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0. Brief Review and Questions
1. One More Generating Function Example
2. Prediction and Expected Value
3. Homework Questions

Next Time: Fun with White Noise

Reading: G&S 4.1-4.7

Comment 1. Suppose (Ω,F ,E) is a probability space and A ∈ F has P(A) ≡ E1A = 0. A is
called a null set. It turns out that we can without any problem extend F to include all B ⊂ A

which are also necessarily null sets. We will assume henceforth, unless otherwise noted, that any
σ-field we use has been extended in this way.

Review Definition 2. If X is a random variable, the distribution of X is the operator DX that
operates on (measurable) functions g:X → R

k, for any k ≥ 1 and X containing range(X), by

DXg = Eg(X). (1)

Notice that the this definition of DX transparently handles the case of vector-valued X. If X =
(X1, . . . , Xk) for some integer k > 1, then DXg = Eg(X1, . . . , Xn). Given a collection of random vari-
ables Z1, . . . , Zm, the joint distribution DZ1,...,Zm

just the distribution DZ where Z = (Z1, . . . , Zm).

Review Definition 3. Representations of Probability Distributions

Representation Notation How to get from DX

Measure µX µX(A) = P{X ∈ A} = DX1A
pmf pX pX(u) = P{X = u} = DX1{u}
pdf fX fX(u) = lim∆→0

1
∆ DX1[u,u+∆)

cdf FX FX(u) = P{X ≤ u} = DX1(−∞,u]

sdf SX SX(u) = P{X > u} = DX1 ]u,∞[

pgf GX GX(z) = EzX = DXgz, where gz(u) = zu

mgf MX MX(s) = Ee−sX = DXhs, where hs(u) = esu

cgf CX CX(t) = EeitX = DXrt, where rt(u) = eitu

Review (Working) Definition 4. We will say that random variables X1, . . . , Xn are independent

if for any (measurable) real-valued functions g1, . . . , gn defined on the respective ranges of the Xis,

E

n
∏

i=1

gi(Xi) =
n

∏

i=1

Egi(Xi). (2)

Examples 5. Two generating function examples:

1. Pentagon walk (questions)
2. Double heads
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Definition 6. Let Y be a scalar-valued random variable and X be an arbitrary (possibly vector-
valued) random variable.

• A predictor of Y given X is a function that maps each possible value of X (that is, each value
in the range of X) to a real number. This number represents our guess of the value of Y if the
corresponding value of X is observed.

• A prediction of Y given X is the random variable that represents the guess that will be made,
using a particular predictor, when X is eventually observed.

• The optimal (mean square) predictor of Y given a (possibly vector-valued) random variable
X, pred

Y |X
, is the function g ∈ G that minimizes E(Y − g(X))2. The optimal (mean square)

prediction is the random variable g(X) for that same g (that is pred
Y |X

(X)).

Example 7. Optimal predictors:

1. If X is a constant, pred
Y |X

(u) = EY .
2. If X is an indicator,

pred
Y |X

(u) =















EY (1 − X)

E(1 − X)
if u = 0

EY X

EX
if u = 1.

(3)

3. If X is a discrete random variable with pmf pX ,

pred
Y |X

(u) =
EY 1{X = u}

pX(u)
. (4)

4. If X is a continuous random variable with pdf fX , we can write (only somewhat fancifully):

pred
Y |X

(u) =
EY 1{X near u}

P{X near u}
, (5)

where the {X near u} denotes (again somewhat fancifully) the event {X ∈ [u, u + du)}.

Heuristic Definition 8. This leads to definitions of several useful and common quantities:

1. Conditional probabilities

P(B | A) =
E1B1A

E1A

=
P(A ∩ B)

P(A)
. (6)

2. The local conditional expectation operator:

E(Y | X near u) = pred
Y |X

(u) (7)

that holds for real- and vector-valued random variables. The operator E(· | X near u) satisfies
all the basic expected value rules.

3. Conditional distributions

DY |X(h | u) = E(h(Y ) | X near u). (8)

4. Conditional distributions, for example pmfs and pdfs. The conditional pmf pY |X or pdf

ffY | X is defined such that

E(h(Y ) | X = u) =
∑

v

h(v)pY |X(v | u)

E(h(Y ) | X near u) =

∫

h(v)fY |X(v | u) dv
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Heuristic Definition 9. The conditional expectation of Y given X is a random variable E(Y | X)

given by
E(Y | X) = pred

Y |X
(X). (9)

This is the optimal prediction of Y given the observed value of X.

Formal Definition (Part I) 10. Let (Ω,F ,E) be a probability space and let G ⊂ F be a σ-field.
If Y is a real-valued random variable such that EY exists, then there exists a random variable ,
denoted by E(Y | G), with the following properties:

1.
{

E(Y | G) ∈ A
}

∈ G for every Borel or null set A.

2. E (E(Y | G)) exists
3. For every G ∈ G,

E (E(Y | G)1G) = E (Y 1G) . (10)

This extends naturally to vector-valued variables
(Rigor alert: the random variable E(Y | G) is not unique, but it is unique up to events of

probability zero. Moreover, we can find one version of this random variable with all the regularity
properties we would expect, just i’s and t’s, folks.)

Claim 11. If G: (Ω,F) → (R,B) is G-measureable (meaning that G−1(B) ∈ G) and if EG and
EY G exist, then

EG(Y − E(Y | G)) = 0. (11)

Formal Definition (Part II) 12. Assume the conditions of the previous definition. Let X be
a random variable (real or vector-valued) and define G = {X−1(A)} for sets in the corresponding
σ-field in the range of X. Then G is a σ-field and we define

E(Y | X) = E(Y | G), (12)

where we can assume we’ve picked a “nice” version. The defining property of the conditional
expectation corresponds to the following useful identity for any (measurable) function g:

E (E(Y | X)g(X)) = E (Y g(X)) , (13)

or more compellingly
Eg(X)(Y − E(Y | X)) = 0. (14)

Claim 13. The formal and heuristic definitions of E(Y | X) coincide for all practical purposes
when EY 2 < ∞.

Claim 14. Both E(· | X) and E(· | G) satisfy the basic expected value rules.

Identity 15. The Mighty Conditioning Identity

E (E(Y | X)) = EY (15)

This follows immediately from the formal definition above and comes out from the optimal predictor
definitions as well.

Example 16. A random number of random variables.

Another Definition 17. Independence. Two random variables X and Y are independent iff

E(h(Y ) | X) = Eh(Y ) (16)

for all (measurable) functions h on the suitable domain.
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