
Plan Limits and Examples (Countable-state case)
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1. Summary
2. Invariant Distributions and Limit Theorems
3. Extended Examples

Next Time: More Examples and Applications

Homework 4 now on-line, due in two weeks.

Correction 1. “Yanko” in previous handout. The Strong Markov Property reads:
Let T be a stopping time, X be a (discrete-time) Markov chain, and let h be a bounded, mea-

surable function on sample paths. Then,

E (h(XT+1, XT+2, . . .) | FT ) 1{T < ∞} = EXT
(h(X1, X2, . . .)1{T < ∞} , (1)

where EXT
h(X1, X2, . . .) corresponds to a chain whose initial distribution on S is the distribution

of XT . (Specifically, if g(s) = Esh(X1, X2, . . .), then that random variable is g(XT ).) The indicator
says that this equality only applies if T < ∞. (Otherwise, for example, XT does not make sense.)

Note the connection with the standard Markov property for stopping time T and deterministic
time n:

E (h(XT+1, XT+2, . . .) | FT ) 1{T < ∞} = EXT
(h(X1, X2, . . .)1{T < ∞} (2)

E (h(Xn+1, Xn+2, . . .) | Fn) = EXn
(h(X1, X2, . . .) . (3)
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Summary 2. Markov Chains: Notation (short form)

We are working in a probability space (Ω,F ,E).

Concept Notation

Markov Chain X = (Xn)n≥0. Xn is state at time n. X is random function (sample path).
“X” is default but not exclusive.

State Space S set of possible values of the chain at any given time. S is the default but
not exclusive.

Initial Distribution µ, a probability distribution on S. In the countable-state case, this is often
used as a row vector. µ is the default but not exclusive.

Transition Probabilities P , either as a transition probability kernel P (s,A) or as a transition proba-
bility matrx P (s, s′) ≡ Pss′ . In either case, P n for n ≥ 0 is the corresponding
n-step transition probabilities. P is typical and default but not exclusive.

Probabilities Let µ be a distribution on S and s ∈ S. Eµ represents the expected value
operator using µ for the initial distribution of the chain and Es represents the
expected value operator using a point mass at s for the initial distribution
of the chain. Similarly, Pµ and Ps represent the corresponding probability
measurs (on Ω).

Return Times etc. TA = inf {n ≥ 1:Xn ∈ A} is the first return time to A. Note that TA = ∞
if X never returns to A. We write Ts when A = {s}. for s ∈ S.

The distribution of TA for different sets A is informative about the behavior
of the chain. Define for s ∈ S and A ⊂ S

R(s,A) = Ps{TA < ∞}

M(s,A) = EsTA,

the probability of return to A (starting at s) and the expected return time.
Note that TA is a stopping time.

OA =
∞
∑

n=1

1{Xn ∈ A} is called the occupation time of A. Define for s ∈ S

and A ⊂ S
O(s,A) = EsOA,

the expected occupation time of A starting at s.

We write R(s, s′),M(s, s′), O(s, s′), and so forth when A = {s′} is a singleton.

Taboo Probabilities P n
!A(s,B) = Ps{Xn ∈ B, TA ≥ n}. The ! stands for “not”.

Past History The history of the process up to time n is the σ-field Fn = σ(X0, . . . , Xn).

For a stopping time T , the history of the process “up to time T” is the σ-field
FT given by

FT = {A ∈ F :A∩ {T = n} ∈ Fn, for all n ∈ Z⊕} .

This contains all events for which, when T = n, we have can determine
whether they occurred using the history up to time n.

Note that Fn ⊂ F and FT ⊂ F . These are collections of events.
Invariant Measures π is a non-negative mesaure on S satisfying π = π · P . If it is a probability

measure, we call it an invariant or stationary distribution. π is default but
not exclusive.
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Summary 3. Countable-State Markov Chains: What We Know So Far (short form)

X is a countable-state Markov chain on S with initial distribution µ and transition probabilities P .

Idea Result

Markov Property Behavior of the chain is determined by initial distribution µ and transition
probabilities P .

1. P{X0 = s0, . . . , Xn = sn} = µ(s0)P (s0, s1) · · ·P (sn−1, sn).

2. P{Xn = sn | Xn−1 = sn−1, . . . , X0 = s0} = P (sn−1, sn).

3. Eµ(h(Xn+1, Xn+2, . . .) | X0, . . . , Xn = s) = Esh(X1, X2, . . .).

Strong Markov Property E (h(XT+1, XT+2, . . .) | FT ) 1{T < ∞} = EXT
(h(X1, X2, . . .)1{T < ∞}, for

a stopping time T and bounded, measurable function h.

