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Generating functions are packages. A sequence lies in a messy pile on the floor, pieces
sharp and irregular jutting out in all directions. We pick up the pieces one by one and pack
them together just so . . . until suddenly we have what seems another object entirely. When
we find such an object, we can carry it, weigh it, discern its shape, find its center. We can
combine it with others like it to make new ones. And if we look at it just right, we can
discern the pieces that comprise it.

Generating functions are tools. They give an indirect representation of the sequence but
one that is easy to manipulate in many respects. Some of the uses to which we can use
generating functions include the following:

1. Calculate sums.
2. Solve recurrences.
3. Characterize the asymptotic behavior of sequences.
4. Prove useful properties of sequences.
5. Find expected values, variances, and other moments and cumulants of distributions.
6. Establish relationships between distributions.

We will see examples of all of these this semester.
Generating functions are fun. The feeling of cracking a tough sum or recurrence is

better than . . . well, no, but it’s pretty darn good. The mathematics is beautiful and
connects diverse areas, including algebra, number theory, complex analysis, combinatorics,
and probability. And the knowledge will come in handy in surprising ways.

1. Definitions and Operations

There are different flavors of generating function, but for the moment, we’ll deal with what
we might call “ordinary” generating functions.

Definition 1. Let (gn)n≥0 be a sequence. The (ordinary) generating function for the
sequence is the the function defined by

G(z) =
∑

n≥0

gnzn. (1)

A generating function like this has two modes of existence depending on how we use it. First,
we can view it as a function of a complex variable. Second, we can view it as a formal power
series. We will exploit both perspectives.

But first, a word about boundaries. It is most common to deal with sequences gn defined
for n ≥ 0 – let’s call them one-sided sequences for lack of a better name. Even with a
one-sided sequence (gn), it is convenient to extend the sequence to all integers by defining
gn = 0 for n < 0. This leads to the following conventions.

Convention 2. If a sequence gn is defined for n ≥ n0 for some fixed integer n0 (e.g., 0),
then we will assume – unless otherwise indicated – that gn = 0 for n < n0.
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Convention 3. If a sum is written with no limits specified for the summation variable (as
in
∑

n), the summation is taken to be over all integers.

Hence, we will prefer to write our generating functions in the following form

G(z) =
∑

n

gnzn (2)

because it eliminates worrying about the boundary at n = 0.
We do occasionally encounter two-sided sequences as well, sequences defined for positive

and negative integers, and the above expression of G(z) works in that case just fine. The
rigorous definition of two-sided generating functios entails a few additional complications,
whether from the complex-functions or formal-power-series perspectives, but it can be done
– and works just as you would expect – for sequences with only a finite number of non-zero
terms for negative indices. (The more general case is thornier.) Most of the properties and
manipulations of generating functions work with both kinds of sequences, but I’ll try to make
it clear when they don’t. Nonetheless, one-sided sequences are the leading case to keep in
mind.

It is also worth noting that we can write power series in several variables for sequences
with multiple indices, such as

G(y, z) =
∑

m,n

gm,nymzn. (3)

This is often useful, and all the theory is a direct generalization. I’ll freely use the multi-
variable form when needed.

1.1. Generating Functions As Functions of a Complex Variable

If we view G(z) as a function of a complex variable, we must consider the question of
convergence. For what values of z ∈ C does the power series in (1) converge and produce a
well-defined function on the complex plane. This raises all the related issues that are familiar
from analysis. For these purposes, we will consider one-sided sequences, many of the results
can be extended to the two-sided cases using ( ??eq:twosided-decomp??).

Theorem 4. Given a power series
∑

n≥0 gnz
n in a complex variable z, there exists an

extended-real number 0 ≤ R ≤ ∞ such that

1. If |z| < R, the series converges.

2. If |z| > R, the series diverges.

This number R is called the radius of convergence of the power series, and can be expressed

as

R =
1

lim supn→∞ |gn|1/n
, (4)

where we hold to the usual conventions 1/∞ = 0 and 1/0 = ∞.

Example 5. The series
∑

n≥0 zn has R = 1 because the coefficients are constant.
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Example 6. The series
∑

n≥0 zn/n! has R = ∞, which can be seen for example via Stirling’s
approximation.

Given a power series G(z) =
∑

n≥0 gnzn expressed as a function of a complex variable,
the radius of convergence of the series determines properties of the function.

