
Plan Fun with White Noise Part III

1. Gambler’s Ruin and Martingales
2. The Poisson Process
3. Brownian Motion

Next Time: Stationary Processes, . . . then Markov Processes

Reading: –
Homework 2 due Thursday

Example 1. The Gambler’s Ruin.
Let Sn be a simple random walk with probabilities p and q = 1 − p of moving up and down

respectively. Suppose that Sn represent the total wealth of a gambler at time n, so S0 is her initial
wealth (recall that S0 is independent of the Xs). The gambler needs $m to pay a debt and has
decided to gamble in subsequent best of $1 each until her wealth reaches m (success) or 0 (ruin).
Let T be the time at which either occurs and let R be the indicator that the gambler is ruined.

Find rk = E(R | S0 = k) and tk = E(T | S0 = k).

Method 1. Direct Computation.

Condition on X1 and solve recurrence relation directly.

rk = E(R | S0 = k) (1)

= EE(R | X1, S0 = k) (2)

= pE(R | X1 = 1, S0 = k) + qE(R | X1 = −1, S0 = k) (3)

=







prk+1 + qrk−1 if 1 ≤ k ≤ m− 1
1 if k = 0
0 if k ≥ m or k < 0,

(4)

and by the same reasonin,

tk = E(T | S0 = k) (5)

=

{

1 + ptk+1 + qtk−1 if 1 ≤ k ≤ m− 1
0 if k ≥ m or k ≤ 0.

(6)

Hence, for 1 ≤ k ≤ m− 1,

∆k+1 ≡ rk+1 − rk =
q

p
(rk − rk−1) ≡

q

p
∆k. (7)

So, ∆k = (q/p)k−1∆1, for 1 ≤ k ≤ m, which telescopes to

rk = 1 +
∑

1≤j≤k

∆j. (8)

Solving for rk gives us:

rk =











(

q

p

)k
−
(

q

p

)m

1−
(

q

p

)m if p 6= q

1 − k
m if p = q.

(9)
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Similarly, for the tks, let ∆k = p(tk − tk−1) for 1 ≤ k ≤ m, so ptk =
∑

1≤j≤k ∆j . Then,

∆k+1 =
q

p
∆k − 1 =

(

q

p

)k

pt1 −
(

1 +
q

p
+ · · · +

(

q

p

)k−1
)

. (10)

For p = q, ∆k = t1/2 − (k − 1), and using tm = 0, yields tk = k(m− k). For p 6= q,

∆k =

(

q

p

)k−1

pt1 −

(

q
p

)k−1
− 1

q
p − 1

(11)

=

(

q

p

)k−1

pt1 +
p

q − p
− p

q − p

(

q

p

)k−1

, (12)

and thus

tk =
p

q − p

(

(

q

p

)k

− 1

)

t1 +
k

q − p
− p

(q − p)2

(

(

q

p

)k

− 1

)

. (13)

Using tm = 0, we can solve this for tk.

Method 2. Generating Functions.

Consider a more general recurrence of the form:

cgk+1 + bgk + agk−1 = uk if 1 ≤ k ≤ m− 1 (14)

g0 = u0 (15)

gm = um (16)

Form the generating functions

G(z) =
m−1
∑

k=1

gkz
k U(z) =

m−1
∑

k=1

ukzk. (17)

Now multiply the recurrence above by zk+1 and sum:

zU(z) = c
m−1
∑

k=1

gk+1z
k+1 + bzG(z) + az2

m−1
∑

k=1

gk−1z
k−1 (18)

= c
m
∑

k=2

gkz
k + bzG(z) + az2

m−2
∑

k=0

gkz
k (19)

= c(G(z) + umz
m − g1z) + bzG(z) + az2(G(z) + u0 − gm−1z

m−1) (20)

= G(z)(az2 + bz + c) − z(agm−1z
m − cumz

m−1 − au0z + cg1). (21)

Hence,
G(z)(az2 + bz + c) = zP (z; g1, gm−1), (22)

for a polynomial

P (z; g1, gm−1) = U(z) + agm−1z
m − cumz

m−1 − au0z + cg1 (23)
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= cg1 + (u1 − au0)z + u2z
2 + · · · um−2z

m−2 + (um−1 − cum)zm−1 + agm−1z
m. (24)

We have only two unknowns.
Suppose the polynomial az2 + bz + c has two distinct, non-zero roots 1/ρ1 and 1/ρ2. Then we

proceed in two steps. First, the unknowns g1 and gm−1 satisfy the two equations

P (1/ρ1; g1, gm−1) = 0 (25)