Chapman-Kolmogorov P n+m = P n · P m for any n,m ≥ 0.

Irreducibility The chain is irreducible if there is only one communicating class.

Periodicity For a state s ∈ S, the period of s is d(s) = gcd{n ≥ 1:P n(s, s) > 0}. This
funciton is constant on communicating classes.

State Decompositions The relation ↔ is an equivalence relation, so S is a disjoint union of com-
municating classes. But we can go further.

1. S = D ∪
⋃

i

Ci, where each Ci is an absorbing, communicating class

with period di and where D is a union of non-absorbing communicating
classes.

2. Ci =
di−1
⋃

k=0

Uik where P (s, Ui,k+1 mod di
) = 1 for s ∈ Uik, k = 0, . . . , di − 1.

This means we can study the behavior of the chain by understanding the
irreducible, aperiodic case and the “transient” case.

Recurrence & Transience A set of state A ⊂ S is called recurrent if O(s,A) = ∞ for all s ∈ A. A set
of state A ⊂ S is called transient if O(s,A) < ∞ for all s ∈ A.

We have the following:

1. For any s ∈ S, O(s, s) = ∞ ⇐⇒ R(s, s) = 1.

2. If X is irreducible, either O(s, s′) < ∞ for all s, s′ or O(s, s′) = ∞ for
all s, s′.

3. If X is irreducible, either R(s, s′) = 1 for all s, s′ or R(s, s) < 1 for all s.

Thus, an irreducible chain is either transient or recurrent.

continued. . .
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Summary 3 cont’d

Invariant Measures If X is an irreducible, recurrent, countable-state Markov chain, then there
exists a measure ρ on S that satisfies the following:

1. ρ is invariant; that is, ρ = ρ · P .

2. ρ is everywhere positive; that is, ρ(s) > 0 for all s.

3. ρ is unique up to constant multiples.

The chain is called positive recurrent if ρ(S) =
∑

s ρ(s) < ∞ and
null recurrent if ρ(S) =

∑

s ρ(s) = ∞.

Stationary Distribution I Let X be irreducible.

X is positive recurrent if and only if M(s, s) < ∞ for all s ∈ S.

Then, there exists a (positive) invariant measure ρ on S with ρ(S) < ∞.
Define π(s) = ρ(s)/ρ(S) to get a probability distribution on S.

Thus, X has a stationary distribution π if and only if M(s, s) < ∞ for all s.
The stationary distribution satisfies the following:

1. It is unique.

2. For any s ∈ S, π(s) =
1

M(s, s)
.

Stationary Distribution II Let X be irreducible and aperiodic.

Then for any s0, s ∈ S,

lim
n→∞

P n(s0, s) =
1

M(s, s)
. (4)

Hence, if X is positive recurrent with stationary distribution π,

lim
n→∞

P n(s0, s) = π(s), (5)

and if X is transient or null-recurrent, M(s, s) = ∞, so limn P n(s0, s) = 0.

If X is positive recurrent, then for any initial distribution µ:

Pµ{Xn = s} → π(s), (6)

In particular, if the chain is started with distribution π, it is stationary:
Pπ{Xn = s} = π(s).

4 23 Feb 2006



For the rest of this class, let X be an irreducible, countable-state Markov chain on S with initial
distribution µ and transition probabilities P .

Definition 4. An irreducible, aperiodic, positive recurrent Markov chain is called ergodic. An
irreducible, aperiodic, null recurrent Markov chain is sometimes called weakly ergodic.

Proof of Selected Claims 5.

Claim 1. Either O(s, s′) < ∞ for all s, s′ or O(s, s′) = ∞ for all s, s′.
Then since for any u, v, u → s and s′ → v, we can find an `,m such that P `(u, s) > 0 and

Pm(s′, v) > 0. Hence,

∑

n

P `+m+n(u, v) > P `(u, s)

[

∑

n

P n(s, s′)

]

Pm(s′, v). (7)

It follows that O(s, s′) =
∑∞

n=1 P n(s, s′) = ∞ implies O(u, v) = ∞ and O(u, v) < ∞ implies
O(s, s′) < ∞. But both pairs of states were arbitrary, so the claim is proved.

