Plan Countable-State Markov Chains

1. Transition Probabilities
2. Irreducibility and Recurrence
3. Classification of States and Chains

Next Time: Limit Theorems, General-state analogues

Reading: G&S 6.4, 6.5, 6.6
Homework 4 on-line today, due next week; Comments: typos, G&S terminology, hw

Definition 1. Let (S, B) be a measurable space. Let P(z, A) be a function on § x B such that

1. For each A € B, x — P(x, A) is a measurable function on S.
2. For each x € §, A+ P(z,A) is a probability measure on B.

We call such a P a transition probability kernel.
For a given z € S, let Y be a random variable with distribution P(z,-). Then, for a function
g on S, we can also write

P(z,9) = Eg(Y /g z, [y, y + dy)) /g P(z,dy), (1)

where by slight abuse of notation we use dy to represent an infinitesimal interval around y. This
mimics the relation between probabilities P and expected values E.

Reminder 2. We can view a probability measure v on (S, B) in two equivalent ways:

1. As a set function that maps A € B to 0 < v(A) < 1 such that v(-) obeys all the rules of
probability (v(S) =1, v(0) =0, v(U;4;) = >, v(A;) when the A; are disjoint.

2. As an operator that maps measurable functions on S g to —oo < v(g) < oo such that v(-)
obeys all the rules of expected values.

Thus, the probability and expected value operators, P and E, are actually the same object.

Recall 3. If P(s, A) is a transition probability kernel and S is countable, then we can write

=) P{X,=5|Xn1=s}= > P(s,{s}) (2)

s'eA s'eA

for any A C S. In this case, we define P,y = P(s,s') = P(s,{s'}) and call it the transition
probability matriz. A transition probability matrix must satisfy Psg = P(s,s’) > 0 and P(s,S) =

1_ZSESP(S7S)_ZSESPSS'

Definition 4. A time-homogeneous, countable-state Markov chain with state space S with
initial distribution x and transition probability kernel P(-,-) is an S%®-valued stochastic process
X = (Xp)n>0 such that

Pu{Xo=s0,.... Xn = sn} = plso)P(s0,{s1}) - - - P(sn—1,{sn}), (3)

for all n > 0 and all sg,...,s, € S. We write P, to denote the chain has initial distribution p.
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Definition 5. A time-homogeneous, general-state Markov chain with state space S with initial
distribution g and transition probability kernel P(-,-) is an SZo_valued stochastic process X =
(Xpn)n>0 such that

P.{Xo near sq,..., X, near s, } = u(so)P(s0,ds1) - P(sp—1,dsp), (4)

for all n > 0 and all sg,...,s, € S, where by slight abuse of notation we use ds; to represent an
infinitesimal interval around s;. Again, we write P, to denote the chain has initial distribution pu.
A more formal (but less clear) expression of (4) is

P,(Xo € Ag. X1 € Ay,.... X, € A,) = /A . /A 1(ds0) P (50, ds1) - P($n—2, 1) P($n_1, An).
0 n—1

(5)

Reminder 6. If X is a random function 7 — &, then the finite-dimensional distributions of X

are collectively the distributions of random vactors (Xy,,...,Xy,) forany n > 1 and t1,...,t, € 7.

The rigorous construction of a o-field on S7 yields a consistent distribution over this space that is
characterized by these finite-dimensional distributions.

Definition 7. We thus have three forms of the Markov Property.

1. The first is given in (3) and (4) and indicates that the finite-dimensional distributions of the
process are determined solely by the initial distribution and the transition probabilities.
2. A conditional form of the first: for any n > 1 and sg,...,s, € S,

Pu{Xn = Sp, ’ Xn—l = Sp—1y--- ,XQ = SO} = P(Sn_l, Sn) (6)
for countable state spaces and
P.{Xy near s, | X;,_1 near s,,_1,...,Xq near so} = P(sp—1,dsy) (7)

for general state spaces.
3. Let h be a bounded and measurable function on S%®. Then, for any n > 1,

E(h(Xn, Xn+1, .. ) ’ Xn near S,Xn_l, PN ,X()) = Esh(Xl,XQ, .. ) (8)

Definition 8. Given a Markov chain with transition probability kernel P(x, A), we can define
the n-step transition probabilities P™(x,A) by induction as follows. For a transition probability
matrix:

P'(s,s') = Z P(s,u)P" Y (u,s') = P"=P-P" ! = (P)" as matrices. 9)
ues

For general transition kernels:

P(s, A) = /5 P(s,du)P"}(u, A). (12)
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Theorem 9. The Chapman-Kolmogorov Equations.
Let n,m > 0. For a transition probability matrix P, we have:

prtm = pr. pm (that is, P"™™(s,s") = Z P"(s,u)P™(u,s")). (11)
ues

For general transition kernels:

P (s, A) = /S P (s, du)P™ (u, A). (12)

Examples 10.

