
Plan Fun with White Noise, Last Part

1. The Poisson Process cont’d/revisited
3. Brownian Motion
3. Stationary Processes (if time allows – ha ha – or skip til later)

Next Time: Markov Processes (finally)

Reading: G&S 6.1, 6.2, generating function sheet
Homework 2 due Today
Homework 3 due next week
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Example 2. Poisson Process
Consider a random walk with S0 = 0 and Xi iid Exponential〈λ〉. (Note: If Wi = Xi − λ,

Sn =
∑

iWi + nλ, a sum of white noise plus drift.)
Then, Sn has a Gamma〈n, λ〉 distribution.
Define Nt = max {n ≥ 0 such that Sn ≤ t}.
A few properties directly from the definition:

1. N0 = 0.
2. Nt ≥ n ⇐⇒ Sn ≤ t.
3. Nt = n ⇐⇒ Sn ≤ t and Sn+1 > t.
4. If s < t, Nt − Ns counts the number of “arrivals” between s and t. This random variable
Nt −Ns is often called the increment of the process over (s, t].

We have the following.

P{Nt = k} = P{Sk ≤ t, Sk+1 > t} (1)

= EP{Sk ≤ t, Sk+1 > t | Sk} (2)

=

∫ t

0
P{Xk+1 > t− u}P{Sk near u} (3)

=

∫ t

0
e−λ(t−u) λ

kuk−1

Γ(k)
e−λu du (4)

= e−λtλ
k

k!
k

∫ t

0
uk−1 du (5)

= e−λt (λt)
k

k!
, (6)
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so Nt has a Poisson〈λt〉 distribution.
Next, we consider the distribution of Nt −Ns for some s < t.

P{Nt −Ns ≥ k}
= P{Sk+Ns

≤ t} (7)

= P{Sk+Ns
− SNs ≤ t− SNs } (8)

= P{Sk+Ns
− SNs ≤ t− s+ (s− SNs)} (9)

= EP{Sk+Ns
− SNs ≤ t− s+ (s− SNs) | Ns, SNs } (10)

=
∞∑

n=0

∫ s

0
P{Sk+Ns

− SNs ≤ t− s+ (s− SNs) | Ns = n, SNs near u} P{Ns = n, SNs near u} (11)

=
∞∑

n=0

∫ s

0
P{Sk+n − Sn ≤ t− s+ (s− u) | Ns = n, SNs near u} P{Ns = n, SNs near u} (12)

=
∞∑

n=0

∫ s

0
P






Xn+1 − (s− u) +

n+k∑

i=n+2

Xi ≤ t− s

∣
∣
∣
∣ Ns = n, SNs near u






P{Ns = n, SNs near u} (13)

=
∞∑

n=0

∫ s

0
P






Xn+1 − (s− u) +

n+k∑

i=n+2

Xi ≤ t− s

∣
∣
∣
∣ Xn+1 > s− u, Sn near u






P{Ns = n, SNs near u}(14)

=
∞∑

n=0

∫ s

0
P






Xn+1 − (s− u) +

n+k∑

i=n+2

Xi ≤ t− s

∣
∣
∣
∣ Xn+1 > s− u






P{Ns = n, SNs near u} (15)

=
∞∑

n=0

∫ s

0
P






Xn+1 +

n+k∑

i=n+2

Xi ≤ t− s






P{Ns = n, SNs near u} (16)

=
∞∑

n=0

∫ s

0
P{Sn+k − Sn ≤ t− s} P{Ns = n, SNs near u} (17)

=
∞∑

n=0

P{Sn+k − Sn ≤ t− s} P{Ns = n} (18)

=
∞∑

n=0

P{Sk ≤ t− s} P{Ns = n} (19)

= P{Sk ≤ t− s} (20)

= P{Nt−s ≥ k} . (21)

That step from (16) to (17) requires an argument. It follows from the relation

P{X > t+ u | X > u} = P{X > t} (22)

for a random variable X with an Exponential distribution. Thus we see that Nt −Ns has the same
distribution as Nt−s.
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Now consider s′ < t′ < s < t. We could use the same basic argument to show that Nt − Ns

and Nt′ −Ns′ are independent but it gets a bit messy. It’s easier using generating functions.
Note that

G(z;λ) =
∞∑

n=0

e−λλ
n

n!
zn = eλ(z−1). (23)