Claim 2. O(s, s) = ∞ ⇐⇒ R(s, s) = 1.
We can use the same trick we used for random walks early in the class. Notice that for any s ∈ S,

P n(s, s) =
n

∑

k=1

Ps

{

T{s} = k
}

P n−k(s, s) =
n

∑

k=0

Ps

{

T{s} = k
}

P n−k(s, s), n ≥ 1, (8)

P 0(s, s) = 1, (9)

where we’ve used Ps{Ts = 0} = 0. This is called the first-entrance decomposition.
Define generating functions for the sequences P n(s, s) and Ps{Ts = n}.

Gs(z) =
∑

n

P n(s, s)zn (10)

Rs(z) =
∑

n

Ps{Ts = n} zn. (11)

The above recurrence yields

Gs(z) = 1 + Gs(z)Rs(z) (12)

which implies that

Gs(z) =
1

1 − Rs(z)
. (13)

This last is a version of the “renewal equation.”

Because Rs(1) = Ps

{

T{s} < ∞
}

(or letting z → 1 to be careful about convergence), we get that

R(s, s) = 1 ⇐⇒ O(s, s) = ∞.
Actually, we can get more out of this equation. Suppose for now that Rs(z) has a radius of

convergence > 1.
Assume that Rs(1) = 1 (that is, R(s, s) = 1) and 0 < R′

s(1) < ∞ (that is, M(s, s) < ∞). (The
second assumption follows from the stronger assumption on radius of convergence.)
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Then Gs(z) has a pole (an isolated, polynomial-like singularity in the complex plane) at z = 1.
Notice also that (1 − z)Gs(z) → 1/R′

s(1) = 1/M(s, s) as z → 1. (L’Hopital’s rule, for instance.)
Take

G(z) =
R′

s(z)

(M(s, s))2(1 − z)
, (14)

which has (1 − z)G(z) → −1/M(s, s) as z → 1. Then,

U(z) = Gs(z) − G(z) =
1

1 − Rs(z)
−

(

1

M(s, s)

)2 R′
s(z)

1 − z
. (15)

satisfies (1− z)U(z) → 0 as z → 1. As a result, we can take U(z) to be analytic in a neighborhood
of z = 1. (The apparent singularity at z = 1 is “removable”.) That is,

Gs(z) = G(z) + U(z). (16)

If Rs(z) =
∑

n≥1 fnzn, then

[zn]
R′

s(z)

1 − z
=

n
∑

k=1

kfk → M(s, s) as n → ∞. (17)

(Why are both these facts true?) Because U(z) is analytic, [zn]U(z) → 0. Hence,

lim
n→∞

P n(s, s) = lim
n→∞

[zn]Gs(z) = lim
n→∞

[zn]G(z) =

(

1

M(s, s)

)2

M(s, s) =
1

M(s, s)
. (18)

Claim 3. Either R(s, s′) = 1 for all s, s′ ∈ S or R(s, s) < 1 for all s ∈ S.
Because of the relation with O(s, s), either R(s, s) < 1 for all s or R(s, s) = 1 for all s. If the

latter is true and R(s, s′) < 1, then by irreducibility, we have O(s′, s) > 0 and thus, for some n,
P n

!s′(s
′, s) > 0. This implies R(s′, s′) < 1, and the result follows by contradiction.

Claim 4. If X admits a positive stationary distribution π, then every state is recurrent.
Suppose s ∈ S is transient. This implies that O(s, s) < ∞, so P n(s, s) → 0 as n → ∞. It follows

then that

πs =
∑

s′

πs′P (s′, s) (19)

≤
∑

s′∈S0

πs′P (s′, s) +
∑

s′ 6∈S0

πs′ (20)

→
∑

s′ 6∈S0

πs′ (21)

→ 0, (22)

for any finite S0 ⊂ S with the last limit being as S0 ↑ S. This is a contradiction, so X must be
recurrent.

Claim 5. Results on Stationary Distribution from Summary 3.
See the proofs in G&S section 6.4.
To translate between our notation and G&S notation, define q(s, s′) =

∑

n P n
!s(s, s

′) for the taboo
probabilies P n

!s(s, s
′). Notice that M(s, s) =

∑

s′ q(s, s
′).