Theorem 7. If G(z) =
∑

n≥0 gnzn is a power series with radius of convergence R, then
G(z) is an analytic (a.k.a. holomorphic, which I tend to prefer) function on the disk |z| < R
and has at least one singularity on the circle |z| = R.

(Note: An analytic or holomorphic function on a region A in the complex plane is a
function that is complex differentiable at every point in the region or equivalently that it
has a convergent power series expansion in an open disk around every point of A. These
conditions have profound consequences for the behavior of the function.)

Example 8. If G(z) =
∑

n≥0 zn, then on the disk |z| < 1, we can write G(z) = 1/(1 − z),
which is analytic function there. This function has a pole (a simple singularity) at z = 1.

It follows that the identification of a power series with a closed-form expression for the
function – as a function of a complex variable – only holds within the region of analyticity.
Consider 1/(1 − z) evaluated at z = 2, for example.

Given a power series G(z) as above that is analytic within |z| < R for some R > 0,
we can recover the coefficients by taking derivatives. For example, G(0) = g0, G′(0) = g1,
G′′(0)/2 = g2, and G(k)(0)/k! = gk. Using Cauchy’s formla from complex analysis, we can
expresss this same relationship as a contour integral – an integral of a function along a closed
curve γ: [0, 1] → C in the complex plane. Cauchy’s formula states

gk =
1

2πi

∫

γ

G(z)

zk+1
dz, (5)

for any closed curve γ around the origin that is contained in the open disk |z| < R. (For
example, γ(t) = (R/2)e2πit.)

This contour integation approach has several other uses. For example, consider a power
series G(z) =

∑
n∈Z gn(z−z0)

n, then a contour integral around z0 (say with γ(t) = z0 +e2πit)
gives

g−1 =
1

2πi

∫

γ
G(z) dz (6)

the so-called residue of G at z0, and for n > 0,

g−n =
1

2πi

∫

γ
G(z)(z − z0)

n−1 dz (7)

by the same argument.
We’ll see later on how these kind of arguments can help us determine the asymptotic

behavior of the sequence gn by the behavior of G(z) around singularities.
Finally, many of the same considerations apply to power series written in multiple vari-

ables, such G(y, z) =
∑

m,n gmnymzn, which can be viewed as a function C2 → C.
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1.2. Generating Functions As Formal Power Series

The second perspective on generating functions is to view them as formal power series. That
is, we view the generating function as an algebraic expression for manipulating the sequence
of numbers – not as a function of a complex variable.

Definition 9. A formal power series (over C) is an algebraic “symbol”

G(z) =
∑

n

gnzn, (8)

for complex-valued coefficients gn. The sum above ranges over all integers, but we will
assume here that gn is eventually zero as n → −∞. Two formal power series are equal if
and only all of their coefficients are equal.

We also need a way to refer to a particular coefficient given a formal power series that
is expressed as a function rather than as a sequence.

Notation 10. If G(z) is a formal power series, then we write [zn]G(z) to denote the
coefficient of zn in the series. That is, if G(z) =

∑
n gnzn, [zn]G(z) = gn. Of course, the z in

these expressions is a dummy variable. It’s also true that [un]G(u) = gn, for example.

This notation is standard and quite convenient in the end, though rather clunky. It
also does take some getting used to. As you get comfortable with it, try expressing the
coefficients in terms of a specific sequence (as we did with “gn” above) and make the mapping.
Eventually, this notation will become familiar.

To make sense of the definition, let’s consider formal power series as algebraic objects
and some of the operations we can perform on them. Let G(z) =

∑
n gnzn, H(z) =

∑
n hnzn,

and F (z) =
∑

n fnzn.
First, we can add formal power series to produce a new formal power series:

G(z) + H(z) =
∑

n

(gn + hn)zn, (9)

and this addition is commutative (G(z) + H(z) = H(z) + G(z)) and associative (G(z) +
H(z)) + F (z) = G(z) + (H(z) + F (z)) by the commutativity and associativity of addition
for the coefficients.. Note that the set of one-sided series is closed under this operation (that
is, the sum of two one-sided series is itself one-sided.)

