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Exercise 12.3.1Define T1 = min{n : Yn ≥ b} and T2 = min{n > T1 : Yn ≤ a} and

inductively that

T2k−1 = min{n > T2k−2 : Yn ≥ b} and T2k = min{n > T2k−1 : Yn ≤ a}

The interval [T2k−1, T2k] is called a downcrossing of [a, b] and the

number of downcrossing is the number of such intervals. The num-

ber of downcrossings by time n is Dn(a, b;Y ) = max{k : T2k ≤ n},

i.e. the number of downcrossings of [a, b] of the sequence Y0, Y1, . . . , Yn.

(a) Between each pair of downcrossings of [a, b], there must be an up-

crossing and vice versa. Therefore

|Dn(a, b;Y ) − Un(a, b;Y )| ≤ 1 ∀n ∈ N

(b) First, we need to show that Tk are indeed stopping times. T1 is

a stopping time because {T1 ≤ n} =
n
⋃

j=0

{Yj ≥ b} ∈ Fn. Assume

T2k−1 is a stopping time (inductive hypothesis) and we arrive at

{T2k ≤ n} =
n
⋃

j=0

({T2k−1 ≤ j − 1} ∩ {Yj ≤ a}) ∈ Fn

So by induction on k, it follows that Tk is a stopping time.

Define for j ∈ N, Aj = {ω : T2k−1(ω) < j ≤ T2k(ω) for some k} and

Zn =
n
∑

j=1

IAj
(Yj − Yj−1) , n ∈ N

IAj
is measurable with respect to Fj−1 because

I−1

Aj
({1}) =

⋃

k

({T2k−1 ≤ j − 1} \ {T2k ≤ j − 1}) ∈ Fj−1 (1)

The ∈ relation follows from our proof that Tk that we defined are

stopping times. Using (1), we have that

E(Zn − Zn−1) = E

[

E

(

IAn
(Yn − Yn−1)

∣

∣

∣

∣

Fn−1

)]

= E {IAn
[E(Yn | Fn−1) − Yn−1]} ≥ 0
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Note the inequality follows from the definition of submartingale.

Then, we have that

E(Zn) ≥ E(Zn−1) ≥ . . . ≥ E(Z0) = 0

Observe that Zn ≤ −(b− a)Dn(a, b;Y ) + (Yn − b)+. Taking expec-

tation on both sides,

(b− a)E[Dn(a, b;Y )] ≤ E

[

(Yn − b)+
]

− EZn

and the result follows from our proof of that EZn ≥ 0.

2

Exercise 12.3.2If Y is a supermartingale, then −Y is a submartingale. Upcrossings

of [a, b] by Y correspond to downcrossings of [−b,−a] of −Y .

By Exercise 12.3.1,

E[Un(a, b;Y )] = E[Dn(−b,−a;−Y )]

≤
E[(a− Yn)+]

b− a

=
E[(Yn − a)−]

b− a

Note that if a, Yn ≥ 0, then (Yn − a)− ≤ a

3

Exercise 12.3.3The condition ψ has to satisfy means that the sequence {ψ(Xn)} is

a bounded supermartingale. By the supermartingale convergence the-

orem, it converges almost surely to some limit. The chain Xn defined

on state space S is irreducible and recurrent. Therefore, each state is

visited infinitely often a.s. But the codomain of ψ is this same state

space. Thus, if ψ is defined so that it takes on more than 1 value in the

codomain, these values will be visited infinitely often. This contradicts

the a.s. convergence, unless ψ returns only one value, in which case ψ

is a constant function.

2
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Exercise 12.3.4Yn is the sum of independent variables with zero means ⇒ Y is a

martingale. Also note that

∞
∑

n=1

P(Zn 6= 0) =
∞
∑

n=1

1

n2
<∞

By the Borel-Cantelli Lemma

P(Zn 6= 0 infinitely often) = 0

in other words, Zn = 0 almost surely. Therefore, the partial sum of Yn

converges a.s. to some finite limit as n approaches infinity.

