
Plan More Examples (Countable-state case)

0. Questions
1. Extended Examples
2. Ideas and Results

Next Time: General-state Markov Chains

Homework 4 typo

Unless otherwise noted, let X be an irreducible, aperiodic Markov chain on countable state-space
S with initial distribution µ and transition probabilities P .

Example 1. Walk on a Finite, Directional Graph
As before, let V = {v1, . . . , vm} be a collection of vertices. Let E(v, v ′) be 1 if there is an

edge in the graph between v and v′ and 0 otherwise. Unlike the last case, we do not assume
E(v, v′) = E(v′, v).

Let µ be an initial distribution on V. Let P be a transition probability matrix on V that
satisfies P (v, v′) = 0 if and only if E(v, v′) = 0. Define Y = (Yn)n≥0 as before.

One approach to understanding the chain is to do the conditioning trick that we’ve used before
and apply generating functions. Let µn be the distribution of Yn.

µn(v) = µ(v)1(n=0) +
∑

v′

µn−1(v
′)P (v′, v)1(n>0). (1)

Define G(z) =
∑

n≥0 µnzn be the vector-valued generating function. Then, from the above recursion

∑

n

µnzn = µ +
∑

v′

∑

n

µn−1(v
′)znP (v′, ·) (2)

G(z) = µ + zG(z) · P. (3)

So,

G(z)(I − zP ) = µ (4)

G(z) = µ(I − zP )−1 =
∑

n≥0

znµP n, (5)

with the last assuming the inverse matrix exists. We can use this to understand both the short and
long-term behavior of the chain.

If Y is irreducible, then O(s,S) = ∞ implies that the chain is recurrent because the sum
O(s,S) =

∑

s′ O(s, s′) is finite, implying at least one (and thus all) terms must be infinite. Because
any invariant measure on the finite state space will consequently be finite and hence normalizable,
Y is positive recurrent as well.

The search for a stationary distribution π corresponds to a search for eigenvectors of P with
eigenvalue 1, vectors π such that π(I − P ) = 0.
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Example 2. Finite, Doubly Stochastic Chain

Suppose U = (Un)n≥0 is an irreducible Markov chain on a finite state-space S such that
∑

u P (u, u′) = 1. Because
∑

u′ P (u, u′) = 1, this implies that both the rows and columns sum to 1.
Such a matrix is called doubly stochastic.

What is the stationary distribution of the chain?

Note that for any constant c,
∑

u cP (u, u′) = c. Hence, this is an invariant measure. The
unique invariant distribution π is then just a uniform distribution on S.

Example 3. Renewal Process and Forward Recurrence Time Chain

Consider a process Z = (Zn)n≥0 given by

Zn = Z0 +
n
∑

k=1

Ξk (6)

for iid random variables Ξi and arbitrary Z0. This is called a renewal process.

As an example, consider a critical part in a system that operates for some time and then fails.
When it fails it is replaced. Think of Ξ as the lifetime of the replacement parts and Z0 as the
lifetime of the original part. Then, Zn is the time of the nth replacement – a “renewal” of the
system.

Given a renewal process, we can define Nt = sup{n ≥ 0:Zn ≤ t}. Then, Nt is a counting
process that counts the renewals up to time t.

Suppose now that Z0 and Ξ1 take values in Z+ and have pmfs µ ≡ p
Z0

and p
Ξ
≡ p

Ξ1
. Zn is

thus a countable-state Markov chain, but not a terribly interesting one as it marches inexorably
toward ∞.

But we can define two related processes that will turn out to be very interesting in general.
Define V + and V − to be, respectively, the forward and backward recurrence time chains, as follows
for n ≥ 0:

V +
n = inf{Zm − n:Zm > n} (7)

V −
n = inf{n − Zm:Zm ≤ n}. (8)

Then V +
n represents the time until the next renewal, and V −

n represents the time since the last
renewal. These are sometimes also called the residual lifetime and age processes.

