
Plan Countable-State Markov Chains

1. Transition Probabilities
2. Irreducibility and Recurrence
3. Classification of States and Chains

Next Time: Limit Theorems, General-state analogues

Reading: G&S 6.4, 6.5, 6.6
Homework 4 on-line today, due next week; Comments: typos, G&S terminology, hw

Definition 1. Let (S,B) be a measurable space. Let P (x,A) be a function on S × B such that

1. For each A ∈ B, x 7→ P (x,A) is a measurable function on S.
2. For each x ∈ S, A 7→ P (x,A) is a probability measure on B.

We call such a P a transition probability kernel.
For a given x ∈ S, let Y be a random variable with distribution P (x, ·). Then, for a function

g on S, we can also write

P (x, g) ≡ Eg(Y ) ≡
∫

g(y)P (x, [y, y + dy)) ≡
∫

g(y)P (x, dy), (1)

where by slight abuse of notation we use dy to represent an infinitesimal interval around y. This
mimics the relation between probabilities P and expected values E.

Reminder 2. We can view a probability measure ν on (S,B) in two equivalent ways:

1. As a set function that maps A ∈ B to 0 ≤ ν(A) ≤ 1 such that ν(·) obeys all the rules of
probability (ν(S) = 1, ν(∅) = 0, ν(UiAi) =

∑

i ν(Ai) when the Ai are disjoint.
2. As an operator that maps measurable functions on S g to −∞ ≤ ν(g) ≤ ∞ such that ν(·)

obeys all the rules of expected values.

Thus, the probability and expected value operators, P and E, are actually the same object.

Recall 3. If P (s,A) is a transition probability kernel and S is countable, then we can write

P(s,A) =
∑

s′∈A

P
{

Xn = s′ | Xn−1 = s
}

=
∑

s′∈A

P (s,
{

s′
}

) (2)

for any A ⊂ S. In this case, we define Pss′ ≡ P (s, s′) ≡ P (s, {s′}) and call it the transition

probability matrix. A transition probability matrix must satisfy Pss′ ≡ P (s, s′) ≥ 0 and P (s,S) =
1 =

∑

s′∈S P (s, s′) ≡
∑

s′∈S Pss′ .

Definition 4. A time-homogeneous, countable-state Markov chain with state space S with
initial distribution µ and transition probability kernel P (·, ·) is an SZ⊕-valued stochastic process
X = (Xn)n≥0 such that

Pµ{X0 = s0, . . . , Xn = sn} = µ(s0)P (s0, {s1}) · · ·P (sn−1, {sn}), (3)

for all n ≥ 0 and all s0, . . . , sn ∈ S. We write Pµ to denote the chain has initial distribution µ.
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Definition 5. A time-homogeneous, general-state Markov chain with state space S with initial
distribution µ and transition probability kernel P (·, ·) is an SZ⊕-valued stochastic process X =
(Xn)n≥0 such that

Pµ{X0 near s0, . . . , Xn near sn} = µ(s0)P (s0, ds1) · · ·P (sn−1, dsn), (4)

for all n ≥ 0 and all s0, . . . , sn ∈ S, where by slight abuse of notation we use dsi to represent an
infinitesimal interval around si. Again, we write Pµ to denote the chain has initial distribution µ.
A more formal (but less clear) expression of (4) is

Pµ(X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An) =

∫

A0

· · ·
∫

An−1

µ(ds0)P (s0, ds1) · · ·P (sn−2, dsn−1)P (sn−1, An).

(5)

Reminder 6. If X is a random function T → S, then the finite-dimensional distributions of X

are collectively the distributions of random vactors (Xt1 , . . . , Xtn) for any n ≥ 1 and t1, . . . , tn ∈ T .
The rigorous construction of a σ-field on ST yields a consistent distribution over this space that is
characterized by these finite-dimensional distributions.

Definition 7. We thus have three forms of the Markov Property.

1. The first is given in (3) and (4) and indicates that the finite-dimensional distributions of the
process are determined solely by the initial distribution and the transition probabilities.

2. A conditional form of the first: for any n ≥ 1 and s0, . . . , sn ∈ S,

Pµ{Xn = sn | Xn−1 = sn−1, . . . , X0 = s0} = P (sn−1, sn) (6)

for countable state spaces and

Pµ{Xn near sn | Xn−1 near sn−1, . . . , X0 near s0} = P (sn−1, dsn) (7)

for general state spaces.
3. Let h be a bounded and measurable function on SZ⊕ . Then, for any n ≥ 1,

E(h(Xn, Xn+1, . . .) | Xn near s,Xn−1, . . . , X0) = Esh(X1, X2, . . .). (8)

Definition 8. Given a Markov chain with transition probability kernel P (x,A), we can define
the n-step transition probabilities P n(x,A) by induction as follows. For a transition probability
matrix:

P n(s, s′) =
∑

u∈S

P (s, u)P n−1(u, s′) =⇒ P n = P · P n−1 = (P )n as matrices. (9)

For general transition kernels:

P n(s,A) =

∫

S

P (s, du)P n−1(u,A). (12)
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Theorem 9. The Chapman-Kolmogorov Equations.
Let n,m ≥ 0. For a transition probability matrix P , we have:

P n+m = P n · P m, (that is, P n+m(s, s′) =
∑

u∈S

P n(s, u)P m(u, s′)). (11)

For general transition kernels:

P n+m(s,A) =

∫

S
P n(s, du)P m(u,A). (12)

Examples 10.