From this, we get the G of Nt:

GNt(z) = eλt(z−1) (24)

= eλ(t−s+s−t′+t′−s′+s′−0)(z−1) (25)

= eλ(t−s)(z−1)eλ(s−t′)(z−1)eλ(t′−s′)(z−1)eλ(s′−0)(z−1) (26)

= GNt−s
(z)GNs−t′

(z)GNt′−s′
(z)GNs′−0

(z) (27)

= GNt−Ns(z)GNs−Nt′
(z)GNt′−Ns′

(z)GNs′−N0
(z). (28)

But Nt = Nt − Ns + Ns − Nt′ + Nt′ − Ns′ + Ns′ − N0, and this equality of generating functions
implies that the components are independent. (There’s a brief argument needed, which I’ll show
you, to make this rigorous.) Conversely, if we show independence first, we could show equality in
distribution with the same relation.

Thus, from a white noise random walk, we get the following process.

Process 3. Let (Nt)t≥0 be a process with the following properties:

1. N0 = 0
2. For 0 ≤ s < t, Nt −Ns has a Poisson〈λ(t− s〉) distribution.
3. For 0 ≤ s1 < t1 < s2 < t2 < · · · < sm < tm, the random variables Nti −Nsi

are independent.

This is called a (homogeneous) Poisson process with rate λ.
Property 2 has two parts. The first is the specific distribution of the increment Nt −Ns. The

second is that the distribution of the increment depends on time only through t − s. This is the
property of stationary increments: the distributions of increments in two time intervals of the same
length are equal.

Property 3 is called independent increments: the increments in disjoint time intervals are
stochastically independent.

Poisson processes are examples of both renewal processes and point processses, both of which
we will study later.
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Definition 4. Let L2(0, 1) be (up to some formal details) the set of functions g on (0, 1) such
that

∫ 1
0 g

2 <∞.
A complete, orthonormal basis (ψn) for L2(0, 1) is a countable subset of L2(0, 1) such that

∫
ψjψk = δjk and for any g ∈ L2(0, 1), we can find cn =

∫
gψn such that

∫
(

g −
n∑

k=0

ckψk

)2

→ 0, (29)

as n→ ∞.

Example 5. Brownian Motion
Define a process (ξt)t≥0 as follows. Let (An)n≥0 be a standard normal white noise Process, i.e.,

An are iid Normal〈0, 1〉. Define

ξt(ω) =
∞∑

n=0

An(ω)ψn(t), (30)

for a particular complete orthonormal basis (ψ).
Taking some liberties (we’ll see a more formal derivation another time), we will think of ξt as

a continuous white noise process meaning that in some formal sense we should have Eξt = 0 and
Eξsξt = δ(s− t). Arguing loosely, this works:

Eξt =
∑

n

EAnψn(t) = 0 (31)

Eξsξt =
∑

n,m

EAnAmψn(t)ψm(s) (32)

=
∑

n

ψn(t)ψn(s), (33)

which “makes sense” when s 6= t because
∫

dtEξsξt =
∑

n

ψn(s)

∫

dt ψn(t) = 0. (34)

But don’t take that last calculation too seriously.
Now, just as we got a random walk process by taking cumulative sums of a discrete white noise

process, we can see what we get when we take cumulative integrals of a continuous white noise
process.

Define

Wt =

∫ t

0
ξs ds =

∞∑

n=0

An

∫ t

0
ψn(s) ds, (35)

where we choose a specific basis ψn.

Definition 6. Define H = 1(0,1/2] − 1(1/2,1]. Then let

Hjk(t) = 2j/2H(2jt− k). (36)

Then, H0 = 1(0,1] and Hjk for j ≥ 0, k = 0, . . . , 2j − 1 form a complete orthonormal basis for

L2(0, 1). It is called the Haar basis.
To see this note that

∫
H2

0 = 1,
∫
HjkHj′k′ = δjj′δkk′ , and

∫
Hjk = 0. And we have that

αH0 +
∑J−1

j=0

∑2j−1
k=0 βjkHjk gives a representation for all piecewise constant functions on dyadic

intervals of length 2−J . (We’ll have a cool martingale proof of this another time.)
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Example 5 cont’d Now order the Haar functions (H0,H00,H10,H11,H20,H21,H22,H23, . . .) and
label these as ψn for n ≥ 0. (For 2j ≤ n < 2j+1 and j ∈ Z+, take k = n− 2j and let Hn ≡ Hjk.)