P (1/ρ2; g1, gm−1) = 0, (26)

which are easily solvable. Second, az2+bz+c = a(z−1/ρ2)(z−1/ρ1) = a/(ρ1ρ2)(1−ρ1z)(1−ρ2z) =
c(1 − ρ1z)(1 − ρ2z). We have

1

(1 − ρ1z)(1 − ρ2z)
=

A

1 − ρ1z
− B

1 − ρ2z
, (27)

where A = ρ1/(ρ1 − ρ2) and B = ρ2/(ρ1 − ρ2). Then,

G(z) =
1

c(ρ1 − ρ2)
P (z)

(

ρ1z

1 − ρ1z
− ρ2z

1 − ρ2z

)

(28)

=
1

c(ρ1 − ρ2)
P (z)

∞
∑

k=1

(ρk
1 − ρk

2)z
k. (29)

Note that |c(ρ1 − ρ2)| =
√
b2 − 4ac. We can then just read the coefficients off by convolution.

(What to do in the double or zero root case is left for homework.)
Now let’s apply this to the Gambler’s ruin. We have a = −q, b = 1, and c = −p, so ρ1 = 1,

ρ2 = q/p. For the rks, u0 = 1 and uk = 0 for k > 0. For the tks, u0 = um = 0 and uk = 1 for
0 < k < m. A bit messier in both cases, but we get the same answers as above.

Method 3. Martingales.

Consider now the symmetric (p = q = 1/2) case.
Let Fn = σ(S0, X1, . . . , Xn) be the history of the process up to time n.
Notice that for every n.

E(Sn+1 | Fn) = E(Sn +Xn+1 | Fn) (30)

= Sn + E(Xn) (31)

= Sn (32)

A process (Sn) with this property is called a martingale. In particular, note that E(Sn) = E(S0)
for all n.

For each n, 1{T = n} is determined by S0, X1, . . . , Xn and hence is Fn measurable. Such a
random variable is called a stopping time of the process.

When Sn is a martingale and T is a stopping time of the process, we will see that

E(ST | S0) = S0.
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In the Gambler’s ruin problem:

k = E(ST | S0 = k) (33)

= m(1 − rk) + 0 · rk. (34)

Hence, rk = (m− k)/m.
Consider now Mn = S2

n − n:

E(Mn+1 | Fn) = E((Sn +Xn+1)
2 − (n+ 1) | Fn) (35)

= S2
n − n+ EX2

n+1 − 1 + SnE(Xn+1 | Fn) (36)

= Mn. (37)

So, Mn is also a martingale.
Thus,

k2 = E(MT | S0 = k) (38)

= (m2 − tk)(1 − rk) − tkrk (39)

= m2(1 − rk) − tk (40)

so,

tk = m2 − k2 + −m2rk (41)

= (m+ k)(m− k) −m(m− k) (42)

= k(m− k). (43)

Example 2. Consider a random walk with S0 = 0 and Xi iid Exponential〈λ〉. (Note: If
Wi = Xi − λ, Sn =

∑

iWi + nλ, a sum of white noise plus drift.)
Then, Sn has a Gamma〈n, λ〉 distribution.
Define Nt = max {n ≥ 1 such that Sn ≤ t}. We have N0 = 0 and the following.

P{Nt = k} = P{Sk ≤ t, Sk+1 > t} (44)

= EP{Sk ≤ t, Sk+1 > t | Sk} (45)

=

∫ t

0
P{Xk+1 > t− u}P{Sk near u} (46)

=

∫ t

0
e−λ(t−u) λ

kuk−1

Γ(k)
e−λu du (47)

= e−λtλ
k

k!
k

∫ t

0
uk−1 du (48)

= e−λt (λt)
k

k!
, (49)

so Nt has a Poisson〈λt〉 distribution.
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Now consider s < t < s′ < t′, two disjoint time intervals. What is the distribution of Nt −Ns?

P{Ns ≥ j,Nt −Ns ≥ k}
= P{Sj ≤ s, Sk+Ns

≤ t} (50)

= P{Sj ≤ s, Sk+Ns
− SNs ≤ t− s} (51)

= EP{Sj ≤ s, Sk+Ns
− SNs ≤ t− s | Ns} (52)

=
∞
∑

n=0

P{Sj ≤ s, Sk+n − Sn ≤ t− s | Ns = n}P{Ns = n} (53)

=
∞
∑

n=j

P{Sk+n − Sn ≤ t− s | Ns = n}P{Ns = n} (54)

=
∞
∑

n=j

P{Sk+n − Sn ≤ t− s | Sn ≤ s,Xn+1 > s− Sn}P{Ns = n} (55)

=
∞
∑

n=j

P{Sk+n − Sn ≤ t− s | Xn+1 > s− Sn}P{Ns = n} (56)

= P{Ns ≥ j}P{Nt −Ns ≥ k} . (57)

That last step requires an argument. It follows from the relation P{Xi > t+ u | Xi > u} =
P{Xi > t} for an Exponential distribution.

