Plan Countable-State Markov Chains

- 1. Transition Probabilities
- 2. Irreducibility and Recurrence
- 3. Classification of States and Chains

Next Time: Limit Theorems, General-state analogues

Reading: G&S 6.4, 6.5, 6.6 Homework 4 on-line today, due next week; Comments: typos, G&S terminology, hw

Definition 1. Let $(\mathcal{S}, \mathcal{B})$ be a measurable space. Let P(x, A) be a function on $\mathcal{S} \times \mathcal{B}$ such that

- 1. For each $A \in \mathcal{B}, x \mapsto P(x, A)$ is a measurable function on \mathcal{S} .
- 2. For each $x \in S$, $A \mapsto P(x, A)$ is a probability measure on \mathcal{B} .

We call such a P a transition probability kernel.

For a given $x \in S$, let Y be a random variable with distribution $P(x, \cdot)$. Then, for a function g on S, we can also write

$$P(x,g) \equiv \mathsf{E}g(Y) \equiv \int g(y)P\left(x, [y, y + dy)\right) \equiv \int g(y)P(x, dy),\tag{1}$$

where by slight abuse of notation we use dy to represent an infinitesimal interval around y. This mimics the relation between probabilities P and expected values E.

Reminder 2. We can view a probability measure ν on $(\mathcal{S}, \mathcal{B})$ in two equivalent ways:

- 1. As a set function that maps $A \in \mathcal{B}$ to $0 \leq \nu(A) \leq 1$ such that $\nu(\cdot)$ obeys all the rules of probability $(\nu(\mathcal{S}) = 1, \nu(\emptyset) = 0, \nu(U_i A_i) = \sum_i \nu(A_i)$ when the A_i are disjoint.
- 2. As an operator that maps measurable functions on S g to $-\infty \leq \nu(g) \leq \infty$ such that $\nu(\cdot)$ obeys all the rules of expected values.

Thus, the probability and expected value operators, P and E, are actually the same object.

Recall 3. If P(s, A) is a transition probability kernel and S is countable, then we can write

$$\mathsf{P}(s,A) = \sum_{s' \in A} \mathsf{P}\{X_n = s' \mid X_{n-1} = s\} = \sum_{s' \in A} P(s,\{s'\})$$
(2)

for any $A \subset S$. In this case, we define $P_{ss'} \equiv P(s,s') \equiv P(s,\{s'\})$ and call it the transition probability matrix. A transition probability matrix must satisfy $P_{ss'} \equiv P(s,s') \geq 0$ and $P(s,S) = 1 = \sum_{s' \in S} P(s,s') \equiv \sum_{s' \in S} P_{ss'}$.

Definition 4. A time-homogeneous, countable-state Markov chain with state space S with initial distribution μ and transition probability kernel $P(\cdot, \cdot)$ is an $S^{\mathbb{Z}_{\oplus}}$ -valued stochastic process $X = (X_n)_{n \geq 0}$ such that

$$\mathsf{P}_{\mu}\{X_0 = s_0, \dots, X_n = s_n\} = \mu(s_0) P(s_0, \{s_1\}) \cdots P(s_{n-1}, \{s_n\}), \tag{3}$$

for all $n \ge 0$ and all $s_0, \ldots, s_n \in S$. We write P_{μ} to denote the chain has initial distribution μ .

Definition 5. A time-homogeneous, general-state Markov chain with state space S with initial distribution μ and transition probability kernel $P(\cdot, \cdot)$ is an $S^{\mathbb{Z}_{\oplus}}$ -valued stochastic process $X = (X_n)_{n>0}$ such that

$$\mathsf{P}_{\mu}\{X_0 \text{ near } s_0, \dots, X_n \text{ near } s_n\} = \mu(s_0)P(s_0, ds_1) \cdots P(s_{n-1}, ds_n), \tag{4}$$

for all $n \ge 0$ and all $s_0, \ldots, s_n \in S$, where by slight abuse of notation we use ds_i to represent an infinitesimal interval around s_i . Again, we write P_{μ} to denote the chain has initial distribution μ . A more formal (but less clear) expression of (4) is

$$\mathsf{P}_{\mu}(X_{0} \in A_{0}, X_{1} \in A_{1}, \dots, X_{n} \in A_{n}) = \int_{A_{0}} \cdots \int_{A_{n-1}} \mu(ds_{0}) P(s_{0}, ds_{1}) \cdots P(s_{n-2}, ds_{n-1}) P(s_{n-1}, A_{n}).$$
(5)

Reminder 6. If X is a random function $\mathcal{T} \to \mathcal{S}$, then the *finite-dimensional distributions* of X are collectively the distributions of random vactors $(X_{t_1}, \ldots, X_{t_n})$ for any $n \ge 1$ and $t_1, \ldots, t_n \in \mathcal{T}$. The rigorous construction of a σ -field on $\mathcal{S}^{\mathcal{T}}$ yields a consistent distribution over this space that is characterized by these finite-dimensional distributions.

