
Plan Markov Chains

1. The Markov Property – Motivation
3. Examples
3. Transition Probabilities

Next Time: More Markov

Reading: G&S 6.3, generating function sheet
Homework 3 due Thursday

Heuristic Definition 1. A stochastic process has the Markov property if the future of the process
is conditionally independent of the past given the present state.

Heuristic Definition 2. A Markov chain is a stochastic process X = (Xn)n∈Z⊕
with the Markov

property. We assume that the Xn take values in some common space S, called the state space of
the chain.

Note 3. We allow S to be countable (a “countable-state Markov chain”) or uncountable (a
“general-state Markov chain”). The former allows some simplication of the theory.

Note 4. The index set Z⊕ could in principle be replaced by any ordered, countable set but
we’ll stick to Z⊕. An important class of processes, including the Weiner process, have a Markovian
structure with a continuous index set. We will call these Markov processes (or more pedantically
continuous-time Markov processes). There is some disagreement about the applicability of the word
“chain,” but this seems to be the most common convention. If the index set is multi-dimensional,
the process is often referred to as a Markov random field.

Motivating Examples 5. Markov chains have important applications in a wide range of
applications and disciplines.

1. White Noise Let Ξn be iid real-valued random variables. Then Ξ = (Ξn)n≥0 is a Markov chain.
This is clear intuitively: the future is independent of the past because all the Ξn are indepen-
dent.
This is true, but if we look closely, we why we might need to be careful with infinite collections.
For any suitable h and all n ≥ 0, we have

E [h(Ξn+1,Ξn+2, . . .) | Ξ0, . . . ,Ξn] = Eh(Ξn+1,Ξn+2, . . . | Ξn) = Eh(Ξn+1,Ξn+2, . . .). (1)

But what are suitable h? For each n, we need h measurable with respect to the σ-field
σ(Xn+1, . . . , )
Define the tail σ-field of the process by

T =
⋂

n≥0

σ(Ξn,Ξn+1, . . .). (2)

This σ-field, which we need not be trivial, describes events that occur “for large n.” Examples?
Kolmogorov’s Zero-One Law. For independent Ξn, every A ∈ T has P(A) = 0 or 1.

2. Random Walks
Let Ξn be iid real-valued random variables and S0 be a real-valued random variable with
arbitrary distribution that is independent of the Ξns. Then, for n ≥ 1,

Sn = Sn−1 + Ξn. (3)
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Then S = (S0, S1, . . .) is a random walk.
Note that we can write

Sn = S0 +
n

∑

k=1

Ξk, (4)

but the recursive definition above has value.
For any suitable function h and every n ≥ 0, we have

E (h(Sn+1, Sn+2, . . .) | S0, . . . Sn)

= E(h(Sn + Xn+1, Sn + Xn+1 + Xn+2, . . .) | S0, . . . , Sn) (5)

= E(h(Sn + Xn+1, Sn + Xn+1 + Xn+2, . . .) | Sn) (6)

= E (h(Sn+1, Sn+2, . . .) | Sn) . (7)

So any question we might ask about the future of the process given its entire history depends
only on its present state – loosely, the process “forgets” its past. This is the Markov property
at work.
As we have seen, we can build many processes from this starting point. For example, Define
H0 = max(S0, 0) and for n ≥ 1, let

Hn = max(Hn−1 + Ξn, 0). (8)

Then the process H = (Nn)n≥0 is called a random walk on the half-space. It might serve as a
simple model for a dam or a bank-account.

3. Time-Series Models
One simple generalization of the random walk is to define for n ≥ 1 Then, for n ≥ 1,

Sn = αSn−1 + Ξn, (9)

for some real-valued parameter α. This is called an order 1 autoregressive or AR(1) process.
It has the Markov property as expressed above by the same basic argument.
This extends to AR(r) by defining initial values (S−r+1, . . . , S0) to have an arbitrary distribu-
tion and then defining for n ≥ 1,

Sn = α1Sn−1 + α2Sn−2 + · · · + αrSn−r + Ξn, (10)

for parameter α = (α1, . . . , αr) ∈ R
r.