1. Simple Random Walk
2. Random Walk on a Pentagon
3. Embedded MC for G/M/1 queue

S = Z⊕. Exponential〈λ〉 service time. G is the service time F.

P (j, j + 1 − k) =

∫ ∞

0

e−λt (λt)k

k!
dG(t), k ≤ j, (13)

P (j, 0) =

∫ ∞

0

∞
∑

k=j+1

e−λt (λt)k

k!
dG(t). (14)

4. The Flip-Flop and the d-adic Spin
5. The Finite, Infinite, and Isolated Black Hole
6. Given a countable-state Markov chain with initial distribution µ and transition probability

matrix P , what is the distribution of Xn?

Definition 11. Given two states s, s′ ∈ S, we say that s′ is accessible from s if P n(s, s′) > 0 for
some n ≥ 0. We say that s and s′ communicate if each is accessible from the other. Denote this
by s ↔ s′.

Claim: ↔ is an equivalence class.
Proof: Reflexivity, Symmetry, Transitivity.

Definition 12. If there is only one equivalence class of communicating states, the Markov Chain
is said to be irreducible

Definition 13. A set A ⊂ S is said to be absorbing if P (x,A) = 1 for all x ∈ A.

Decomposition 14. If X is not irreducible, then we can write

S = D∪
⋃

i

Ci, (15)

where the sets are disjoint and each Ci is an absorbing, communicating class.

Question 15. What can happen if the chain is in D?

Proposition 16. If C ⊂ S is an absorbing, communicating class for a Markov chain X, then
there exists an irreducible Markov Chain XC with state-space C and whose transition probability
kernel is given by PC(x,A) ≡ P (x,A) for x ∈ C.
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Definition 17. For any state s ∈ S, define the period of s by

d(s) = gcd{n ≥ 1 such that P n(s, s) > 0}. (16)

This implies that P n(s, s) = 0 unless n = md(s) for some m ∈ Z+.

Theorem 18. d is a class function with respect to ↔; that is, d is constant on communicating
classes.

Proof. Let s, s′ be members of the same class. Then, there is an n and an m such that
P n(s, s′) > 0 and P m(s′, s) > 0. By the Chapman-Kolmogorov equations,

P n+m(s, s) ≥ P n(s, s′)P m(s′, s) > 0, (17)

so n + m is a multiple of d(s).
Suppose k is not a multiple of d(s); then neither is k + n + m:

0 = P k+m+n(s, s) ≥ P n(s, s′)P k(s′, s′)P m(s′, s). (18)

Thus, P k(s′, s′) = 0 which implies that d(s′) ≥ d(s).
Reverse the roles of s and s′ to get equality.

Definition 19. An irreducible Markov Chain is said to be aperiodic if d(s) ≡ 1 for s ∈ S. It is
called strongly aperiodic if P (s, s) > 0 for some s ∈ S.

Question 20. Can you find an example where these two notions differ?

Theorem 21. Let X be an irreducible, countable-state Markov chain with common period d.
Then, there are disjoint sets U1, . . . , Ud ⊂ S such that

S =
d

⋃

k=1

Uk, (19)

and
P(x,Uk+1) = 1 for x ∈ Uk, k = 0, . . . , d − 1( (mod d)). (20)

The sets U1, . . . , Ud are called cyclic classes of X because X cycles through them successively.
It follows that that the Markov Chain Xd = (Xd, X2d, X3d, . . .) has transition probabilities P d

and each Ui is an absorbing, irreducible, aperiodic class.
Further, for k = 0, . . . , d − 1, if µ(Uk) = 1, Xd is an irreducible, aperiodic Markov chain.

Pause for Breath 22. What does all this mean for the analysis of Markov Chains? Examples,
thoughts, concerns, and questions.
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Useful Random Variables 23. Let A ⊂ S. Define

TA = inf {n ≥ 1 such that Xn ∈ A} (21)

SA = inf {n ≥ 0 such that Xn ∈ A} (22)

OA =
∞
∑

n=1

1{Xn ∈ A} . (23)

These are called, respectively, the first return time, the first hitting time, and the occupation time

of A. As we will see, these random variables provide a great deal of information about the behavior
of the chain.

For A,B ⊂ S, define

R(x,A) = Px{TA < ∞} (24)

H(x,A) = Px{SA < ∞} (25)

O(x,A) = ExOA (26)

P n
!A(x,B) = Px{Xn ∈ B, TA ≥ n} . (27)

These are the return time probabilities, hitting probabilies, expected occupation times for the set
A and taboo probabilities for the set B avoiding A.

Note that

R(x,A) =
∞
∑

n=1

P n
!A(x,A). (28)

Definition 24. All of the random variables in the last item are stopping times, meaning that
{T = n} ∈ σ(X0, . . . , Xn) for every n.

Let Fn = σ(X0, . . . , Xn) be the history of the chain up to time n. For a stopping time T , we
can define the information in the chain up to time T – the history up to time T – as a σ-field FT

defined as follows:

FT = {A ∈ F such that A∩{T = n} ∈ Fn, for all n ∈ Z⊕} . (29)

Theorem 25. The Strong Markov Property

For a countable-state Markov chain and a bounded, measurable function h on sample paths,

E (h(Xn+1, Xn+2, . . .) | FT ) 1{T < ∞} = EXT
(h(X1, X2, . . .)1{T < ∞} , (30)

for all n ≥ 0, where EXT
corresponds to a chain whose initial distribution on S is the distribution

of XT . This is called the Strong Markov Property.
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