Are these Markov chains? What are the state spaces?

We can check the Markov Property explicitly. But the regeneration of the system at each
renewal gives us a simple way of seeing it. When V +

n > 1, for instance, the next time is determined.
When V +

n = 1, a renewal ensues and the next time is an independent waiting time.

The state space of V + is Z+; the state space of V − is Z⊕.
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What are the transition probabilities?

If V +
n = k > 1, then V +

n+1 = k − 1 by construction. If V +
n = 1, then a renewal occurs at time

n + 1, so the time until the following renewal has distribution ξ. Hence,

P (k, k − 1) = 1 for k > 1, (9)

P (1, k) = ξ(k) for k ∈ Z+. (10)

For V −, we can reason similarly. Let S
Ξ

be the survival function of Ξ1. Then,

P (k, k + 1) = P{Ξ > k + 1 | Ξ > k} =
S

Ξ
(k + 1)

S
Ξ
(k)

(11)

P (k, 0) = P{Ξ = k + 1 | Ξ > k} =
p
Ξ
(k + 1)

S
Ξ
(k)

. (12)

Is V + irreducible? Is it recurrent?

If there exists an M ∈ Z+ such that S
Ξ
(M) = 0 and p

Ξ
(M) > 0, then all states j > M

are transient, and all states {1, . . . ,M} communicate and are recurrent since there is only a finite
number. (To see the latter, note that we can find a positive probability path between each pair of
states in this set.)

If no such M exists, then V + is irreducible. Note that for all states n > 1, P n−1
!1 (n, 1) = 1.

Hence,
R(1, 1) =

∑

n≥1

p
Ξ
(n)P n−1

!1 (n, 1) = 1. (13)

So the chain is recurrent in this case as well.

What is the long-run behavior of the chain?

Let ρ(j) =
∑

n≥1 P n
!1(1, j). Because P n

!1(1, j) = p
Ξ
(j + n − 1) for n ≥ 1, we can write

ρ(j) =
∑

n≥1

p
Ξ
(j + n − 1) =

∑

n≥j

p
Ξ
(n) = S

Ξ
(j − 1). (14)

Notice that

∑

j≥1

ρ(j)P (j, k) = ρ(1)p
Ξ
(k) + ρ(k + 1) (15)

= p
Ξ
(k) + S

Ξ
(k) (16)

= ρ(k). (17)

This invariant measure is positive (on its support) and is finite if and only if

∑

n≥1

ρ(n) =
∑

n≥1

S
Ξ
(n − 1) =

∑

n≥1

np
Ξ
(n) = EΞ1 < ∞. (18)

In this case, π(k) = ρ(k)/EΞ1 is a stationary distribution.
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Idea 4. The above argument leads to an interesting idea for the countable case.

Suppose that X is recurrent, Pick a state s0 ∈ S such that it is easy to compute P n
!s0

(s0, s) for
any s ∈ S. Define

ρ(s) =
∑

n≥1

P n
!s0

(s0, s). (19)

Note that ρ(s0) = 1 because the chain is recurrent (i.e., R(s0, s0) = 1). Then, mimicking the above
argument, we get

∑

s∈S

ρ(s)P (s, s′) = ρ(s0)P (s0, s
′) +

∑

s6=s0

∑

n≥1

P n
!s0

(s0, s)P (s, s′) (20)

= P (s0, s
′) +

∑

n≥2

P n
!s0

(s0, s
′) (21)

= P!s0
(s0, s

′) +
∑

n≥2

P n
!s0

(s0, s
′) (22)

= ρ(s′). (23)

This is finite only if

ρ(S) =
∑

s∈S

∑

n≥1

P n
!s0

(s0, s) (24)

=
∑

n≥1

∑

s∈S

P n
!s0

(s0, s) (25)

=
∑

n≥1

P n
!s0

(s0,S) (26)

=
∑

n≥1

Ps0
{Ts0

≥ n} (27)

= Es0
Ts0

(28)

< ∞, (29)

which is just the positive recurrence condition.

