Plan Fun with White Noise, Last Part
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Figure 1.

The Poisson Process cont’d /revisited
Brownian Motion
Stationary Processes (if time allows — ha ha — or skip til later)

Next Time: Markov Processes (finally)

Reading: G&S 6.1, 6.2, generating function sheet
Homework 2 due Today

Homework 3 due next week Ni
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Example 2. Poisson Process

Consider a random walk with Sy = 0 and X; 11D Exponential(\). (Note: If W; = X; — A,

Sp = Y_; Wi 4+ n), a sum of white noise plus drift.)

W

Then, S, has a Gamma(n, \) distribution.
Define N; = max {n > 0 such that S, <t}.
A few properties directly from the definition:

Ny = 0.

Ny >n & S, <t

Ny=n <— Sngtand5n+1>t.

If s < t, Ny — N, counts the number of “arrivals” between s and ¢t. This random variable
N; — Nj is often called the increment of the process over (s, t].

We have the following.

P{N, =k} =P{S, <t Spi1 >t} (1)
= EP{Sk <t,Sk41 >t Sk} (2)
t
:/ P{ X1 >t —u) P{Sy near u} (3)
0
t )\kuk—l
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so NV; has a Poisson(\t) distribution.
Next, we consider the distribution of N; — Ny for some s < t.

P{N; — Ny > k}
= P{Sksn, <t} (7)
= P{Sk4n, — SN, <t — SN, } (8)
= P{Skin, = SN, St —s+(s—5n,)} (9)
=EP{Sksn, — SN, <t—s+(s—Sn,) | Ns, SN, } (10)

= Z/ P{Skin., — SN, <t—s+(s—Sn,) | Ns=n,Sn, nearu} P{Ng =n, Sy, nearu} (11)
n=0 0

:Z/ P{Skin —Sn <t—s+(s—u)| Ny =n,Sn, near u} P{Ns =n, Sy, near u} (12)
n=0"0
00 s n+k
:Z/ PS Xpi1—(s—u)+ Z X, <t—s|Ns=mn,Sn, nearu y P{Ng=n,Sy, near u} (13)
n=0"0 1=n+2

00 s n+k
:Z/ P{Xn+1—(s—u)+ Z X, <t—s|Xp1>8—u,S, nearu} P{Ns = n, Sy, neqrld)}
0 i=n+2

00 s n+k
:Z/ P{Xn+1—(s—u)+ Z Xi<t-—s Xn+1>s—u} P{Ns =n, Sy, near u} (15)
0

n=0 i=n+2
o) s n—+k

— Z/ P{ X1+ Y Xi<t—sp P{N;=n,Sy, nearu} (16)
n=0 0 i=n+2

_ Z/ P{S, ik — Sy <t— s} P{N, = n, Sy, near u} (17)
n=0 0

=Y P{Spik— Sn <t—s} P{N,=n} (18)
n=0

=S P{Sp <t—s} P{N;=mn} (19)
n=0

:P{Skﬁt—s} (20)

= PNy, > k}. 1)

That step from (16) to (17) requires an argument. It follows from the relation
P{IX>t+u|X>u}=P{X >t} (22)

for a random variable X with an Exponential distribution. Thus we see that N; — N has the same
distribution as N;_.
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Now consider s’ < t/ < s < t. We could use the same basic argument to show that N; — N,
and Ny — Ny are independent but it gets a bit messy. It’s easier using generating functions.
Note that

G(z;\) = Z e_)‘%z” = A, (23)
n=0 '
From this, we get the G of N;:

G, (z) = M1 (24)

_ e)\(t—s+s—t’+t’—s’—l—s’—O)(z—l) (25)

_ e)\(t—s)(z—l)e)\(s—t’)(z—l) e)\(t’—s’)(z—l)e)\(s’—O)(z—l) (26)

= GNtfs (Z)GNS,t/(Z)GNt/,S/ (Z)GNS/,O(Z) (27)

= GN,-N, (2)GN,-N, (2)GN, —N,, (2)GN, - Ny (2)- (28)

But Ny = Ny — Ny + Ng — Ny + Ny — Ny + Ny — Ny, and this equality of generating functions
implies that the components are independent. (There’s a brief argument needed, which I'll show
you, to make this rigorous.) Conversely, if we show independence first, we could show equality in
distribution with the same relation.

Thus, from a white noise random walk, we get the following process.

Process 3. Let (N¢)i>0 be a process with the following properties:

1. Ng=0
2. For 0 < s <'t, N; — Ny has a Poisson(\(t — s)) distribution.
3. For 0 <51 <t) <s2 <ty << 8y <ty, the random variables N, — N, are independent.

This is called a (homogeneous) Poisson process with rate A.

Property 2 has two parts. The first is the specific distribution of the increment Ny — Ns. The
second is that the distribution of the increment depends on time only through ¢ — s. This is the
property of stationary increments: the distributions of increments in two time intervals of the same
length are equal.

Property 3 is called independent increments: the increments in disjoint time intervals are
stochastically independent.

Poisson processes are examples of both renewal processes and point processses, both of which
we will study later.
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Definition 4. Let L%(0,1) be (up to some formal details) the set of functions g on (0,1) such
that fol g% < oo.

A complete, orthonormal basis () for L%(0,1) is a countable subset of L2(0,1) such that
J Witk = ik and for any g € £2(0,1), we can find ¢, = [ gi,, such that

n

2
/ <9 -y Ck%) — 0, (29)

k=0
as n — OoQ.