Or we could do it more messily:

P{Nt −Ns = k,Ns = j}
= P{Sj ≤ s, Sj+1 > s, Sj+k ≤ t, Sj+k+1 > t} (58)

= P







Sj ≤ s,Xj+1 > s− Sj ,
j+k
∑

i=j+1

Xi ≤ t− Sj ,
j+k+1
∑

i=j+1

Xi > t− Sj







(59)

= EP







Sj ≤ s,Xj+1 > s− Sj,
j+k
∑

i=j+1

Xi ≤ t− Sj,
j+k+1
∑

i=j+1

Xi > t− Sj

∣

∣

∣

∣

Sj







(60)

= EP







Sj ≤ s,Xj+1 > s− Sj,
j+k
∑

i=j+1

Xi ≤ t− s+ s− Sj,
j+k+1
∑

i=j+1

Xi > t− s+ s− Sj

∣

∣

∣

∣

Sj







(61)

=

∫ s

0
du fSj

(u)P







Xj+1 > s− u,
j+k
∑

i=j+1

Xi ≤ t− s+ s− u,
j+k+1
∑

i=j+1

Xi > t− s+ s− u







(62)

=

∫ s

0
du fSj

(u) · (63)

P







Xj+1 > s− u,Xj+1 − (s− u) +
j+k
∑

i=j+2

Xi ≤ t− s,Xj+1 − (s− u) +
j+k+1
∑

i=j+2

Xi > t− s







=

∫ s

0
du fSj

(u)P{Xj+1 > s− u} · (64)
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P







Xj+1 − (s− u) +
j+k
∑

i=j+2

Xi ≤ t− s,Xj+1 − (s− u) +
j+k+1
∑

i=j+2

Xi > t− s

∣

∣

∣

∣

Xj+1 > s− u







= P{Sj ≤ s, Sj+1 > s}P{. . .} (65)

= P{Ns = j}P{Nt−s = k} . (66)

The third- and second-to-last inequalities here use the same fact about the Exponential distribution.

By the same trick, we can see that Nt − Ns and Nt−s have the same distribution. But using
independence directly and the fact that

G(z) =
∞
∑

n=0

e−λλ
n

n!
zn = eλ(z−1), (67)

we can show this directly. We have that Nt = Ns + (Nt − Ns) where the latter two terms are
independent. Hence,

GNt(z) = GNs(z)GNt−Ns(z) (68)

eλt(z−1) = eλs(z−1)GNt−Ns(z) (69)

and thus,

GNt−Ns(z) = eλ(t−s)(z−1). (70)

Hence, Nt −Ns has a Poisson〈λ(t− s〉) distribution and is independent of Ns −N0. The same
argument above shows that Nt − Ns and Nt′ − Ns′ are independent and similarly for any finite
collection 0 ≤ s1 < t1 < s2 < t2 < · · · < sm < tm Thus, from a white noise random walk, we get
the following process.

Process 3. Let (Nt)t≥0 be a process with the following properties:

1. N0 = 0

2. For 0 ≤ s < t, Nt −Ns has a Poisson〈λ(t− s〉) distribution.

3. For 0 ≤ s1 < t1 < s2 < t2 < · · · < sm < tm, the random variables Nti −Nsi
are independent.

This is called a (homogeneous) Poisson process with rate λ.

Definition 4. Let L2(0, 1) be (up to some formal details) the set of functions g on (0, 1) such
that

∫ 1
0 g

2 <∞.

A complete, orthonormal basis (ψn) for L2(0, 1) is a countable subset of L2(0, 1) such that
∫

ψjψk = δjk and for any g ∈ L2(0, 1), we can find cn =
∫

gψn such that

∫

(

g −
n
∑

k=0

ckψk

)2

→ 0, (71)

as n→ ∞.
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Example 5. Define a process (ξt)t≥0 as follows. Let (An)n≥0 be a standard normal white noise
Process, i.e., An are iid Normal〈0, 1〉. Define

ξt(ω) =
∞
∑

n=0

An(ω)ψn(t), (72)

for a particular complete orthonormal basis (ψ).