Hence,

π(s) =

∑

n≥1 P n
!s0

(s0, s)
∑

n≥1 P n
!s0

(s0,S)
=

1

Es0
Ts0

. (30)

We already knew the last equality, but this gives a new way of finding a stationary distribution,
using equation (19).
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Example 5. Upper Hessenberg Transition Probabilities

Suppose S = Z⊕ and suppose the non-zero transition probabilities are of the form

P (0, k) = ak for k ≥ 0, (31)

P (j, k) = ak−j+1 for j ≥ 1, k ≥ j − 1, (32)

where (an)n≥0 is a non-negative sequence satisfying
∑

n an = 1 and
∑

n nan < ∞.

We want to determine the stability of this chain. Consider the function ∆(s) on the state
space, given by

∆(s) = E(Xn+1 − Xn | Xn = s). (33)

This tells us how much the chain “drifts” on average in one step when starting at s. Note that
because we are dealing with a time-homogeneous chain,

∆(s) = EsX1 − s =
∑

s′

P (s, s′)s′ − s. (34)

Let’s compute this function.

∆(0) =
∑

k

P (0, k)k (35)

=
∑

k

kak < ∞ (36)

∆(j) =
∑

k

P (j, k)k − j (37)

=
∞
∑

k=j−1

ak−j+1k − j (38)

=
∞
∑

k=j−1

ak−j+1(k − j + 1) +
∞
∑

k=j−1

ak−j+1(j − 1) − j (39)

=
∞
∑

n=0

nan − 1 < ∞, (40)

for j ≥ 1.

Case (i):
∑

n nan > 1.

In this case, ∆(j) > 0 for every j, hence on average in any state, we tend toward higher states.
This “positive drift” seems to suggest (though does not prove) transience.

Case (ii):
∑

n nan < 1.

In this case, ∆(0) > 0 and ∆(j) < −ε ≡
∑

n nan − 1 for all j ≥ 1. Hence, on average, whenever
the chain is away from zero, it tends to move back toward zero. This suggests recurrence.

What we can we make of this?
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Definition 6. Drift
Let V be a non-negative function on the state space (that is, V :S → R⊕). Define the drift

operator ∆X by
∆XV = PV − V. (41)

That is,

(∆XV )(s) =
∑

s′∈S

P (s, s′)V (s′)−V (s) = E(V (Xn+1)−V (Xn) | Xn = s) = Es(V (X1))−V (s). (42)

Note that, in general, ∆XV takes values in [−∞,∞].

Theorem 7. Foster’s Drift Criterion
Suppose there exists a non-negative function V :S → R⊕, an ε > 0, and a finite set S0 ⊂ S

such that

|∆XV (s)| < ∞ for s ∈ S0 (43)

∆XV (s) ≤ −ε for s 6∈ S0. (44)

Then, X is positive recurrent.
Proof

For s ∈ S0, |∆XV (s)| < ∞ implies that |PV | < ∞ on S0. Define

u[n](s) =
∑

s′

P n(s, s′)V (s′), (45)

for n ≥ 0.
Notice that for m ≥ 0,

u[m+1](s) =
∑

s′

Pm+1(s, s′)V (s′) (46)

=
∑

s′

∑

t∈S

Pm(s, t)P (t, s′)V (s′) (47)

=
∑

t∈S

Pm(s, t)
∑

s′

P (t, s′)V (s′) (48)

=
∑

t∈S

Pm(s, t)(PV )(t) (49)

=
∑

t∈S0

Pm(s, t)(PV )(t) +
∑

t6∈S0

Pm(s, t)(PV )(t) (50)

≤
∑

t∈S0

Pm(s, t)(PV )(t) +
∑

t6∈S0

Pm(s, t)(V (t) − ε) (51)