By induction, one can show that an = 5an−1 for n ≥ 3. Therefore,

an = 8 · 5n−2 for n ≥ 3. However note that

|Yn| ≥
1

2
an if and only if |Zn| = an

Because of Markov’s Inequality,

E(|Yn|) ≥
1

2
anP

(

|Yn| ≥
1

2
an

)

=
1

2
anP(|Zn| = an) =

an

2n2
=

8 · 5n−2

2n2
→ ∞

5

Exercise 12.4.1Generally for questions like these, it helps to re-express the events

using complements, unions and intersections. Then, apply the proper-

ties of σ-fields and filtration to reach the result. Let F be the filtration

and Fn ∈ F. In this problem,

{T1 + T2 = n} =
n
⋃

k=0

({T1 = k} ∩ {T2 = n− k}) (2)

{max{T1, T2} ≤ n} = {T1 ≤ n} ∩ {T2 = n} (3)

{min{T1, T2} ≤ n} = {T1 ≤ n} ∪ {T2 = n} (4)

Now using properties of filtration and σ-fields, the events on the RHS

of the equality in (2), (3) and (4) are also in Fn.

3
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Exercise 12.4.2Let Fn = σ(X1, . . . , Xn) and Sn =
n
∑

k=1

Xk be given. We can re-express

the event as

{N(t) + 1 = n} = {Sn−1 ≤ t} ∩ {Sn > t}

Use the same argument made in 12.4.1 and we have that

{N(t) + 1 = n} ∈ Fn

7

Exercise 12.4.5Similar to Exercise 12.3.1, we define a new random variable Zn

Zn =











n
∑

k=1

Yk − Yk−1 if for each k, S < k ≤ T

0 otherwise

Similar to (1), one can prove that I{S<n≤T} is measurable with respect

to Fn−1. By the definition of Zn, ZN = YT − YS. What remains to be

shown now is that EZn ≥ 0. If we have that, then EYT ≥ EYS. To show

that, note

E(Zn − Zn−1) = E

{

I{S<n≤T}(Yn − Yn−1)
}

= E

{

I{S<n≤T}E(Yn − Yn−1 | Fn−1)
}

≥ 0 by definition of submartingale

Second equality comes from applying Mighty Conditioning Identity,

measurability of the indicator function with respect to Fn−1, and En-

hanced Scaling. Therefore,

EZN ≥ EZN−1 ≥ · · · ≥ EZ0 = 0

4
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Exercise 12.4.6Applying definition of De Moivre’s Martingale and maximal inequal-

ity,

P

(

max
0≤m≤n

Sm ≥ x
)

= P

(

max
0≤m≤n

Ym ≥ (q/p)x

)

≤ (p/q)x

Let n go to infinity, the limit becomes supm Sm. Now we can use prob-

ability rule for discrete nonnegative random variables: Suppose N is

non-negative and discrete random variable. Then

EN =
∞
∑

i=0

P(N > i)

You’ve used this fact in Homework 1. To see why this is true, refer to

Miscellaneous Results section for its proof. Therefore, it follows from the

rule

E

(

sup
m
Sm

)

=
∞
∑

x=0

P

(

sup
m
Sm > x

)

=
∞
∑

x=1

P

(

sup
m
Sm ≥ x

)

≤
p

q

∞
∑

x=1

(

p

q

)x−1

=
p

q − p

The equality follows from the result in Exercise 5.3.1. See Miscellaneous

Results section for proof of the result.

9

Exercise 12.4.7(a)

(i) Ω∩{T ≤ n} = {T ≤ n} ∈ Fn ⇒ Ω ∈ FT

(ii) Assume A ∈ FT . Note that

AC ∩{T ≤ n} = {T ≤ n}∩(A∩{T ≤ n})C ∈ Fn

since members of a σ-field are closed under complement and

intersection. It follows that A ∈ FT .

(iii) Now assume that A1, A2, . . . ∈ FT . Then,
(

∞
⋃

i=1

Ai

)

⋂

{T ≤ n} =
∞
⋃

i=1

(Ai ∩{T ≤ n}) ∈ Fn

5
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⇒

(

∞
⋃

i=1

Ai

)

∈ FT using the same argument in (ii)

Since (i), (ii), and (iii) are satisfied, FT is a σ-field. Now to show

that T is measurable with respect to FT , we need to show that for

each integer m, {T ≤ m} ∈ FT . For any integer m,

{T ≤ m}∩{T ≤ n} =











{T ≤ n} if m > n

{T ≤ m} if m ≤ n

In both cases, they are in Fn. The second case is true by definition

of filtration. So T is measurable with respect to FT .