Definition 7. We thus have three forms of the *Markov Property*.

- 1. The first is given in (3) and (4) and indicates that the finite-dimensional distributions of the process are determined solely by the initial distribution and the transition probabilities.
- 2. A conditional form of the first: for any $n \ge 1$ and $s_0, \ldots, s_n \in \mathcal{S}$,

$$\mathsf{P}_{\mu}\{X_n = s_n \mid X_{n-1} = s_{n-1}, \dots, X_0 = s_0\} = P(s_{n-1}, s_n)$$
(6)

for countable state spaces and

$$\mathsf{P}_{\mu}\{X_n \text{ near } s_n \mid X_{n-1} \text{ near } s_{n-1}, \dots, X_0 \text{ near } s_0\} = P(s_{n-1}, ds_n)$$
(7)

for general state spaces.

3. Let h be a bounded and measurable function on $\mathcal{S}^{\mathbb{Z}_{\oplus}}$. Then, for any $n \geq 1$,

$$\mathsf{E}(h(X_n, X_{n+1}, \dots) \mid X_n \text{ near } s, X_{n-1}, \dots, X_0) = \mathsf{E}_s h(X_1, X_2, \dots).$$
(8)

Definition 8. Given a Markov chain with transition probability kernel P(x, A), we can define the *n*-step transition probabilities $P^n(x, A)$ by induction as follows. For a transition probability matrix:

$$P^{n}(s,s') = \sum_{u \in \mathcal{S}} P(s,u)P^{n-1}(u,s') \implies P^{n} = P \cdot P^{n-1} = (P)^{n} \text{ as matrices.}$$
(9)

For general transition kernels:

$$P^{n}(s,A) = \int_{\mathcal{S}} P(s,du)P^{n-1}(u,A).$$
(12)

Theorem 9. The Chapman-Kolmogorov Equations. Let $n, m \ge 0$. For a transition probability matrix P, we have:

$$P^{n+m} = P^n \cdot P^m$$
, (that is, $P^{n+m}(s, s') = \sum_{u \in S} P^n(s, u) P^m(u, s')$). (11)

For general transition kernels:

$$P^{n+m}(s,A) = \int_{\mathcal{S}} P^n(s,du) P^m(u,A).$$
(12)

Examples 10.

- 1. Simple Random Walk
- 2. Random Walk on a Pentagon
- 3. Embedded MC for G/M/1 queue

 $\mathcal{S} = \mathbb{Z}_{\oplus}$. Exponential $\langle \lambda \rangle$ service time. *G* is the service time F.

$$P(j, j+1-k) = \int_0^\infty e^{-\lambda t} \frac{(\lambda t)^k}{k!} \, dG(t), \quad k \le j, \tag{13}$$

$$P(j,0) = \int_0^\infty \sum_{k=j+1}^\infty e^{-\lambda t} \frac{(\lambda t)^k}{k!} \, dG(t).$$
(14)

- 4. The Flip-Flop and the *d*-adic Spin
- 5. The Finite, Infinite, and Isolated Black Hole
- 6. Given a countable-state Markov chain with initial distribution μ and transition probability matrix P, what is the distribution of X_n ?

Definition 11. Given two states $s, s' \in S$, we say that s' is accessible from s if $P^n(s, s') > 0$ for some $n \ge 0$. We say that s and s' communicate if each is accessible from the other. Denote this by $s \leftrightarrow s'$.

Claim: \leftrightarrow is an equivalence class.

Proof: Reflexivity, Symmetry, Transitivity.

Definition 12. If there is only one equivalence class of communicating states, the Markov Chain is said to be *irreducible*

Definition 13. A set $A \subset S$ is said to be *absorbing* if P(x, A) = 1 for all $x \in A$.

Decomposition 14. If X is not irreducible, then we can write

$$\mathcal{S} = D \cup \bigcup_{i} C_i,\tag{15}$$

where the sets are disjoint and each C_i is an absorbing, communicating class.

Question 15. What can happen if the chain is in *D*?

Proposition 16. If $C \subset S$ is an absorbing, communicating class for a Markov chain X, then there exists an irreducible Markov Chain X^C with state-space C and whose transition probability kernel is given by $P_C(x, A) \equiv P(x, A)$ for $x \in C$. **Definition 17.** For any state $s \in S$, define the *period* of s by

$$d(s) = \gcd\{n \ge 1 \text{ such that } P^n(s,s) > 0\}.$$
(16)

This implies that $P^n(s,s) = 0$ unless n = md(s) for some $m \in \mathbb{Z}_+$.

