
Plan Limit Theory (Countable-state case primarily)

1. Recurrence and Transience
2. Invariant Distributions
3. Limit Theorems

Next Time: General-state analogues, Extended Examplse

Reading: G&S 6.4, 6.5, 6.6
Homework 4 on-line tomorrow (sorry)
Homework solutions on-line up to date

Review Theorem 1. The Chapman-Kolmogorov Equations.
Let n,m ≥ 0. For a transition probability matrix P , we have:

P n+m = P n · P m, (that is, P n+m(s, s′) =
∑

u∈S

P n(s, u)P m(u, s′)). (1)

For general transition kernels:

P n+m(s,A) =

∫

S
P n(s, du)P m(u,A). (2)

Review Theorem 2. If X is Markov chain on countable state space S, then we can write

S = D ∪
⋃

i

Ci, (3)

where the sets are disjoint and each Ci is an absorbing, communicating class for the chain X.

Review Proposition 3. If C ⊂ S is an absorbing, communicating class for a Markov chain
X, then there exists an irreducible Markov Chain XC with state-space C and whose transition
probability kernel is given by PC(x,A) ≡ P (x,A∩C) for x ∈ C.

Review Definition 4. For any state s ∈ S, define the period of s by

d(s) = gcd{n ≥ 1 such that P n(s, s) > 0}. (4)

This implies that P n(s, s) = 0 unless n = md(s) for some m ∈ Z+. An irreducible Markov Chain
is said to be aperiodic if d ≡ 1.

Review Theorem 5. Let X be an irreducible, countable-state Markov chain with common
period d. Then, there are disjoint sets U1, . . . , Ud ⊂ S such that

S =
d

⋃

k=1

Uk, (5)

and
P(x,Uk+1) = 1 for x ∈ Uk, k = 0, . . . , d − 1 (mod d). (6)

The sets U1, . . . , Ud are called cyclic classes of X because X cycles through them successively.

1 22 Feb 2006



Useful Random Variables 6. Let X be a general-state Markov chain with state space S. Let
A ⊂ S. Define

TA = inf {n ≥ 1 such that Xn ∈ A} (7)

SA = inf {n ≥ 0 such that Xn ∈ A} (8)

OA =
∞
∑

n=1

1{Xn ∈ A} . (9)

These are called, respectively, the first return time, the first hitting time, and the occupation time

of A. If Xn never returns to or hits A, we take TA = ∞ and SA = ∞ respectively. As we will see,
these random variables provide a great deal of information about the behavior of the chain.

For A,B ⊂ S and s ∈ S, define

R(s,A) = Ps{TA < ∞} (10)

M(s,A) = EsTA (11)

H(s,A) = Ps{SA < ∞} (12)

O(s,A) = EsOA (13)

P n
!A(s,B) = Ps{Xn ∈ B, TA ≥ n} . (14)

These are the return time probabilities, hitting probabilies, expected occupation times for the set
A and taboo probabilities for the set B avoiding A, when the chain starts in state s.

Note that

O(s,A) =
∞
∑

n=1

P n(s,A) (15)

R(s,A) =
∞
∑

n=1

P n
!A(s,A). (16)

Definition 7. The random variables TA and SA in the last item are stopping times, meaning
that {T = n} ∈ σ(X0, . . . , Xn) for every n.

Let Fn = σ(X0, . . . , Xn) be the history of the chain up to time n. For a stopping time T , we
can define the information in the chain up to time T – the history up to time T – as a σ-field FT

defined as follows:

FT = {A ∈ F such that A∩{T = n} ∈ Fn, for all n ∈ Z⊕} . (17)

Theorem 8. The Strong Markov Property

For any (discrete-time) Markov chain X and a bounded, measurable function h on sample
paths,

E (h(XT+1, XT+2, . . .) | FT ) 1{T < ∞} = EXT
(h(X1, X2, . . .)1{T < ∞} , (18)

where EXT
corresponds to a chain whose initial distribution on S is the distribution of XT . This

is called the Strong Markov Property.
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Definition 9. A set A ⊂ S is called uniformly transient if there exists M < ∞ such that
O(s,A) ≤ M for all s ∈ A. A is called transient if O(s,A) < ∞ for all s ∈ A. A is called recurrent

if O(s,A) = ∞ for all s ∈ A.
In particular, for a state s ∈ S of a countable-state Markov chain, we say that s is uniformly

transient/transient/recurrent if {s} is.

Theorem 10. For an irreducible, countable-state Markov chain X, either O(s, s ′) < ∞ for all
s, s′ ∈ S, in which case we say that X is recurrent, or O(s, s′) = ∞ for all s, s′ ∈ S in which case
we say that X is transient.

