
Because we didn’t get to talk at too much length about the formal definition of condi-
tional expected values, I thought it worth jotting down a few points for you to read. These
notes are quick and rough, but please go through them and come talk to me if you have
questions.

To start with, assume we have a base probability space (Ω,F , E) that is rich enough to
support any model we care to construct. Just as a reminder, remember what a probability
space is. Ω is the outcome space, each element of which – an elementary outcome ω ∈ Ω –
describes one way the random experiment comes out. The σ-field F is a collection of subsets
of Ω, called events, containing those sets whose indicators are measurable functions. And
E is the expected value operator, which must satisfy certain axioms but which is otherwise
free to be set by our model. We could equivalently define the probability operator P, where
P(A) = E1A. (In fact, some texts use P to denote both the expected value operator on random
variables and the set function that gives expected values of the corresponding integers.)

Now the first point I want to make is the intuition I described in class behind using a
σ-field of events to represent information we have at some point during an experiment.

Intuition 1. Let G ⊂ F be a σ-field. To say that we have information G means that we
know the value of every indicator 1G for G ∈ G. Or to put it another way, the information
G tells us whether each event G ∈ G occurred.

Example 2. Let G = {∅, Ω}. What information is embodied in that σ-field?

“Knowing” G corresponds to knowing the value of 1G for every G ∈ G (that is, knowing
whether each event G occurred, or not). But 1∅ ≡ 0 and 1Ω ≡ 1, so we knew this information
already.

In other words, having the information G means having no extra information at all.

Example 3. X denote the value of a six-sided die. Let G be the smallest σ-field containing
the events G1 = {X = 1}, G2 = {X = 2}, . . ., G6 = {X = 6}. (What is that σ-field?)

“Knowing” the information in G means, for example, that we know the values of 1Gk
for

k = 1, . . . , 6. And in particular, we know the value of

6∑

k=1

k1Gk
.

But this random variable is just X! Knowing the information in G tells us the value of X.
And conversely, if I know the value of X, I know 1G for all G ∈ G because all these events

are events that relate to the value of X.

In this sense, the σ-field G embodies the information in X!
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Example 4. Taking this to greater generality, let X now be a real-valued random variable
with X ≥ 0.

Let G be the smallest σ-field generated by the events {X ∈ A} for all A in the (extended)
Borel σ-field on R.

It turns out (see the Measures handout from earlier in the semester for the argument)
that we can find random variables X1 ≤ X2 ≤ X3 ≤ · · · such that

1. Xn ↗ X (that is, limn Xn = X and the Xns are increasing)., and

2. Each Xn is of the form

Xn =
n∑

k=1

cnk1Gnk

for constants cnk and events Gnk ∈ G. (Such a function is called a simple function
because it takes only a finite number of non-zero values.) (It’s not necessary to make
the number of terms in Xn exactly n, any finite number will do, but we can so what the
heck.)

Now, “knowing” the information in G means that we know the value of every Xn. And
this in turn means that we know the value of X.

Conversely, if we know the value of X, we know 1G for each G ∈ G because each G is
generated from events that are based on the value of X.

Hence again, the σ-field G embodies all the infromation in X.

This example generalizes to real-valued random variables and beyond. I won’t do the
argument here, but see the measures handout; it’s the same construction used in defining
the integral.

Definition 5. For a random variable X (vector or scalar valued), we define σ(X) to be
the minimal σ-field generated by events of the form {X ∈ A} for A in the (extended) σ-
field in the range measurable space. Given a collection of random variables X1, X2, . . . , Xn,
we write σ(X1, . . . , Xn) interchangeably with σ(X) for X = (X1, . . . , Xn). This works for
infinite collections too, but we have to be more careful in defining the σ-field. More on that
another time.

Reminder 6. Recall that if f : (X ,A) → (Y,B) is a mapping between measurable spaces,
then f is a measurable function if f−1(B) ∈ A for each B ∈ B. If C ⊂ A is a σ-field, then f

is C-measurable if f−1(B) ∈ C for each B ∈ B.

Now we are in a position to consider the formal definition again.
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Formal Definition (Part I) 7. Let (Ω,F , E) be a probability space and let G ⊂ F be a
σ-field. If Y is a random variable such that EY exists, then there exists a random variable,
denoted by E(Y | G), with the following properties:

1. E(Y | G) is G-measurable.
2. E (E(Y | G)) exists.
3. For every G ∈ G,

E (E(Y | G)1G) = E (Y 1G) , (1)

or equivalently
E1G (Y − E(Y | G)) = 0. (2)

This extends naturally to vector-valued variables
(Rigor alert: the random variable E(Y | G) is not unique, but it is unique up to events

of probability zero. Moreover, we can find one version of this random variable with all the
regularity properties we would expect, just i’s and t’s, folks.)