Second, we can multiply formal power series to produce a new formal power series:

G(z)H(z) =
∑

n

(
∑

k

gkhn−k

)
zn, (10)

and again, this multiplication is commutative (G(z)H(z) = H(z)G(z)) and associative
((G(z)H(z))F (z) = G(z)(H(z)F (z))) as you can demonstrate to yourself. The term in
parentheses

∑
k gkhn−k is called the convolution of the sequences a and b. The product of

formal power series thus corresponds to the convolution of the associated sequences. Note
that the set of one-sided series is closed under this operation (that is, the product of two
one-sided series is itself one-sided.)
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Third, multiplication distributes over addition:

G(z)(H(z) + F (z)) =
∑

n

∑

k

gk(hn−k + fn−k)z
n (11)

=
∑

n

(
∑

k

gkhn−k

)
zn +

(
∑

k

gkfn−k

)
zn (12)

= G(z)H(z) + G(z)F (z), (13)

and similarly for multiplication in the other order.
Fourth, we have an identity element for both addition and multiplication. The function

G(z) = 0 corresponding to the zero sequence acts as an identity under addition of formal
power series. The function G(z) = 1, corresponding to the sequence 1(n=0), acts as an identity
under multiplication of formal power series.

These facts tell us that the collection of univariate formal power series over C has some
familiar (and useful) algebraic properties. In particular, it is an Abelian (i.e., commutative)
group under addition, with G(z) ≡ 0 as the identity, and it is an Abelian group under
multiplication with G(z) ≡ 1 as the identity. Therefore, the collection of formal power series
is an algebraic object known as a commutative ring (with unit element).

The sub-collection of one-sided series (of which we are most interested) has these same
properties and so is also a commutative ring (with unit element), and a sub-ring of the
larger collection. In addition, for one-sided series, we can often find reciprocals as well. The
reciprocal of a (one-sided) formal power series G(z) is a (one-sided) formal power series H(z)
such that G(z)H(z) = 1. In fact, a one-sided power series G(z) =

∑
n≥0 gnzn has a reciprocal

H(z) if and only if g0 6= 0. To see this, note first, that G(z)H(z) = 1 implies that h0 = 1/g0

which is well-defined only when g0 6= 0. Also, G(z)H(z) = 1 implies that
∑

k≥0 gkhn−k = 0.
Taking out the k = 0 term and solving for hn yields:

hn =
−
∑n

k=1 gkhn−k

g0

, (14)

which is a function of g0, . . . , gn and h0, . . . , hn−1. Thus, the (hn)n≥0 are uniquely determined
by sequential construction, so the formal power series H(z) is a unique reciprocal of G(z)
within the sub-ring if and only if g0 6= 0.

Aside for the algebraists among you. This means that the set of one-sided formal power
series with reciprocals forms an Abelian group under multiplication. The complementary set
of such series without reciprocal (i.e., with g0 = 0) forms an Abelian group under addition
and is a unique maximal ideal of the ring. The ring of one-sided formal power series is
consequently a local ring ; it is also a unique factorization domain. Enough about that,
though.

There are other operations we can perform on formal power series. Although they
will look much like the typical operations on functions of a complex variable, these are all
operations within the ring of power series: they are defined “axiomatically” on the symbols
without the need to take any limits. Start with a formal power series G(z) =

∑
n gnz

n.

1. Right-shifting.
[zn]zkG(z) = [zn−k]G(z). (15)
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That is, if H(z) = zkG(z) =
∑

n hnzn, then hn = gn−k, the shifted sequence. Try to
explain each of the correspondences below in terms of sequences like (gn) and (hn) until
you get comfortable with the [zn]G(z) notatino.

2. Left-shifting. For one-sided series, we can create a new series by

H(z) =
G(z) −

∑m−1
n=0 gnzn

zm
=
∑

n≥0

gn+mzn. (16)

That is, [zn]H(z) = [zn+m]G(z) for n ≥ 0. This is a truncated left shift, and the sum
above cannot in general be extended over all integeers. A two-sided left-shift is obtained
by [zn]G(z)/zm = [zn+m]G(z); this is valid for all m but usually less useful.