≤
∑

t∈S0

Pm(s, t)((PV )(t) + ε) +
∑

t∈S

Pm(s, t)(V (t) − ε) (52)

=
∑

t∈S0

Pm(s, t)((PV )(t) + ε) + u[m](s) − ε. (53)

This gives us an upper bound for u[m+1] − u[m]. Summing these together by telescoping gives

0 ≤ u[n+1](s) ≤ u[0](s) +
∑

t∈§
0

n
∑

m=0

Pm(s, t)(PV (t) + ε) − (n + 1)ε. (54)
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Rearranging and dividing by n + 1 gives

u[0](s)

n + 1
+
∑

t∈§
0

(

1

n + 1

n
∑

m=0

Pm(s, t)

)

(PV (t) + ε) ≥ ε. (55)

Taking limits on both sides as n → ∞ and using the fact that S0 is finite and 0 ≤ PV (t) < ∞ on
S0, gives us

lim
n→∞

1

n + 1

n
∑

m=0

Pm(s, t) > 0, (56)

for sum t ∈ S0. But it follows that (Césaro summation), that
∑

n P n(s, t) cannot converge. Hence,
X is recurrent. Positive recurrence follows as well, though somewhat more delicately.

Example 5 cont’d Upper Hessenberg Transition Probabilities
We know from the above that

∑

n nan < 1 implies that this chain is positive recurrence. What
about when

∑

n nan ≥ 1? Can we deduce transience from this?
It turns out that Foster’s criterion cannot simply be reversed. We can get the following.

Theorem 8. Suppose there exists a bounded, non-negative function V on S and r ≥ 0 such that
{s ∈ S:V (s) > r} and {s ∈ S:V (s) ≤ r} are both nonempty and

∆XV (s) > 0 if V (s) > r. (57)

Then, X is transient. The converse is also true.
The proof of this relies on a rather cute result:
Lemma Let C ⊂ S. Let h∗(s) = H(s, C) be the hitting probability of S0 from S. (Recall, the

hitting time SC is zero if the chain starts in C and is otherwise equal to TC .)
Then, if h:S → R⊕ is a solution to

∆Xh(s) ≤ 0 if s ∈ Cc (58)

∆Xh(s) ≥ 1 if s ∈ C (59)

Then, h∗ ≤ h.
Now, to the theorem, suppose that |V | ≤ M . We must have, by the conditions, that M > r.

(Why?) Define

hV (s) =

{

1 if V (s) ≤ r
M−V (s)

M−r
if V (s) > r.

(60)

Then, we can show that hV solves (58) and (59) with C = {s:V (s) ≤ r}. So h∗ ≤ hV . But then
h∗(s) ≤ hV (s) < 1 if s 6∈ C, which shows that R(s, s′) < 1 for s ∈ Cc and s′ ∈ C. Transience
follows.

Example 5 cont’d Upper Hessenberg Transition Probabilities
Can we show that

∑

n an > 1 implies transience, using the above?
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Example 9. Storage Model

Consider a storage system (dam, warehouse, insurance policy) that receives inputs at random
times but otherwise drains at a regular rate.

Let T0 = 0 and let the rest of the Tis be iid Z⊕-valued with cdf G. These are inter-arrival
times for the inputs to our storage system. Let the Sns be iid Z⊕ with cdf H. These are the
amounts input at the time Zn = T0 + · · · + Tn. Assume that the Sns and Tns are independent of
each other as well. Suppose also that the storage system “drains” or outputs at rate r between
inputs.

Define a process (Vn)n≥0 by

Vn+1 = (Vn + Sn − rTn+1)+. (61)

Here, Vn represents the contents of the storage system just before the nth input (that is, at time
Zn−).

Is V a Markov chain?

What is the structure of the transition probabilities?

What can we say about the long-run behavior of the chain?

What is special about the state {0}?

How might we generalize this model to make it more realistic?
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