The intuition behind this definition is quite lovely. Keep in mind the notion from above
of a σ-field representing information we might learn during an experiment.

What does it mean for a G-measurable random variable Z to be E(Y | G)? (I’m using
Z here because it’s easier to think about that as a random variable, but it’s just a version
– unique up to a set of probability zero – of the conditional expected value.) If G ∈ G has
occurred (and assume E1G > 0), then we’d like to know that Y and Z will have the same
long run average over G. That is, we want

EY 1G

E1G

=
EZ1G

E1G

⇐⇒ EY 1G = EZ1G. (3)

Since G is a σ-field, Gc is also in G, so the same argument requires that

EY (1 − 1G)

E(1 − 1G)
=

EZ(1 − 1G)

E(1 − 1G)
⇐⇒ EY (1 − 1G) = EZ(1 − 1G). (4)

The left equations in the above two equivalences should look familiar; they are the values of
the predictors of Y or Z given 1G. That is, we require:

pred
Y |1G

= pred
Z|1G

. (5)

This is an equality of functions, meaning that the predictors are the same. That is, given
1G, your mean-square optimal predictor of Y is also your mean-square optimal predictor of
Z.

Looking at the right size of the above equivalences, we can rewrite the first as

E1G(Y − Z) = 0. (6)

This says that the difference between Y and Z – the residual we might call it – averages to
zero over G ∈ G. The analogy to residuals in list of numbers that I gave in class is a useful
one. If Y were, say, greater than Z over some set in G, this condition would not hold. To
put it loosely, the residual is, relative to G, noise. And in fact this is what suggests that Z
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is an optimal G-measurable predictor of Y , using basically the arguments we’ve seen in class
and earlier in this document.

To see what this means further, note that assuming that EY and EZ exist, if 0 ≤ X1 ≤
X2 ≤ · · · are G-measurable random variables that converge to some G-measurable X, then
EXn|Y −Z| increases to EX|Y −Z| by the Monotone Limits Rule and so by a related theorem
EXn(Y − Z) → EX(Y − Z). If X is non-negative G measureable functions and the Xn are
simple G-measurable functions increasing to X as used earlier, then linearity of expected
values and equation (6) show that EXn(Y − Z) = 0 for all n. Thus, EX(Y − Z). For an
arbitrary real-valued G measurable function, we can write X = max(X, 0) − min(X0) ≡
X+ − X− and apply the same argument to X+ and X−. The bottom line is that for any
G-measurable function EX(Y − Z) = 0.

Now, consider an arbitrary G-measurable random variable U

E(Y − U)2 = E(Y − Z + Z − U)2 = E(Y − Z)2 + 2E(Z − U)(Y − Z) + E(Z − U)2. (7)

Look at that! The first term does not depend on U . The second term is zero by our
condition equation (6) (make sure you understand why that is so!). The third term is quite
immediately minimized when U = Z. Hence, our Z is just the optimal mean-squared G-
measurable predictor of Y .

We thus have three equivalent requirements for a random variable Z that purports to be
E(Y | G).

1. The long-run average of Y and Z over events in G must be the same. (EY 1G = EZ1G)
2. The best predictors of Y and Z given information in G are the same.
3. The residual (Y − Z) averages to zero over G ∈ G. (E1G(Y − Z) = 0). This implies, in

turn that Z is the optimal mean-square predictor.

Now, let’s unpack the formal definition. First, the random variable E(Y | G) exists.
Good thing. Second, it’s G-measurable. That’s the way we cast it when we talked about Z

above being G-measurable. Third, EE(Y | G) exists. A technical requirement but necessary
if this is going to be useful. Fourth, EY 1G = EE(Y | G)1G; that’s just what we discussed,
pick your favorite interpretation from the above 3. The third in particular connects to the
heuristic definitions which will prove so useful.

You may be wondering next about the following.

Formal Definition (Part II) 8. Assume the conditions of the previous definition. Let
X be a random variable (real or vector-valued) and define G = {X−1(A)} for sets in the
corresponding σ-field in the range of X. Then G is a σ-field and we define

E(Y | X) = E(Y | G), (8)

where we can assume we’ve picked a “nice” version. The defining property of the conditional
expectation corresponds to the following useful identity for any (measurable) function g:

E (E(Y | X)g(X)) = E (Y g(X)) , (9)

or more compellingly
Eg(X)(Y − E(Y | X)) = 0. (10)
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Think back to the examples above. The σ-field σ(X) generated by events {X ∈ A}
embodies the information in X as described above. Hence, defining E(Y | X) = E(Y |
σ(X)) = E(Y | G) makes sense; and note that it is also consistent with our prediction
scheme. Hurray!
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