3. Derivatives. We define the derivative operator on formal power series by G′(z) =∑
n ngnzn−1. Hence,

[zn−1]G′(z) = n[zn]G(z) (17)

[zn−k]G(k)(z) = nk[zn]G(z). (18)

4. Shift-Derivative Combinations. Even more useful is when we combine shift and derivative
operations. Let S be the right-shift operator SG(z) = zG(z) and D be the derivative
operator DG(z) = G′(z). Then, we find that

[zn]SkDkG(z) = nk[zn]G(z) (19)

[zn](SD)kG(z) = nk[zn]G(z). (20)

(Try this out for yourself.) Both of these are useful operators in their own right. The
second identity generalizes easily to a useful form. If Q(z) is some polynomial, then
Q(SD) is an operator consisting of a linear combination of (SD)ks. Using linearity, the
second equality above thus shows that

[zn]Q(SD)G(z) = Q(n)[zn]G(z). (21)

5. Partial Summation. By convolution and the fact that [zn]1/(1 − z) = 1(n≥0),

G(z)

1 − z
=
∑

n

(
∑

k≤n

gk)z
n. (22)

Multiplying by 1/(1 − z) converts a sequence to the sequence of partial sums.
6. Integration. We can define cumulative definite integrals along the real line as follows:

∫ z

0
G(t)dt =

∑

n≥1

1

n
gn−1z

n. (23)

Hence, [zn]
∫ z

0
G(t)dt = (1/n)[zn−1]G(z), for n ≥ 1.

7. Scaling. If c is a constant,

[zn]G(cz) = cn[zn]G(z). (24)
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8. Extraction of Sub-sequences (one-sided only). Let m be a positive integer. Consider the
roots of unity e2πij/m for j = 0, . . . , m − 1. We have the following for integer n ≥ 0

m−1∑

j=0

e2πinj/m =






m if n = dm for positive integer d,
e2πin − 1

e2πin/m − 1
= 0 otherwise.

(25)

where the second case is just an ordinary finite geometric sum. Given a one-sided formal
power series, consider the average over the roots of unity:

H(z) =
1

m

m−1∑

j=0

G(ze2πij/m) (26)

=
∑

n≥0

gnz
n 1

m

m−1∑

j=0

e2πinj/m (27)

=
∑

n≥0

gm·nz
mn (28)

= F (zm), (29)

for a power series F (z) with [zn]F (z) = [zmn]G(z). Denote the mapping from G to F by
the operator Mm.
The simplest example is the case m = 2, where the roots of unity are 1 and −1. In this
case, M2G(z) consists of only the even terms in the series G(z). To get the odd terms,
we apply the same trick but with shifts: (M2zG(z))/z does the job.
Thus, we can extract all subseequences with n modm = k for k = 0, . . . , m − 1 by

Fk(z) =
Mmzm−kG(z)

z
=⇒ [zn]Fk(z) = [zmn+k]G(z) (30)

It looks worse than it is. Try it for m = 3.
9. Composition. If G(z) and F (z) are two generating functions, we might wish to compute

the composition of the two functions. Is this well defined? Write

G(F (z)) =
∑

n≥0

gnF n(z) =
∑

n≥0

gn

(
∑

m

fmzm

)n

. (31)

Notice that if f0 6= 0, then the contribution of each term in the sum to [zn]G(F (z))
could be non-zero if fn 6= 0 infinitely often. The algebraic construction of formal power
series does not support this infinite sum (no limits, remember), so the composition is not
well-defined as a formal power series in this case.. If f0 = 0, however, then [zn]G(F (z))
depend on at most n terms in the sum, which is well defined. The composition operation
is thus well defined for two formal power series only if f0 = 0 or if G(z) has only finitely
many non-zero coefficients (i.e., it is a polynomial).

These are the most commonly used manipulations, though by no means the only ones.
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Example 11. Compute
∑n

k=1 k2.
We can do this in two ways. First, [zn](SD)2(1 − z)−1 = n2 and by partial summation

n∑

k=1

k2 = [zn]
1

1 − z
(SD)2 1

1 − z
= [zn]

z2 + z

(1 − z)4
= [zn]

(
S2(1 − z)−4 + S(1 − z)−4

)
. (32)

By the binomial theorem, negating the upper index, and symmetry – as we saw in class and
on homework – we have

(1 − z)−4 =
∑

n≥0

(
−4

n

)
(−1)nzn =

∑

n≥0

(
n + 3

n

)
zn =

∑

n≥0

(
n + 3

3

)
zn. (33)

Hence,
n∑

k=1

k2 =

(
n + 1

3

)
+

(
n + 2

3

)
=

n (1 + n)(1 + 2n)

6
. (34)

For another approach, begin with the polynomial

n∑

k=0

zk =
1 − zn+1

1 − z
. (35)

Note that (SD)2∑n
k=0 zk =

∑n
k=0 k2zk, and evaluating this polynomial at z = 1 gives us the

first sum we seek. Hence
n∑

k=0

k2 = (SD)2 1 − zn+1

1 − z

∣∣∣∣∣
z=1

. (36)

Carrying out the algebra and evaluating (by taking limits via L’Hopital) yields:

n∑

k=0

k2 =
n (1 + n)(1 + 2n)

6
. (37)

1.3. Commonly Used Generating Functions

Now that we have the basic definitions in place, it’s time to get to work. But first, it’s useful
to have a library of common generating functions at our disposal. To this end, the following
brief list.