Example 5. Brownian Motion
Define a process (£;)i>0 as follows. Let (A,,),>0 be a standard normal white noise Process, i.e.,
A,, are 11D Normal(0, 1). Define

G(w) = An(w)ibn(t), (30)
n=0

for a particular complete orthonormal basis (w).

Taking some liberties (we’ll see a more formal derivation another time), we will think of £; as
a continuous white noise process meaning that in some formal sense we should have E£; = 0 and
E&s& = 0(s — t). Arguing loosely, this works:

Egt = Z EAn¢n(t) =0 (31)

=3 tn(t)n(s), (33)
which “makes sense” when s # ¢ because

[arees =Y vuls) [ atva( =0, (34)

But don’t take that last calculation too seriously.
Now, just as we got a random walk process by taking cumulative sums of a discrete white noise
process, we can see what we get when we take cumulative integrals of a continuous white noise

process.
Define

t 0 t
Wt:/o gsds=;)An/0 Pn(s) ds, (35)

where we choose a specific basis .

Definition 6. Define H = 1(g /9 — 1(1/2,1- Then let
Hj(t) = 22/2H(2t — k). (36)

Then, Hy = 1(g,) and Hj, for j > 0, k = 0,...,27 — 1 form a complete orthonormal basis for
L%(0,1). It is called the Haar basis.

To see this note that [ HZ = 1, JHjrHj = 80k, and [ Hjp = 0. And we have that
aHy + Z}]:_ol ZZ:& BjrHji gives a representation for all piecewise constant functions on dyadic
intervals of length 277, (We'll have a cool martingale proof of this another time.)
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Example 5 cont’d Now order the; Haar functions (Ho, Hoo, Hi0, H11, HQ(),HQl,HQQ, Hjs,...) and
label these as v, for n > 0. (For 2/ <n < 2™ and j € Z,, take k = n — 27 and let H,, = Hjy.)

Forn > 1,
t
/ Hy(s) ds = Sy (t), (37)
0
called the Schauder function.
It follows that
Wi =Y AnSa(t). (38)
n>0
Figure 7. 9—j/2-1
Sn(t)

2 <n<20tl
k=n—2J

k277 (k+1)277

Lemma 8. Let (ai) be a real sequence that satisfies |ax| = O(k7) for some 0 < v < 1/2. Define
f(t) = k>0 arxSk(t) and f,(t) be the corresponding partial sum. Then f,, — f uniformly on (0, 1),
meaning that supy,.1 | fn(t) — f(t)| — 0.

Lemma 9. A standard normal white noise sequence A,, satisfies |A,| = O(y/log n) with probability
1.

Lemma 10. If0<s,t <1,

Z Sn(8)Sy(t) = min(s, t). (39)

n>0

Proof of Lemma 10 Let ¢s = 1jg ;. Then, if s <t,

1
5= /0 s = ngoanbn (40)
where
1
a, = /0 SeH, = Si(t) (41)
1
by — /0 o Hyy = Sp(s). (42)
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Example 5 cont’d So, W, as defined exists as a random function. We get the following:

EW, =Y EASu(t) =0 (43)
n>0
EW? =) EALS,(t) =t (44)
n>0
EW,W; = Z EA,ASn(t)Sm(s) = min(s,t) (45)
n,m>0

and for u < s < t,
EW, — W)W, = Z EA, A (Sn(t) — Sn(s))Sm(u) = min(t,u) — min(s,u) = 0.  (46)

n,m>0

Moreover, using the characteristic generating functions with s < t,

EeMWemWe) — EgiA D2, An(Sn(t)=Sn(s)) (47)
= T EeiMn(Sa®=5a(s) (48)
n=0
0 2
= [[ e S 0-5n)? (49)
n=0
R SRCHOREAS (50)
_ e—L;(t—28+8) (51)
= e_A_;(t_S)v (52)

using normality of the A,s. Hence, W; — W has a Normal(0,¢ — s) distribution. We get the
following process.

Process 11. Thus, derived from a white noise process, we get a process (W3)¢>o with the following
properties:

1. Wy =0
2. For 0 < s < t, Wy — Wy has a Normal(0,¢ — s) distribution.
3. For 0 <1 <t; <sg <ty <---, the random variables Wy, — W, are independent.

We call this process a Weiner process or equivalently, a Brownian Motion.

6 9 Feb 2006



Definition 12. A stochastic process X = (X;) is called strongly stationary if for any n > 1, any
t1,...,tn, and any h, the two vectors

(Xt Xy,) and (Xyy4hy -5 Xy 4n) (53)

have the same distribution.

Definition 13. A stochastic process X = (X;) is called weakly stationary (aka second-order
stationary) if for any tq,ty and h,

EX,, =EX,, (54)
COV(th ) th) = COV(th-i-hv th-i-h)' (55)

Examples 14.

1. Is the white noise process stationary? In which sense?
2. What about the Poisson process? Weiner Process?
3. ARMA processes

Definition 15. If X is a (weakly) stationary process, then three important functions that
characterize the process:

1. The autocovariance function R is defined by
R(t) = Cov(Xp, X3). (56)
2. The autocorrelation function p is defined by

P@):(bﬂmeﬂzzg%%- (57)

3. The spectral density is defined when p has the representation
pt) = [ €PdF() (59)

for some distribution function F. The spectral density is the function f(\) = F'()).

Example 16. White noise: what’s in a name?
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