G&S use ρs′(s) ≡ q(s, s′) and fs,s′(n) ≡ Ps{Ts′ = n}.
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Example 6. Binomial Runs
Consider a sequence Ξ1,Ξ2, . . . of Bernoulli〈p〉 random variables.
Let Z0 = 0 and define Zn to be the length of the run of 1s looking back from time n. That is, for

sequence 00110111010001111, we get for instance Z1 = 0, Z2 = 0, Z3 = 1, Z4 = 2, Z5 = 0, Z8 = 3,
Z13 = 0, and Z17 = 4. In general, Zn = max{0 < k ≤ n : Ξn · · ·Ξn−k+1 = 1}, with Zn = 0 if the
set is empty (i.e., Ξn = 0).

Is Z a Markov chain?

Yes. The Markov Property follows because the flips are independent as can be calculated directly.
What is the state space of Z?

S = Z⊕

What are the initial distribution µ and transition probabilities P?

By definition, µ(j) = δj0. For j ≥ 0,

P (j, j + 1) = p (23)

P (j, 0) = 1 − p ≡ q. (24)

What are the communicating classes? Is Z irreducible?

Z is irreducible, meaning there is only one communicating class.
To see that P n(i, j) > 0, it suffices to find an n-step path with non-zero probability. If j > i,

choose the path is i → i + 1 → · · · → j, which has probability pj−i > 0. If j < i, choose the path
i → 0 → 1 · · · → j, which has probability qpj > 0. It follows that i ↔ j for every i, j ∈ Z⊕.
What are the periods of the communicating classes?

Because Z is irreducible, it suffices to find the period for one state. But P (0, 0) = q, so the
period is 1. Note that for a state i > 0, P n(i, i) > 0 for all n > i. Since two primes are present in
that list, d(i) = 1 as well.
Is Z recurrent?

For i ≥ 0,
O(i, 0) =

∑

n

P n(i, 0) ≥
∑

n

P n−1(i,S)q =
∑

n

q = ∞. (25)

It follows that Z is recurrent.
Is Z positive recurrent?

There are several approaches here. One is to compute M(i, i) for each i ≥ 0. This will, at the
same time, give us the stationary distribution if one exists. Another is to solve for an invariant
measure.

Let’s try the second one. If ρ = ρP , then we have for j > 0,

ρ(0) =
∑

i≥0

ρ(i)q = q (26)

ρ(j) =
∑

i≥0

ρ(i)P (i, j) = pρ(j − 1). (27)

It follows that we can take ρ(j) = pj(1 − p). So Z is positive recurrent.

What is it’s stationary distribution?

From the last calculation, we have π = ρ since ρ is a probability measure. Hence, π(j) = pj(1−p)
is the stationary distribution.

For “free,” we get that M(j, j) = p−j(1 − p)−1.
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Example 7. Walk on a Finite, Bidirectional Graph
A graph is a collection of vertices joined by edges. Let V = {v1, . . . , vm} be a collection of

vertices. Let E(v, v′) be 1 if there is an edge in the graph between v and v ′ and 0 otherwise.
Assume E(v, v′) = E(v′, v).

Let µ be a probability distribution on V. And suppose that Y0 has distribution µ.
Let P be a transition probability matrix on V that satisfies P (v, v ′) = 0 if and only if E(v, v′) = 0.

Given Yn−1 = v, let Yn have conditional distribution P (v, ·). Then, Y is a Markov chain.

What is the state space of Y ?

S = V

What are the communicating classes? Which classes are absorbing? Under what conditions is Y
irreducible?

On each connected component of the graph, there is a path in the graph between v and v ′.
If it is v → u1 → · · · → uk−1 → v′, then, P k(v, v′) ≥ P (v, u1)P (u1, u2) · · ·P (uk−1, v

′) > 0.
Across components there is no such path, so P (v, v ′) = 0 by construction. Hence, each connected
component is a communicating class. Since P (v,V − C) = 0 for every class C, every class is
absorbing. Y is irreducible if and only if the graph is connected.

Suppose P (v, v′) = E(v, v′)/
∑m

i=1 E(v, vi). Describe the long-run behavior of the chain.

The definition of P shows that for vertices in one connected component, all non-zero transition
probabilities out of that vertex are equal.

If C1, . . . , Cr are the connected components of the graph, then X1 ∈ Ci with probability µ(Ci),
and henceforth, it proceeds as an ireducible chain restricted to Ci.

Without knowing more about the edges, we cannot know the periodicity, but define di to be the
period of Ci.

Now, restrict our attention to a single communicating class, which is equivalent to considering a
connected graph.