1 =
∑

n

1(n=0)z
n (38)

zm =
∑

n

1(n=m)z
n (39)

1

1 − z
=
∑

n≥0

zn (40)

1

1 + z
=
∑

n≥0

(−1)nzn (41)

1

1 − zm
=
∑

n≥0

1(m\n)z
n (42)
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ez =
∑

n≥0

1

n!
zn (43)

sin z =
∑

n≥0

(−1)n

(2n + 1)!
z2n+1 (44)

cos z =
∑

n≥0

(−1)n

(2n)!
z2n (45)

log
1

1 − z
=
∑

n≥1

1

n
zn (46)

log(1 + z) =
∑

n≥1

(−1)n+1

n
zn (47)

(1 + z)r =
∑

n

(
r

n

)
zn (48)

1

(1 − z)m+1
=
∑

n

(
n + m

n

)
zn =

∑

n

(
m + n

m

)
zn (49)

You can devise many others.

2. Solving Recurrences

One of the most powerful uses of generating functions is to solving recurrence relations.
These are relations between elements of a sequence that enable us in principle to compute
every element. The problem with this approach is that we often want to use and compute
for arbitrary or very large index, making sequential computation either useless or infeasible.
This leads to the idea of a closed form: an explicit expression for a sequence or function in
terms of the free variable. We will actually consider two types of closed forms. The first
is where we express the elements of the sequence exactly in terms of the free variable; the
second, is when we find a closed-form expression for the generating function of the sequence.
In many cases, the latter is the best we can do, but it is quite often good enough for what
we need.

Let’s start with a very simple example to make the ideas concrete.

T0 = 0 (50)

Tn = 2Tn−1 + 1 for n > 0 (51)

The sequence as defined is one-sided, so by our convention, we also take Tn = 0 for n < 0.
As recurrences go, this one is fairly straigtforward because we can guess the closed form
and prove it simply by induction. But let’s illustrate the basic method of using generating
functions for this kind of problem anyway.

Step 1. Express the recurrence relation as a single equation that is valid for all integers.

Tn = 2Tn−1 + 1(n≥1), (52)
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Step 2. Multiply both sides of the equation by zn and sum over Z.

∑

n

Tnzn =
∑

n

2Tn−1z
n +

∑

n≥1

zn. (53)

Step 3. Solve the equation to get the generating function T (z) =
∑

n Tnzn in closed form.

T (z) =
∑

n

Tnzn (54)

=
∑

n

2Tn−1z
n +

∑

n≥1

zn (55)

= 2z
∑

n

2Tn−1z
n−1 +

z

1 − z
(56)

= 2zT (z) +
z

1 − z
, (57)

because we are summing over all integers. Hence,

T (z) =
z

(1 − z)(1 − 2z)
. (58)

Step 4. Expand the generating function into a power series and read off the coefficents.
Here, T (z) is a rational function whose denominator polynomial has roots at 1 and 1/2.

What we need is a partial fractions expansion:

T (z) =
z

(1 − z)(1 − 2z)
(59)

= z
[

A

1 − z
+

B

1 − 2z

]
. (60)

Multiplying both sides by (1− 2z) and evaluating at z = 1/2 gives B = 2. Multiplying both
(right hand) sides by (1 − z) and evaluating at z = 1 gives A = −1. Hence,

T (z) = z
[

2

1 − 2z
−

1

1 − z

]
(61)

= z
∑

n≥0

(2n+1 − 1)zn (62)

=
∑

n≥0

(2n+1 − 1)zn+1 (63)

=
∑

n≥1

(2n − 1)zn (64)

=
∑

n≥0

(2n − 1)zn. (65)

Thus, Tn = 2n − 1 for n ≥ 0.
The process was somewhat pedantic in this case, but the key is that the same process

works just so in much, much harder cases.
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Let’s use the tools developed in the last section on a related but slightly harder case.