But wait! Can this be Markovian?
Not directly, no. But let Xn = (Sn−r+1, . . . , Sn)T . Then there is an r × r matrix A such that
X0 = (S−r+1, . . . , S0) and for n ≥ 1

Xn = AXn−1 + Ξn. (11)

How familiar. This is a special case of a so-called state-space model common in time-series
analysis.
Even more generally, an autoregressive moving-average process, or ARMA(r,m) is of the form

Xn =
r

∑

i=1

αiXn−i +
m

∑

j=1

βjΞn−j. (12)
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This can be made Markovian in several ways as you’ll see on homework.
4. Control systems

Consider a cruise control system on your car. At time n, the system has access to inputs such
as the car’s speed, engine status, turning angle, and so on. Put these together in a vector
Vn. The system then calculates a set of changes to the system, a vector Un, designed to keep
the vehicle’s speed within specified parameters. Un is called a control vector. The vector
Xn = (Un, Vn) can often be modeled as a Markov chain.
More generally, we might have a system governed by a model such as

Vn = θn−1Vn−1 + Un−1 + Ξn (13)

θn = αθn−1 + Ψn, (14)

where (Ξn,Ψn) are Normal and where Un depends only on previous V s.
The behavior of this system can depend strongly on α, but if α is unknown, we need to
statistically infer α and the θns sequentially as we control the process by choosing the Us. We
want to understand the behavior of the process, how to estimate the underlying parameters,
and how to control the process within target specifications.

5. Queues
Suppose the time between successive customer arrivals at a service center are iid random
variables Ξ1,Ξ2, . . . with F G. The arrival time of the nth customer is then given by S0 = 0
and for n ≥ 1,

Tn = Tn−1 + Ξn, (15)

which looks familiar.
Customers that arrive wait in a queue until they are serviced by a single server. Assume that
the nth customer requires service time Sn where the S1, S2, . . . are iid random variables with
F H.
Let N(t) be the number of customers in the queue at time t.
This system is called a GI/G/1 queue.
Although N(t) is a continuous-time process, it can be analyzed fruitfully by considering em-
phembedded Markov chains.
Let Nn = N(Tn−), the number of customers just before the nth arrival, with N0 = 0. We will
see that under some conditions this is a Markov chain with

P{Nn+1 = k | Nn = j,Nn−1, . . . , N0} = p(k − j). (16)

Conditions are needed on either G or H because transitions of Nn can depend on the history
in a non-Markovian way.
Two important cases are as follows:

– GI/M/1 queue: H has an Exponential distribution
– M/G/1 queue: G has an Exponential distribution

We are interested in understanding the performance of the system in terms of waiting times,
efficiency, and stability.

6. Networks
We can view many computer and communications networks as systems of queues. Similar
questions of performance arise.
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7. Storage and Insurance Models

An arrival process like the above can represent the times of withdrawals/additions from/to a
dam (or other resource resevoir) or claims on an insurance company.

The analog of the service times might be iid random variables Y1, Y2, . . ., representing the
amount by which the dam’s supply changes or the amount of a claim.

We want to understand the long-run stability of the process. What is the chance that a dam
will overflow or that an insurance company will go bankrupt.

8. Economic and Financial Models

A variety of time series and control models are used in Economics and Finance. Example:
Currency exchange rates. Here we ask questions about long-run behavior and short-run large
deviations of the process. Will a currency crisis ensue? What policies on the part of government
will stabilize the system?

9. Population and Genetic Models

Consider the evolution of populations across generations. Let Zn represent the number of
individuals in a given species at the nth generation with Z0 = c, for some constant.

Assume that the ith member of a generation has a family of size Mni, the collection of which
are iid.

The process Z = (Zn)n≥0 is called a branching process. Questions of interest about Z include
the probability of eventual extinction, long-run stability of population size. Generalizations to
multiple populations and more sophisticated dynamics are in common use.

A fundamental process in evolutionary biology is the frequencies of different alleles (called gene
frequencies) in a population.

For example, the Hardy-Weinberg equilibrium model gives a case in which there is no change
in gene frequencies.

Given a population sexually reproducing individuals, assume the following.

A. The population is large (e.g., infinite) and remains so.

B. No flow of genes into or out of the population
(that is, no migration).

C. No mutation.

D. All genotypes have the same rate of reproductive success.

E. Mating is purely random.

Then, gene frequencies in the population will attain an equilibrium.

Genotype Frequencies Gene (Allele) Frequencies
D = Frequency of AA p = Frequency of A = D + H/2
H = Frequency of Aa q = Frequency of a = R + H/2
R = Frequency of aa

Under the Hardy-Weinberg assumptions, after one generation of random mating, each indi-
vidual’s alleles are randomly and independently assigned A or a with probabilities p and q
respectively. So,

D′ = Frequency of AA = p · p = p2 (17)

H ′ = Frequency of Aa = p · q + q · p = 2pq (18)

R′ = Frequency of aa = q · q = q2, (19)
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and

p′ = D′ + H ′/2 = p2 + pq = p(p + q) = p (20)

q′ = R′ + H ′/2 = q2 + pq = q(p + q) = q. (21)

The gene frequencies haven’t changed!
In general, we are interested in Evolution: cross-generational change in a population of organ-
isms that involves changes in gene frequency. To do that, we model gene-frequency changes
across generations as a Markov chain.