So for the moment, treat V as connected. Define

π(v) =

∑m
i=1 E(v, vi)

∑m
i,j=1 E(vj , vi)

, (28)

for all v in the component. Then,

m
∑

j=1

π(vj)P (vj , v
′) =

m
∑

j=1

∑m
i=1 E(vj , vi)

∑m
i,k=1 E(vk, vi)

E(vj , v
′)

∑m
i=1 E(vj , vi)

(29)

=

∑m
j=1 E(vj , v

′)
∑m

i,j=1 E(vj , vi)
(30)

=

∑m
j=1 E(v′, vj)

∑m
i,j=1 E(vj , vi)

(31)

= π(v′), (32)

where the second-to-last step follows from the bi-directionality of the graph. This is a stationary
distribution, so the chain is positive recurrent. What’s the intuition for this stationary distribution?

This gives us the long-term behavior of the chain for a general, bidirectional graph.
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Example 8. Walk on a Finite, Directional Graph

As before, let V = {v1, . . . , vm} be a collection of vertices. Let E(v, v ′) be 1 if there is an
edge in the graph between v and v′ and 0 otherwise. Unlike the last case, we do not assume
E(v, v′) = E(v′, v).

Let µ be an initial distribution on V. Let P be a transition probability matrix on V that satisfies
P (v, v′) = 0 if and only if E(v, v′) = 0. Define Y = (Yn)n≥0 as before.

One approach to understanding the chain is to do the conditioning trick that we’ve used before
and apply generating functions. Let µn be the distribution of Yn.

µn(v) = µ(v)1(n=0) +
∑

v′

µn−1(v
′)P (v′, v)1(n>0). (33)

Define G(z) =
∑

n≥0 µnzn be the vector-valued generating function. Then, from the above recursion

∑

n

µnzn = µ +
∑

v′

∑

n

µn−1(v
′)znP (v′, ·) (34)

G(z) = µ + zG(z) · P. (35)

So,

G(z)(I − zP ) = µ (36)

G(z) = µ(I − zP )−1 =
∑

n≥0

znµP n, (37)

with the last assuming the inverse matrix exists. We can use this to understand both the short and
long-term behavior of the chain.

If Y is irreducible, then O(s,S) = ∞ implies that the chain is recurrent because the sum O(s,S) =
∑

s′ O(s, s′) is finite, implying at least one (and thus all) terms must be infinite. Because any
invariant measure on the finite state space will consequently be finite and hence normalizable, Y is
positive recurrent as well.

The search for a stationary distribution π corresponds to a search for eigenvectors of P with
eigenvalue 1, vectors π such that π(I − P ) = 0.

Example 9. Finite, Doubly Stochastic Chain

Suppose U = (Un)n≥0 is an irreducible Markov chain on a finite state-space S such that
∑

u P (u, u′) = 1. Because
∑

u′ P (u, u′) = 1, this implies that both the rows and columns sum
to 1. Such a matrix is called doubly stochastic.

What is the stationary distribution of the chain?

Note that for any constant c,
∑

u cP (u, u′) = c. Hence, this is an invariant measure. The unique
invariant distribution π is then just a uniform distribution on S.
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Example 10. Renewal Process and Forward Recurrence Time Chain
Consider a process Z = (Zn)n≥0 given by

Zn = Z0 +
n

∑

k=1

Ξk (38)

for iid random variables Ξi and arbitrary Z0. This is called a renewal process.
As an example, consider a critical part in a system that operates for some time and then fails.

When it fails it is replaced. Think of Ξ as the lifetime of the replacement parts and Z0 as the
lifetime of the original part. Then, Zn is the time of the nth replacement – a “renewal” of the
system.

Given a renewal process, we can define Nt = sup{n ≥ 0:Zn ≤ t}. Then, Nt is a counting process
that counts the renewals up to time t.

Suppose now that Z0 and Ξ1 take values in Z+ and have pmfs µ ≡ p
Z0

and p
Ξ
≡ p

Ξ1
. Zn is thus

a countable-state Markov chain, but not a terribly interesting one as it marches inexorably toward
∞.

But we can define two related processes that will turn out to be very interesting in general.
Define V + and V − to be, respectively, the forward and backward recurrence time chains, as follows
for n ≥ 0:

V +
n = inf{Zm − n:Zm > n} (39)

V −
n = inf{n − Zm:Zm ≤ n}. (40)

Then V +
n represents the time until the next renewal, and V −

n represents the time since the last
renewal. These are sometimes also called the residual lifetime and age processes.