T0 = 1 (66)

Tn = 2Tn−1 − 1 + n for n > 0 (67)

Step 1. Express the recurrence with boundary conditions:

Tn = 2Tn−1 + (n − 1)1(n>0) + 1(n=0) (68)

Step 2. Form power series:
∑

n

Tnzn = 2
∑

n

Tn−1z
n +

∑

n≥1

(n − 1)zn + 1, (69)

so

T (z) = 2zT (z) + z
∑

n≥0

nzn + 1 (70)

=
1 + z

∑
n≥0 nzn

1 − 2z
. (71)

What to make of that
∑

n≥0 nzn? If we look at it for a moment and remember the last
section, we might recognize it as

∑

n≥0

nzn = S

(
D

(
1

1 − z

))
=

z

(1 − z)2
. (72)

Excellent!
Step 3. Solve for T (z): It follows that

T (z) =
1 + z2/(1 − z)2

1 − 2z
(73)

=
(1 − z)2 + z2

(1 − 2z)(1 − z)2
(74)

=
1 − 2z + 2z2

(1 − 2z)(1 − z)2
. (75)

Step 4. Expand and find coefficients. Since neither 1 nor 1/2 is a root of 1 − 2z + 2z2,
we need to solve

1 − 2z + 2z2

(1 − 2z)(1 − z)2
=

A

1 − 2z
+

B

(1 − z)2
+

C

1 − z
. (76)

Multiplying both sides by (1−2z) and evaluating at z = 1/2 yields A = 2. Multiplying both
sides by (1 − z)2 and evaluating at z = 1 yields B = −1. Evaluating at z = 0 then yields
C = 1 − A − B = 0. Thus, using the common generating functions given earlier:

T (z) =
2

1 − 2z
−

1

(1 − z)2
(77)
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=
∑

n≥0

2n+1zn −
∑

n≥0

(n + 1)zn (78)

=
∑

n≥0

(2n+1 − (n + 1))zn, (79)

and Tn = 2n+1 − (n + 1) for n ≥ 0.

A few comments on the steps. For Step 1, while it’s most convenient to express the
recurrence in a single equation, but it’s not strictly necessary. If there are odd boundary
conditions, we can form the generating function by considering several equations. We took
one approach in class on the Gambler’s Ruin problem by summing only over the indices for
which the main recurrence held true, but we could equivalently have summed over all indices
with the same result, though on the boundary the right-hand side would have the boundary
values not the recurrence value. For Step 2, we can often express the generating function in
closed form, but occasionally we get a functional equation for the generating function, not
quite as good but often sufficient.

For Step 4, a common situation is to have G(z) = P (z)/Q(z) for polynomials P and Q 6=
0. We can assume that degree(P ) < degree(Q). If not, then there are unique polynomials
S(z) and R(z) with degree(R) < degree(Q) such that P (z)/Q(z) = R(z)/Q(z) + S(z), and
we work with R(z)/Q(z). Assume that Q is non-zero and, for the moment, that it has
distinct roots. Then, we can write Q(z) = c(1 − ρ1z)(1 − ρ2z) · · · (1 − ρdz), and we want to
represent

P (z)

Q(z)
=

d∑

k=1

Ak

1 − ρkz
. (80)

If we multiply both sizes by (1 − ρjz) and evaluate at z = 1/ρj, we get

Aj =
P (1/ρj)

c
∏

k 6=j(1 − ρd/ρj)
= −

P (1/ρj)

ρjQ′(1/ρj)
. (81)

The generating function thus satisfies:

[zn]G(z) =
d∑

k=1

Akρ
n
k . (82)

If Q(z) has roots with multiplicity, it’s not quite as easy, be we can often use this basic
approach to reduce the unknowns. For example, suppose Q(z) = (1− ρ1z)2(1− ρ2z) · · · (1−
ρdz). Then, the partial fractions expansion looks like

P (z)

Q(z)
=

B1

(1 − ρ1z)2
+

d∑

k=1

Ak

1 − ρkz
. (83)

If we multiply both sides by (1 − ρ1z)2 and evaluate at z = 1/ρ1, we find B1 but not A1.
Assuming that zero is not a root of Q, however, then once we have B1 and A2, . . . , Ad, we
can find A1 by evaluating at z = 0 to get:

A1 =
P (0)

Q(0)
− B1 −

d∑

k=2

Ak. (84)
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Another variation on the basic procedure comes when we have more than one generating
function to solve for simultaneously. This comes up, for instance, with coupled recurrences.
We saw this in the Pentagon Mole problem on homework and in solving for the random
walk return times and on this week’s homework as well. As this shows, introducing coupled
recurrences can sometimes make a problem easier.