Proof. Then since for any u, v, u → s and s′ → v, we can find an `,m such that P `(u, s) > 0
and P m(s′, v) > 0. Hence,

∑

n

P `+m+n(u, v) > P `(u, s)

[

∑

n

P n(s, s′)

]

Pm(s′, v). (19)

It follows that O(s, s′) =
∑∞

n=1 P n(s, s′) = ∞ implies O(u, v) = ∞ and O(u, v) < ∞ implies
O(s, s′) < ∞. But both pairs of states were arbitrary, so the theorem is proved.

Theorem 11. Suppose X is a countable-state Markov chain on S. For any s ∈ S, O(s, s) ≡
O(s, {s}) = ∞ if and only if R(s, s) ≡ R(s, {s}) = 1.

Hence, if X is irreducible, either R(s, s′) = 1 for all s, s′ ∈ S or R(s, s) < 1 for all s ∈ S.

To prove this theorem, we’ll use the same trick we used earlier in considering the return times
of random walks. Notice that for any s ∈ S and any n ≥ 1,

P n(s, s) =
n

∑

k=1

Ps

{

T{s} = k
}

P n−k(s, s) =
n

∑

k=0

Ps

{

T{s} = k
}

P n−k(s, s), (20)

where the latter follows because Ps

{

T{s} = 0
}

= 0.

Let Gs(z) =
∑

n P n(s, s)zn and Rs(z) =
∑

n Ps

{

T{s} = n
}

zn. Then, we get

Gs(z) = 1 + Gs(z)Rs(z) =⇒ Gs(z) =
1

1 − Rs(z)
. (21)

Because Rs(1) = Ps

{

T{s} < ∞
}

(or letting z → 1 to be careful about convergence), we get that

R(s, s) = 1 ⇐⇒ O(s, s) = ∞. (22)

By Theorem 10 and equation (22), we have either R(s, s) < 1 for all s or R(s, s) = 1 for all s.
If the latter is true and R(s, s′) < 1, then by irreducibility, we have O(s′, s) > 0 and thus, for some
n, P n

!s′(s
′, s) > 0. This implies R(s′, s′) < 1, and the result follows by contradiction.

Examples 12.

1. Random Walk
2. Bounded Random Walk
3. Binomial Runs
4. Renewal Process and Forward Recurrence Time Chain

3 22 Feb 2006



Definition 13. For s ∈ S, recall M(s,A) = EsTA. For A = {s}, M(s,A) ≡ M(s, s). These are
the expected return times to the set A and the state s.

Definition 14. Let X be a countable-state Markov chain on S. If s ∈ S is a recurrent state, we
call it positive recurrent if M(s, s) < ∞ and null recurrent if M(s, s) = ∞.

Definition 15. Let X be a countable-state Markov chain on S with transition probabilities P .
A (σ-finite) measure π is an invariant measure for the chain if π(s) ≥ 0 and

π(s′) =
∑

s

π(s)P (s, s′), (23)

or in matrix terms
π = π · P, (24)

where we think of π as a “row vector”.
An invariant measure π is an invariant or stationary distribution, if in addition it is a probability

mass function on S.

Motivation 16. The names “invariant” and “stationary” come from the above properties. The
first stems from the fact that π does not change – is invariant – under the transition mechanism
of the chain. The second comes fro the fact that if the chain is started with initial distribution π,
then the distribution of Xn is given by π ·P n = π. That is, the distribution of Xn does not change
with n.

Definition 17. If X is an irreducible, recurrent, countable-state Markov chain on S and there
exists a stationary distribution on S, then X is said to be a positive recurrent. Otherwise, X is
said to be null recurrent. Then, every state is, respectively, positive or null recurrent.

Theorem 18. If X is an irreducible, recurrent, countable-state Markov chain, then there exists
an invariant measure ρ that is positive and unique up to constant multiples. The chain is positive
recurrent if

∑

s ρ(s) < ∞ and null recurrent if
∑

s ρ(s) = ∞.

Theorem 19. If an irreducible, countable-state Markov chain has a stationary distribution π,
then it is unique and πs = 1/M(s, s).

Remarks 20. 1. Note that if X admits a stationary distribution but is transient then P n(s, s′) →
0 as n → ∞, so

πs′ =
∑

s

πsP (s, s′) ≤
∑

s∈S0

πsP (s, s′) +
∑

s6∈S0

πs (25)

→
∑

s6∈S0

πs → 0, (26)

for any finite S0 ⊂ S with the last limit being as S0 ↑ S. This is a contradiction, so X must be
recurrent.

2. See the proofs in G&S section 6.4.
To translate, define q(s, s′) =

∑

n P n
!s(s, s

′) for the taboo probabilies P n
!s(s, s

′). Notice that
M(s, s) =

∑

s′ q(s, s
′). G&S use ρs′(s) ≡ q(s, s′) and fs,s′(n) ≡ Ps{Ts′ = n}.

Examples 21.

• Doubly Stochastic, Finite Random Walk
• Canonical Random Walk
• Embedded MC for G/M/1 Queue
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