(b) Again, it helps to write

(A∩ {S ≤ T})∩{T ≤ n}

as union and intersection of events in Fn. It turns out that

(A∩ {S ≤ T})∩{T ≤ n} =
n
⋃

m=0

(A∩{S ≤ m})∩{T ≤ m}

Since for each m in the union, m ≤ n, it follows from the definition

of filtration that for each m

{T ≤ m} ∈ Fn and A∩{S ≤ m} ∈ Fn

By the properties of σ-field, A∩{S ≤ T} ∈ FT .

(c) We know {S ≤ T} = Ω. Now use your best friend: Mr. Plug-N’-

Chug to plug and chug in the value {S ≤ T} = Ω into the result

in (b) and the claim is proven.

6
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Exercise 12.5.3We have seen that Yn = E(Y∞ | Fn). In terms of definition of condi-

tional expectation, this means that

E(YnIC) = E(Y∞IC) ∀ C ∈ Fn (5)

Recall the formal definition of conditional expectation: Given a func-

tion h and that it is F-measurable, h = E(X | F) almost surely if:

E(hIC) = E(XIC) ∀ C ∈ F

In the context of this problem, we need to prove

E(YT IC) = E(Y∞IC) ∀ C ∈ FT

Let C ∈ FT ⇒ C ∩{T = n} ∈ Fn

YT IC = YT IC
∑

n

I{T=n}

=
∑

n

YT IC ∩{T=n}

=
∑

n

YnIC ∩{T=n}

⇒ E(YT IC) =
∑

n

E

(

YnIC ∩{T=n}

)

=
∑

n

E

(

Y∞IC ∩{T=n}

)

by (5)

= E

(

Y∞IC
∑

n

I{T=n}

)

= E(Y∞IC)

For the next claim, We need to use the fact that FS ⊆ FT proven in

Exercise 12.4.7. Then using the Mighty Conditioning Identity,

YS = E(Y∞ | FT )

= E {E(Y∞ | FT ) | FS}

= E(YT | FS) by Exercise 12.1.2

7
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Exercise 12.5.4Similar to Exercise 12.1.4 in the last homework. The only difference is

that you need to check the conditions of the optional stopping theorem

before applying it. In the previous homework, many people either did

not check the conditions or they simply said EXT = EX0 is a direct

result of a martingale, which is not true when T is random. To see

the difference, compare Exercise 12.1.1 with the Optional Stopping

Theorem.

8
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Miscellaneous

Results

1. Proof of: Suppose N is non-negative and discrete random variable.

Then

EN =
∞
∑

k=0

P(N > k)

EN =
∞
∑

n=0

nP(N = n) =
∞
∑

n=1

nP(N = n)

=
∞
∑

n=1

n
∑

k=1

P(N = n)

=
∞
∑

k=1

P(N ≥ k)

=
∞
∑

k=0

P(N > k) †

2. For the continuous case,

∫ ∞

0

(1 − FN(n))dn =
∫ ∞

0

P(N > n)dn

=
∫ ∞

0

∫ ∞

n
fN(y)dydn

=
∫ ∞

0

∫ y

0

dnfN(y)dy

=
∫ ∞

0

yfN(y)dy = EN †

3. Proof of the claim posed in Exercise 5.3.1.

For a simple random walk Sn with S0 = 0 and p = 1 − q < 1/2,

M = max{Sn : n ≥ 0} satisfies

P(M ≥ m) = (p/q)m for m ≥ 0

Let Ak be the event that the random walk ever reaches k. So,

Ak ⊇ Ak+1 if k ≥ 0. Therefore,

P(M ≥ m) = P(Am) = P(A0)
m−1
∏

k=0

P(Ak+1 | Ak)

= (p/q)m

since P(Ak+1 | Ak) = P(A1 | A0) = p/q (See Corollary 5.3.6). †

9