Are these Markov chains? What are the state spaces?

We can check the Markov Property explicitly. But the regeneration of the system at each renewal
gives us a simple way of seeing it. When V +

n > 1, for instance, the next time is determined. When
V +

n = 1, a renewal ensues and the next time is an independent waiting time.
The state space of V + is Z+; the state space of V − is Z⊕.

What are the transition probabilities?

If V +
n = k > 1, then V +

n+1 = k − 1 by construction. If V +
n = 1, then a renewal occurs at time

n + 1, so the time until the following renewal has distribution ξ. Hence,

P (k, k − 1) = 1 for k > 1, (41)

P (1, k) = ξ(k) for k ∈ Z+. (42)

For V −, we can reason similarly. Let S
Ξ

be the survival function of Ξ1. Then,

P (k, k + 1) = P{Ξ > k + 1 | Ξ > k} =
S

Ξ
(k + 1)

S
Ξ
(k)

(43)

P (k, 0) = P{Ξ = k + 1 | Ξ > k} =
p
Ξ
(k + 1)

S
Ξ
(k)

. (44)
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Is V + irreducible? Is it recurrent?

If there exists an M ∈ Z+ such that S
Ξ
(M) = 0 and p

Ξ
(M) > 0, then all states j > M are

transient, and all states {1, . . . ,M} communicate and are recurrent since there is only a finite
number. (To see the latter, note that we can find a positive probability path between each pair of
states in this set.)

If no such M exists, then V + is irreducible. Note that for all states n > 1, P n−1
!1 (n, 1) = 1.

Hence,
R(1, 1) =

∑

n≥1

p
Ξ
(n)P n−1

!1 (n, 1) = 1. (45)

So the chain is recurrent in this case as well.

What is the long-run behavior of the chain?

Let ρ(j) =
∑

n≥1 P n
!1(1, j). Because P n

!1(1, j) = p
Ξ
(j + n − 1) for n ≥ 1, we can write

ρ(j) =
∑

n≥1

p
Ξ
(j + n − 1) =

∑

n≥j

p
Ξ
(n) = S

Ξ
(j − 1). (46)

Notice that

∑

j≥1

ρ(j)P (j, k) = ρ(1)p
Ξ
(k) + ρ(k + 1) (47)

= p
Ξ
(k) + S

Ξ
(k) (48)

= ρ(k). (49)

This invariant measure is positive (on its support) and is finite if and only if

∑

n≥1

ρ(n) =
∑

n≥1

S
Ξ
(n − 1) =

∑

n≥1

np
Ξ
(n) = EΞ1 < ∞. (50)

In this case, π(k) = ρ(k)/EΞ1 is a stationary distribution.

Idea 11. The above argument leads to an interesting idea for the countable case.
Suppose that X is recurrent, Pick a state s0 ∈ S such that it is easy to compute P n

!s0
(s0, s) for

any s ∈ S. Define
ρ(s) =

∑

n≥1

P n
!s0

(s0, s). (51)

Note that ρ(s0) = 1 because the chain is recurrent (i.e., R(s0, s0) = 1). Then, mimicking the above
argument, we get

∑

s∈S

ρ(s)P (s, s′) = ρ(s0)P (s0, s
′) +

∑

s6=s0

∑

n≥1

P n
!s0

(s0, s)P (s, s′) (52)

= P (s0, s
′) +

∑

n≥2

P n
!s0

(s0, s
′) (53)

= P!s0
(s0, s

′) +
∑

n≥2

P n
!s0

(s0, s
′) (54)

= ρ(s′). (55)
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This is finite only if

ρ(S) =
∑

s∈S

∑

n≥1

P n
!s0

(s0, s) (56)

=
∑

n≥1

∑

s∈S

P n
!s0

(s0, s) (57)

=
∑

n≥1

P n
!s0

(s0,S) (58)

=
∑

n≥1

Ps0
{Ts0

≥ n} (59)

= Es0
Ts0

(60)

< ∞, (61)

which is just the positive recurrence condition.
Hence,

π(s) =

∑

n≥1 P n
!s0

(s0, s)
∑

n≥1 P n
!s0

(s0,S)
=

1

Es0
Ts0

. (62)

We already knew the last equality, but this gives a new way of finding a stationary distribution,
using equation (51).
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