Yet another variation is a recurrence in more than one variable. The ideas here are the
same, it’s just that we use multiple summations. Consider the following example.

Cn,0 = 1 (85)

Cn,m = Cn−1,m + Cn−1,m−1, m > 0. (86)

Define Cn(z) =
∑

m Cn,mzm. Note that by our one-sided condition, C−1,m = 0 for all m > 0,
so C0(z) = 1.

Step 1. Here the boundary condition has to be dealt with.

Cn,m = (Cn−1,m + Cn−1,m−1)1(m>0) + 1(m=0). (87)

Step 2. We’re summing over all m, be careful.

Cn(z) =
∑

m

Cn,mzm (88)

= 1 +
∑

m≥1

Cn−1,mzm +
∑

m≥1

Cn−1,m−1z
m (89)

Step 3. Solve for Cn(z):

Cn(z) = Cn−1(z) + zCn−1(z) (90)

= (1 + z)Cn−1(z), (91)

with C0(z) = 1. Thus, Cn(z) = (1 + z)n.
Step 4. Find the coefficients. By the binomial theorem,

[zm]Cn(z) = Cn,m =

(
n

m

)
. (92)

That all worked out quite tidily, but notice that we treated the two variables asymmet-
rically. What happens if we do the full two-variable funtion. We have [ynzm]C(y, z) =

(
n
m

)
,

so:

C(y, z) =
∑

n

∑

m

(
n

m

)
ynzm (93)

=
∑

n

(1 + z)nyn (94)

=
1

1 − (1 + z)y
. (95)
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Abusing notation just a bit, we can write [yn] 1
1−(1+z)y

= (1 + z)n. But by interchanging the
order of summation, we also get

C(y, z) =
∑

m

(
∑

n

(
n

m

)
yn

)
zm (96)

=
1

1 − y − yz
(97)

=
1

1 − y

1

1 − y
1−y

z
(98)

=
1

1 − y

∑

m≥0

(
y

1 − y

)m

zm. (99)

By a similar stretch of the notation [zm] 1
1−(1+z)y

= ym

(1−y)m+1 . This gives us immediately two
useful sums:

∑

m

(
n

m

)
zm = (1 + z)n (100)

∑

n

(
n

m

)
yn =

ym

(1 − y)m+1
. (101)

Nice.

Double summation like this can be a useful technique for calculating sums. Our sum – like∑
m

(
n
m

)
zm or

∑
n

(
n
m

)
yn – is really a parameterized family of sums. We do the power series

trick – multiply by yn or zm, respectively, and sum – to get a two dimensional generating
function. By interchanging the order of the sums and other tricks, we can often reduce the
sum to simpler form. Just as above.

3. Twists and Turns

There are many places we could go from here, and many nifty techniques based on generting
functions. But this document is getting too long as it is, so I’ll hold off on some of these
until later and defer the rest to the references.

One I will mention is one we’ve seen briefly in class – The Lagrange Inversion formula.
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Theorem 12. (The Lagrange Inversion Formula). Let F (u) and G(u) be generating
functions with G(0) = 1. Then there is a unique formal power series U = U(z) that satisfies
the functional equation

U(z) = zG(U(z)). (102)

In addition, if F (U(z)) is expanded in a power series in z, the coefficients satisfy

[zn]F (U(z)) =
1

n
[un−1](F ′(u)Gn(u)). (103)

This is a variant (see References) of a traditional theorem on formal power series known
variously as the Lagrange Inversion Theorem or Lagrange Inversion Theorem. The idea
is that it shows how to compute the power series expansion of a function that is defined
implicitly in terms of a holomorphic function. As it’s traditionally written: Let u be defined
implicitly by u = c + zG(u). Then, we can expand F (u) in a power series about z = 0
(u = c) as

F (u) = F (c) +
∞∑

n=1

zn

n!
D

n−1(Gn · F ′)(c). (104)

In our case, we are taking c = 0, and notice that by our rules above

[u0]
1

n!
D

n−1(Gn · F ′) =
(n − 1)!

n!
[un−1](Gn(u)F ′(u)), (105)

and so,

[zn]F (u) =
1

n
[un−1](Gn(u)F ′(u)). (106)

This isn’t a proof but it does connect it to the traditional form of the Lagrange theorem.
This theorem is applied in Statistics in developing Cornish-Fisher expansions and their gen-
eralizations.

