 0. ⇒ {Yn} is Cauchy

convergent in mean square. Using the result from Exercise 7.11.11,

convergence in mean square follows directly.
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Exercise 12.1.6Apply Jensen’s inequality and use definition of martingale to estab-

lish that

µ{E(Yn+1 | Fn)} = µ{Yn}

Finally, argue the three given functions are convex by observing its

plot, second derivative (if it exists), or noting its epigraph, i.e. the set

{(x, y) | y ≥ f(x)}, is convex.

6

Exercise 12.9.13(a) This is a generalization of Problem 6 in Homework 3.

E(Yn | Fn−1) =
1

n + r + b
([Rn−1 + 1]Yn−1 + Rn−1[1 − Yn−1])

=
Rn−1

n + r + b
+

Yn−1

n + r + b
= Yn−1

On the right hand side of second equality, plug in the value of Yn−1

in terms of Rn−1. The last equality results after a little algebra.

Next, notice that |Yn| ≤ 1. This leads to that

|Yn|I{|Yn|≥a} ≤ I{1≥a}

⇒ sup
n

E

(

|Yn|I{|Yn|≥a}

)

≤ E[I{1≥a}] → 0

as a → ∞. Therefore, Yn is uniformly integrable. Then it follows

that Yn converges almost surely and in mean.

(b) Apply the optional stopping theorem. That is, E(YT ) = Y0 = 1/2.

Then, observe RT = T . Therefore,

1/2 = EYT = E

(

RT

T + 2

)

= E

(

T

T + 2

)

= E

(

T + 2 − 2

T + 2

)

⇒ E

(

1

T + 2

)

=
1

4

(c) The maximal inequality gives that

P

(

max
0≤i≤n

Yi ≥ 3/4
)

≤
EYn

3/4
=

EY0

3/4
= 2/3

The first equality came from Exercise 12.1.1.

4



36-703 Homework #6 Solutions Thursday 6 April 2006

7

Exercise 12.9.18Let F = σ(X0, . . .Xn).

E(Xn+1 | F) = E

(

Rn+1

52 − (n + 1)

∣

∣

∣

∣

F

)

=
1

52 − (n + 1)
E (Rn+1 | F)

=
Rn

52 − (n + 1)
· (1 − Xn) +

Rn − 1

52 − (n + 1)
· Xn = Xn

Xn is the proportion of red cards remaining in the deck of cards. Sup-

pose the strategy is to call ”Red Now” at some arbitrary time T . Apply

the optional stopping theorem to show that EXT = EX0 = 1/2. Thus,

for any T ≥ 0, the probability of winning is 1/2.
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