10. Markov Chain Monte Carlo
A fundamental question in Bayesian statistics is how to compute the posterior distribution of
parameters in a statistical model.
Suppose that we have a statistical model {Pθ}θ∈Θ given by a likelihood `(θ) ≡ fθ(Y ) for data
Y . We put a prior distribution π(θ) on the parameter space. The posterior is given by

π(θ | Y ) =
`(θ)π(θ)

∫

`(η)π(η) dη
. (22)

In many realistic models this is difficult to compute exactly.
But it turns out that we can define a Markov chain Xn so that asymptotically the distribution
of Xn equals π(· | Y ). That is,

P{Xn ∈ A} → π(A | Y ). (23)

The key questions here is how to compute a chain that is easy to compute and that makes this
approximation good for a reasonable sized n.

11. Communication Systems
We’ll see a lot more of these when we talk about information theory.

Working Definition 6. A countable-state Markov chain with state space S is an SZ⊕ -valued
stochastic process X = (Xn)n≥0 such that

P{Xn = sn | Xn−1 = sn−1, . . . , X1 = s1, X0 = s0} = P{Xn = sn | Xn−1 = sn−1} . (24)

for all n ≥ 1 and all s0, . . . , sn ∈ S. If the right-hand side does not depend on n explicitly, then X
is said to be time homogeneous (or just homogeneous).

Equation (24) gives a version of the Markov property for these processes. We will deal with
homogeneous chains unless otherwise indicated.

The behavior of the (time homogeneous) process is consquently governed by two features:

• The initial distribution. Let µ denote the distribution of X0.
• The transition probabilities. Let P (s,A) = P{Xn ∈ A | Xn−1 = s}.

The object P (s,A) is a transition probability kernel, defined below. When S is countable, the
latter can be written as

P(s,A) =
∑

s′∈A

P
{

Xn = s′ | Xn−1 = s
}

=
∑

s′∈A

P (s,
{

s′
}

). (25)
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In this case, we define P (s, s′) ≡ P (s, {s′}) and call it the transition probability matrix. This must
satisfy P (s, s′) ≥ 0 and P (s,S) = 1 =

∑

s′∈S P (s, s′).

Another statement of the Markov property in the countable case is as follows:

P(X0 = s0, X1 = s1, . . . , Xn = sn) = µ(s0)P (s0, s1)P (s1, s2) · · ·P (sn−1, sn). (26)

The initial distribution and the transition probability matrix determine the probability of every
sample path up to time n.

Yet another conceptually satisfying form of the Markov property is that for suitable functions
h on the sample paths of the process:

Eµ (h(Xn+1, Xn+2, . . .) | X0, . . . , Xn−1, Xn = s) = Esh(X1, X2, . . .). (27)

For general-state Markov chains, we cannot define the transition probability matrix, so we
must use the transition probability kernel from which the former is derived. This requires a careful
definition.

Definition 7. Let (S,B) be a measurable space. Let P (x,A) be a function on S × B such that

1. For each A ∈ B, x 7→ P (x,A) is a measurable function on S.
2. For each x ∈ S, A 7→ P (x,A) is a probability measure on B.

We call such a P a transition probability kernel.

Rigor Alert 8. We are essentially ignoring the definition of the σ-field for the random function
definition of the stochastic process. For the most part, we can do so because it just works as you
might expect, but I’ll give more details if and when it becomes necessary.

Definition 9. A stochastic process X on (SZ
+,F) is called a time-homogeneous Markov chain with

transition probability kernel P (x,A) and initial distribution µ if the finite-dimensional distributions
of X satisfy

Pµ(X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An) =

∫

A0

· · ·

∫

An−1

µ(ds0)P (s0, ds1) · · ·P (sn−2, dsn−1)P (sn−1, An).

(28)
Notes. (i) The Pµ is a technicality, but think of it as reminding us that the initial state has

distribution µ. The analogous expected value operator is Eµ. (ii) The µ(ds) or P (·, ds) notation
means integration against the corresponding distribution. If a random variable Y has distribution
F , we write P{Y ∈ A} =

∫

A dF =
∫

A F (ds).

An equivalent form of the Markov property is that for every bounded and measurable, real-
valued function h on the sample paths of the process

Eµ (h(Xn+1, Xn+2, . . .) | X0, . . . , Xn−1, Xn near s) = Esh(X1, X2, . . .). (29)
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