Taking some liberties (we’ll see a more formal derivation another time), we will think of ξt as
a continuous white noise process meaning that in some formal sense we should have Eξt = 0 and
Eξsξt = δ(s− t). Arguing loosely, this works:

Eξt =
∑

n

EAnψn(t) = 0 (73)

Eξsξt =
∑

n,m

EAnAmψn(t)ψm(s) (74)

=
∑

n

ψn(t)ψn(s), (75)

which “makes sense” when s 6= t because
∫

dtEξsξt =
∑

n

ψn(s)

∫

dt ψn(t) = 0. (76)

But don’t take that last calculation too seriously.

Now, just as we got a random walk process by taking cumulative sums of a discrete white noise
process, we can see what we get when we take cumulative integrals of a continuous white noise
process.

Define

Wt =

∫ t

0
ξs ds =

∞
∑

n=0

An

∫ t

0
ψn(s) ds, (77)

where we choose a specific basis ψn.

Definition 6. Define H = 1(0,1/2] − 1(1/2,1]. Then let

Hjk(t) = 2j/2H(2jt− k). (78)

Then, F = 1(0,1] and Hjk for j ≥ 0, k = 0, . . . , 2j−1 form a complete orthonormal basis for L2(0, 1).
It is called the Haar basis.

To see this note that
∫

F 2 = 1,
∫

HjkHj′k′ = δjj′δkk′ , and
∫

Hjk = 0. And we have that

αF +
∑J−1

j=0

∑2j−1
k=0 βjkHjk gives a representation for all piecewise constant functions on dyadic

intervals of length 2−J . (We’ll have a cool martingale proof of this another time.)
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Example cont’d 7. Now order the Haar functions (F,H00,H10,H11,H20,H21,H22,H23, . . .) and
label these as ψn for n ≥ 0. (For 2j ≤ n < 2j+1 and j ∈ Z+, take k = n− 2j and let Hn ≡ Hjk.)

For n ≥ 1,
∫ t

0
Hn(s) ds ≡ Sn(t), (79)

called the Schauder function.
It follows that

Wt =
∑

n≥0

AnSn(t). (80)

Lemma 1. If a sequence (ak) satisfies |ak| = O(kγ) for 0 ≤ γ < 1/2, we have that
∑

n≥0 anSn(t)
converges uniformly on (0, 1).

Lemma 2. A standard normal white noise sequence An satisfies |An| = O(
√

log n) with proba-
bility 1.

It follows that Wt exists as a random function with probability 1.
Moreover, Lemma 3 : If 0 ≤ s, t ≤ 1,

∑

n≥0

Sn(s)Sn(t) = min(s, t). (81)

To see this, let φs = 1[0,s]. Then, if s ≤ t,

s =

∫ 1

0
φtφs =

∑

n≥0

anbn (82)

where

an =

∫ 1

0
φtHn = Sn(t) (83)

bn =

∫ 1

0
φsHn = Sn(s). (84)

So, we get the following:

EWt =
∑

n≥0

EAnSn(t) = 0 (85)

EW 2
t =

∑

n≥0

EA2
nSn(t) = t (86)

EWsWt =
∑

n,m≥0

EAnAmSn(t)Sm(s) = min(s, t) (87)

and for u < s < t,

E(Wt −Ws)Wu =
∑

n,m≥0

EAnAm(Sn(t) − Sn(s))Sm(u) = min(t, u) − min(s, u) = 0. (88)

Moreover, using the characteristic generating functions with s ≤ t,

Eeiλ(Wt−Ws) = Eeiλ
∑

n
An(Sn(t)−Sn(s)) (89)

=
∞
∏

n=0

EeiλAn(Sn(t)−Sn(s)) (90)
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=
∞
∏

n=0

e−
λ2

2
(Sn(t)−Sn(s))2 (91)

= e−
λ2

2

∑

n
(Sn(t)−Sn(s))2 (92)

= e−
λ2

2
(t−2s+s) (93)

= e−
λ2

2
(t−s), (94)

using normality of the Ans. Hence, Wt − Ws has a Normal〈0, t − s〉 distribution. We get the
following process.

Process 8. Thus, derived from a white noise process, we get a process (Wt)t≥0 with the following
properties:

1. W0 = 0
2. For 0 ≤ s < t, Wt −Ws has a Normal〈0, t− s〉 distribution.
3. For 0 ≤ s1 < t1 < s2 < t2 < · · ·, the random variables Wti −Wsi

are independent.

We call this process a Weiner process or equivalently, a Brownian Motion.
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