Theorem 18. *d* is a class function with respect to \leftrightarrow ; that is, *d* is constant on communicating classes.

Proof. Let s, s' be members of the same class. Then, there is an n and an m such that $P^n(s, s') > 0$ and $P^m(s', s) > 0$. By the Chapman-Kolmogorov equations,

$$P^{n+m}(s,s) \ge P^n(s,s')P^m(s',s) > 0,$$
(17)

so n + m is a multiple of d(s).

Suppose k is not a multiple of d(s); then neither is k + n + m:

$$0 = P^{k+m+n}(s,s) \ge P^n(s,s')P^k(s',s')P^m(s',s).$$
(18)

Thus, $P^k(s', s') = 0$ which implies that $d(s') \ge d(s)$.

Reverse the roles of s and s' to get equality.

Definition 19. An irreducible Markov Chain is said to be *aperiodic* if $d(s) \equiv 1$ for $s \in S$. It is called *strongly aperiodic* if P(s, s) > 0 for some $s \in S$.

Question 20. Can you find an example where these two notions differ?

Theorem 21. Let X be an irreducible, countable-state Markov chain with common period d. Then, there are disjoint sets $U_1, \ldots, U_d \subset S$ such that

$$\mathcal{S} = \bigcup_{k=1}^{d} U_k,\tag{19}$$

and

$$\mathsf{P}(x, U_{k+1}) = 1 \quad \text{for } x \in U_k, \qquad k = 0, \dots, d - 1 \pmod{d}.$$
(20)

The sets U_1, \ldots, U_d are called *cyclic classes* of X because X cycles through them successively.

It follows that the Markov Chain $X^d = (X_d, X_{2d}, X_{3d}, ...)$ has transition probabilities P^d and each U_i is an absorbing, irreducible, aperiodic class.

Further, for k = 0, ..., d - 1, if $\mu(U_k) = 1, X^d$ is an irreducible, aperiodic Markov chain.

Pause for Breath 22. What does all this mean for the analysis of Markov Chains? Examples, thoughts, concerns, and questions.

Useful Random Variables 23. Let $A \subset S$. Define

$$T_A = \inf \left\{ n \ge 1 \text{ such that } X_n \in A \right\}$$
(21)

$$S_A = \inf \{ n \ge 0 \text{ such that } X_n \in A \}$$
(22)

$$O_A = \sum_{n=1}^{\infty} 1\{X_n \in A\}.$$
 (23)

These are called, respectively, the *first return time*, the *first hitting time*, and the *occupation time* of A. As we will see, these random variables provide a great deal of information about the behavior of the chain.

For $A, B \subset S$, define

$$R(x,A) = \mathsf{P}_x\{T_A < \infty\}$$
(24)

$$H(x,A) = \mathsf{P}_x\{S_A < \infty\} \tag{25}$$

$$O(x,A) = \mathsf{E}_x O_A \tag{26}$$

$$P_{!A}^{n}(x,B) = \mathsf{P}_{x}\{X_{n} \in B, T_{A} \ge n\}.$$
(27)

These are the return time probabilities, hitting probabilies, expected occupation times for the set A and taboo probabilities for the set B avoiding A.

Note that

$$R(x,A) = \sum_{n=1}^{\infty} P_{!A}^{n}(x,A).$$
(28)

Definition 24. All of the random variables in the last item are stopping times, meaning that $\{T = n\} \in \sigma(X_0, \ldots, X_n)$ for every n.

Let $\mathcal{F}_n = \sigma(X_0, \ldots, X_n)$ be the history of the chain up to time n. For a stopping time T, we can define the information in the chain up to time T – the history up to time T – as a σ -field \mathcal{F}_T defined as follows:

$$\mathcal{F}_T = \{ A \in \mathcal{F} \text{ such that } A \cap \{ T = n \} \in \mathcal{F}_n, \text{ for all } n \in \mathbb{Z}_{\oplus} \}.$$
(29)

Theorem 25. The Strong Markov Property

For a countable-state Markov chain and a bounded, measurable function h on sample paths,

$$\mathsf{E}(h(X_{n+1}, X_{n+2}, \ldots) \mid \mathcal{F}_T) \, 1\{T < \infty\} = \mathsf{E}_{X_T}(h(X_1, X_2, \ldots) 1\{T < \infty\},$$
(30)

for all $n \ge 0$, where E_{X_T} corresponds to a chain whose initial distribution on S is the distribution of X_T . This is called the *Strong Markov Property*.