Exercise 13. Let tn represent the number of labeled, rooted trees on n vertices. Let T (z)
be the generating function for this sequence. Then, T (z) satisfies

T (z) = zeT (z). (107)

Use the LIF to find tn. (This is a fairly standard example for applying the theorem but is
good practice, cf. Homework 3.)
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4. Other Kinds of Generating Functions

The generating functions we’ve seen so far are power series, but it turns out to be useful to
consider alternative forms.

A critical feature of power series is that G(z) = 0 if and only that [zn]G(z) = 0 for all
n. In principle, if we identify component functions φn(z) such that

A(z) =
∑

n

anφn(z) = 0 ⇐⇒ an = 0 for all n, (108)

then we can consider generating functions based on the φn. The ordinary generating functions
are based on φn(z) = zn.

Two other important examples are φn(z) = zn/n!, which give exponential generating
functions and φn(z) = n−z (n > 0) which give Dirichlet generating functions. There are
others as well, but these are the most important.

In each case, we can develop a formal theory and a set of manipulations that help us
solve problems, much as we did above. Depending on the situation, one or the other form of
generating functions might be more convenient. For our purposes now, the key thing is to
be aware of this as an option.

5. Asymptotics

In many applications, we will are interested in (or are willing to accept) an approximation
to a sequence gn for large n. The asymptotic behavior of the sequence is closely tied to the
location and nature of the singularities in G(z) and to the behavior of the function there.

Let’s start with a basic relation. Suppose G(z) is a power series with radius of conver-
gence R. Then, by definition, lim supn→∞ |an|

1/n = 1/R. By the definition of lim sup, this
implies that for every ε > 0 we have

|an|
1/n <

1

R
+ ε eventually (109)

|an|
1/n >

1

R
− ε infinitely often, (110)

which tells us that

|an| <
(

1

R
+ ε

)n

eventually (111)

|an| >
(

1

R
− ε

)n

infinitely often, (112)

The radius of convergence thus gives us a basic asymptotic bound on the sequence. But
notice that R is determined by the modulus of the singularity closest to 0.

Suppose we can find a function G̃(z) that is easy to work with and has the same singular-
ities as G(z) on the circle |z| = R in the complex plane. Then, G(z)− G̃(z) has its smallest
singularities farther than R from the origin and is thus analytic on a disk |z| < S for S > R.
By the above, the coefficient [zn](G(z) − G̃(z)) are eventually smaller than (1/S + ε)n for
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any ε > 0. But
(1/S + ε)n

(1/R + ε)n
=

(
1/S + ε

1/S + ε

)n

→ 0. (113)

So, [zn]G(z) should be like [zn]G̃(z) plus terms of smaller order.
A meromorphic funtion G(z) on an open subset of the complex plane is a function that

can be expressed as a ratio F (z)/H(z) of two holomorphic (analytic) functions on that
domain, with the restriction that H(z) not be identically 0. Such a G(z) is analytic except
at (at most countably many) isolated points called poles where the function behaves like
a(z − z0)

k for some k.
If G(z) is meromorphic and z0 is a pole of order p, then in some neighborhood of z0 (but

excluding z0 itself), we can expand G(z) as

G(z) =
∞∑

n=−p

gn(z − z0)
n. (114)

This is called the Laurent expansion of G around z0. The part of the above sum with negative
indices, call it G−(z; z0), is called the principal part of that expansion.

If G(z) has radius of convergence R and has finitely many poles z1, . . . , zm on the circle
|z| = R, then G(z) −

∑m
k=1 G−(z; zk) is analytic on some disk of radius S > R, so by the

above argument for any ε > 0,

[zn]G(z) = [zn]
m∑

k=1

G−(z, zk) + O
((

1

S
+ ε

)n)
. (115)

We could take this analysis even farther. Two famous results are Darboux’s method for
branch points and Hayman’s method for entire functions. These are discussed very nicely in
[Wilf 2005] and generalized further in [Flajolet and Odlyzko 1990]. See references below.
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