1. Simple Random Walk
2. Random Walk on a Pentagon
3. Embedded MC for G/M/1 queue
S = Zg. Exponential(\) service time. G is the service time F.

0o k
PGi+1-0 = [ el acw, k< (13)
co k
P(j,0) = /0 > e_’\t()\];) dG(t). (14)
k=j+1 ’

4. The Flip-Flop and the d-adic Spin

The Finite, Infinite, and Isolated Black Hole

6. Given a countable-state Markov chain with initial distribution g and transition probability
matrix P, what is the distribution of X7

ot

Definition 11. Given two states s, s’ € S, we say that s’ is accessible from s if P"(s,s") > 0 for
some n > 0. We say that s and s’ communicate if each is accessible from the other. Denote this
by s < s'.

Claim: « is an equivalence class.

Proof: Reflexivity, Symmetry, Transitivity.

Definition 12. If there is only one equivalence class of communicating states, the Markov Chain
is said to be irreducible

Definition 13. A set A C S is said to be absorbing if P(z, A) =1 for all x € A.

Decomposition 14. If X is not irreducible, then we can write

S=DulJC;, (15)

where the sets are disjoint and each C; is an absorbing, communicating class.

Question 15. What can happen if the chain is in D?

Proposition 16. If C' C S is an absorbing, communicating class for a Markov chain X, then
there exists an irreducible Markov Chain X ¢ with state-space C' and whose transition probability
kernel is given by Po(x, A) = P(x, A) for z € C.
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Definition 17. For any state s € S, define the period of s by
d(s) = ged{n > 1 such that P"(s,s) > 0}. (16)
This implies that P"(s,s) = 0 unless n = md(s) for some m € Z.

Theorem 18. d is a class function with respect to <; that is, d is constant on communicating
classes.

Proof. Let s,s’ be members of the same class. Then, there is an n and an m such that
P"(s,s') > 0 and P™(s',s) > 0. By the Chapman-Kolmogorov equations,

P (s,8) > P"(s,s")P™(s',5) > 0, (17)

so n+m is a multiple of d(s).
Suppose k is not a multiple of d(s); then neither is k 4+ n + m:

0= PFmn(s 5) > P(s, s\ P¥(s', s P™(5, 5). (18)
Thus, P*(s, s') = 0 which implies that d(s’) > d(s).

Reverse the roles of s and s’ to get equality.

Definition 19. An irreducible Markov Chain is said to be aperiodic if d(s) =1 for s € S. It is
called strongly aperiodic if P(s,s) > 0 for some s € S.

Question 20. Can you find an example where these two notions differ?

Theorem 21. Let X be an irreducible, countable-state Markov chain with common period d.
Then, there are disjoint sets Uy,...,Uy; C S such that

d
S=J U, (19)
k=1
and
P(z,Ugt41) =1 for x € Uy, k=0,...,d—1( (mod d)). (20)
The sets Uy, ...,Uy are called cyclic classes of X because X cycles through them successively.

It follows that that the Markov Chain X% = (X4, X24, X34, ...) has transition probabilities P¢
and each U; is an absorbing, irreducible, aperiodic class.
Further, for k =0,...,d — 1, if u(Uy) =1, X4 is an irreducible, aperiodic Markov chain.

Pause for Breath 22. What does all this mean for the analysis of Markov Chains? Examples,
thoughts, concerns, and questions.
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Useful Random Variables 23. Let A C S. Define

T4 = inf{n > 1 such that X, € A} (21)

S =inf {n > 0 such that X,, € A} (22)

Oa=> 1{X, €A} (23)
n=1

These are called, respectively, the first return time, the first hitting time, and the occupation time
of A. As we will see, these random variables provide a great deal of information about the behavior
of the chain.

For A, B C S, define

R(z,A) =P {Ty <0} (24)
H(z,A) =P,{Ss < 0} (25)
O(z,A) = E,O4 (26)
Pl B) = Po{ X € B,Ta > n}. (27)

These are the return time probabilities, hitting probabilies, expected occupation times for the set
A and taboo probabilities for the set B avoiding A.
Note that

R(z,A) = ) Pli(z, A). (28)
n=1

Definition 24. All of the random variables in the last item are stopping times, meaning that
{T=n}€o(Xo,...,X,) for every n.

Let F,, = 0(Xop,...,X,) be the history of the chain up to time n. For a stopping time T', we
can define the information in the chain up to time 7' — the history up to time T — as a o-field Fr
defined as follows:

Fr ={A € Fsuch that AN{T =n} € F,, foralln € Zgy}. (29)

Theorem 25. The Strong Markov Property
For a countable-state Markov chain and a bounded, measurable function h on sample paths,

E (h(Xn+1,Xn+2, .. ) ’ fT) 1{T < OO} = EXT(h(Xl,XQ, .. .)1{T < OO}, (30)

for all n > 0, where Ex, corresponds to a chain whose initial distribution on S is the distribution
of X7. This is called the Strong Markov Property.
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