Plan Fun with White Noise Part II

- 0. Brief Review and Questions
- 1. More on the Random Walk
- 2. Recurrence and Transience
- 3. The Poisson Process
- 5. Brownian Motion

Next Time: Martingales, ... Time will tell

Reading: G&S 5.6–5.8 Homework 2 due next Tuesday

Review Definition 1. Stochastic Process I – Collection of Random Variables

Let \mathcal{T} be an index set and $(\mathcal{X}, \mathcal{G})$ be a measurable space. A stochastic process is a collection of \mathcal{X} -valued random variables $(X_t)_{t \in \mathcal{T}}$.

Review Definition 2. Stochastic Process II – Random Functions

Let \mathcal{T} be an index set and $(\mathcal{X}, \mathcal{G})$ be a measurable space. A stochastic process X is random function defined on \mathcal{T} and taking values in \mathcal{X} ; that is, $X: \Omega \to \mathcal{X}^T$. The realized functions $X(\omega)$ are called *sample paths* of the process.

Notation 3. We will write the values X_t and X(t) interchangeably as is most convenient. The realized values are $X_t(\omega)$ or $X(t, \omega)$ equivalently.

Reminder: Rigor Alert 4. In order to be precise, X needs to be defined in some measurable space $(\mathcal{X}^T, \mathcal{H})$ for some σ -field \mathcal{H} . With proper attention to detail, we can construct the σ -field, but we will discuss that only as needed in this course.

Process 5. Let $(X_n)_{n \in \mathbb{Z}_{\oplus}}$ be a sequence of independent, identically distributed, mean zero random variables. We will call this a *discrete-time white noise process*.

Examples 6. (a) Bernoulli process, (b) Radamacher process, (c) Gaussian white noise, (d) Exponential waiting times.

Process 7. Let (X_n) be a white noise process and S_0 be an arbitrary random variable. Then, $(S_n)_{n \in \mathbb{Z}_{\oplus}}$, defined by

$$S_n = S_0 + \sum_{i=1}^n X_i,$$
 (1)

is called a *random walk*.

Examples 8.

- 1. First return to zero (extended).
- 2. Hitting Time

Theorem 9. (The Lagrange Inversion Formula). Let F(u) and G(u) be formal power series in u, with G(0) = 1. Then there is a unique formal power series U = U(z) that satisfies the functional equation

$$U = zG(U).$$

Moreover, the value F(U(z)) of F at that "root" U = U(z), when expanded in a power series in z about z = 0, satisfies

$$[z^{n}]F(U(z)) = \frac{1}{n}[u^{n-1}](F'(u)G^{n}(u)).$$

Example 10.

1. Gambler's Ruin (several ways)

Process 11. Thus, derived from a random walk, we get a process $(N_t)_{t\geq 0}$ with the following properties:

- 1. $N_0 = 0$
- 2. For $0 \le s < t$, $N_t N_s$ has a Poisson $\langle \lambda(t s) \rangle$ distribution.
- 3. For $0 \le s_1 < t_1 < s_2 < t_2 < \cdots$, the random variables $N_{t_i} N_{s_i}$ are independent.

This is called a (homogeneous) *Poisson process* with rate λ .

Process 12. Thus, derived from a white noise process, we get a process $(W_t)_{t\geq 0}$ with the following properties:

- 1. $W_0 = 0$
- 2. For $0 \le s < t$, $W_t W_s$ has a Normal(0, t s) distribution/
- 3. For $0 \le s_1 < t_1 < s_2 < t_2 < \cdots$, the random variables $W_{t_i} W_{s_i}$ are independent.

We call this process a Weiner process or equivalently, a Brownian Motion.

Question 13. From these properties, what is EW_tW_s ?