For n ≥ 1,
∫ t

0
Hn(s) ds ≡ Sn(t), (37)

called the Schauder function.

It follows that

Wt =
∑

n≥0

AnSn(t). (38)

Figure 7.

Sn(t)
2j ≤ n < 2j+1

k = n− 2j

k2−j (k + 1)2−j

2−j/2−1

Lemma 8. Let (ak) be a real sequence that satisfies |ak| = O(kγ) for some 0 ≤ γ < 1/2. Define
f(t) =

∑

k≥0 akSk(t) and fn(t) be the corresponding partial sum. Then fn → f uniformly on (0, 1),
meaning that sup0<t<1 |fn(t) − f(t)| → 0.

Lemma 9. A standard normal white noise sequence An satisfies |An| = O(
√

log n) with probability
1.

Lemma 10. If 0 ≤ s, t ≤ 1,
∑

n≥0

Sn(s)Sn(t) = min(s, t). (39)

Proof of Lemma 10 Let φs = 1[0,s]. Then, if s ≤ t,

s =

∫ 1

0
φtφs =

∑

n≥0

anbn (40)

where

an =

∫ 1

0
φtHn = Sn(t) (41)

bn =

∫ 1

0
φsHn = Sn(s). (42)
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Example 5 cont’d So, Wt as defined exists as a random function. We get the following:

EWt =
∑

n≥0

EAnSn(t) = 0 (43)

EW 2
t =

∑

n≥0

EA2
nSn(t) = t (44)

EWsWt =
∑

n,m≥0

EAnAmSn(t)Sm(s) = min(s, t) (45)

and for u < s < t,

E(Wt −Ws)Wu =
∑

n,m≥0

EAnAm(Sn(t) − Sn(s))Sm(u) = min(t, u) − min(s, u) = 0. (46)

Moreover, using the characteristic generating functions with s ≤ t,

Eeiλ(Wt−Ws) = Eeiλ
∑

n
An(Sn(t)−Sn(s)) (47)

=
∞∏

n=0

EeiλAn(Sn(t)−Sn(s)) (48)

=
∞∏

n=0

e−
λ2

2
(Sn(t)−Sn(s))2 (49)

= e−
λ2

2

∑

n
(Sn(t)−Sn(s))2 (50)

= e−
λ2

2
(t−2s+s) (51)

= e−
λ2

2
(t−s), (52)

using normality of the Ans. Hence, Wt − Ws has a Normal〈0, t − s〉 distribution. We get the
following process.

Process 11. Thus, derived from a white noise process, we get a process (Wt)t≥0 with the following
properties:

1. W0 = 0
2. For 0 ≤ s < t, Wt −Ws has a Normal〈0, t− s〉 distribution.
3. For 0 ≤ s1 < t1 < s2 < t2 < · · ·, the random variables Wti −Wsi

are independent.

We call this process a Weiner process or equivalently, a Brownian Motion.
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Definition 12. A stochastic process X = (Xt) is called strongly stationary if for any n ≥ 1, any
t1, . . . , tn, and any h, the two vectors

(Xt1 , . . . , Xtn) and (Xt1+h, . . . , Xtn+h) (53)

have the same distribution.

Definition 13. A stochastic process X = (Xt) is called weakly stationary (aka second-order
stationary) if for any t1, t2 and h,

EXt1 = EXt2 (54)

Cov(Xt1 , Xt2) = Cov(Xt1+h, Xt2+h). (55)

Examples 14.

1. Is the white noise process stationary? In which sense?
2. What about the Poisson process? Weiner Process?
3. ARMA processes

Definition 15. If X is a (weakly) stationary process, then three important functions that
characterize the process:

1. The autocovariance function R is defined by

R(t) = Cov(X0, Xt). (56)

2. The autocorrelation function ρ is defined by

ρ(t) = Cor(X0, Xt) =
R(t)

R(0)
. (57)

3. The spectral density is defined when ρ has the representation

ρ(t) =

∫

eitλdF (λ) (58)

for some distribution function F . The spectral density is the function f(λ) = F ′(λ).

Example 16. White noise: what’s in a name?
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