Plan More Examples (Countable-state case)

- 0. Questions
- 1. Extended Examples
- 2. Ideas and Results

Next Time: General-state Markov Chains

Homework 4 typo

Unless otherwise noted, let X be an irreducible, aperiodic Markov chain on countable state-space S with initial distribution μ and transition probabilities P.

Example 1. Walk on a Finite, Directional Graph

As before, let $\mathcal{V} = \{v_1, \ldots, v_m\}$ be a collection of vertices. Let $\mathcal{E}(v, v')$ be 1 if there is an edge in the graph between v and v' and 0 otherwise. Unlike the last case, we do not assume $\mathcal{E}(v, v') = \mathcal{E}(v', v)$.

Let μ be an initial distribution on \mathcal{V} . Let P be a transition probability matrix on \mathcal{V} that satisfies P(v, v') = 0 if and only if $\mathcal{E}(v, v') = 0$. Define $Y = (Y_n)_{n \ge 0}$ as before.

One approach to understanding the chain is to do the conditioning trick that we've used before and apply generating functions. Let μ_n be the distribution of Y_n .

$$\mu_n(v) = \mu(v)\mathbf{1}_{(n=0)} + \sum_{v'} \mu_{n-1}(v')P(v',v)\mathbf{1}_{(n>0)}.$$
(1)

Define $G(z) = \sum_{n \ge 0} \mu_n z^n$ be the vector-valued generating function. Then, from the above recursion

$$\sum_{n} \mu_n z^n = \mu + \sum_{v'} \sum_{n} \mu_{n-1}(v') z^n P(v', \cdot)$$
(2)

$$\boldsymbol{G}(z) = \boldsymbol{\mu} + \boldsymbol{z}\boldsymbol{G}(z) \cdot \boldsymbol{P}.$$
(3)

So,

$$\boldsymbol{G}(z)(I-zP) = \mu \tag{4}$$

$$G(z) = \mu (I - zP)^{-1} = \sum_{n \ge 0} z^n \mu P^n,$$
(5)

with the last assuming the inverse matrix exists. We can use this to understand both the short and long-term behavior of the chain.

If Y is irreducible, then $O(s, S) = \infty$ implies that the chain is recurrent because the sum $O(s, S) = \sum_{s'} O(s, s')$ is finite, implying at least one (and thus all) terms must be infinite. Because any invariant measure on the finite state space will consequently be finite and hence normalizable, Y is positive recurrent as well.

The search for a stationary distribution π corresponds to a search for eigenvectors of P with eigenvalue 1, vectors π such that $\pi(I - P) = 0$.

Example 2. Finite, Doubly Stochastic Chain

Suppose $U = (U_n)_{n\geq 0}$ is an irreducible Markov chain on a finite state-space S such that $\sum_u P(u, u') = 1$. Because $\sum_{u'} P(u, u') = 1$, this implies that both the rows and columns sum to 1. Such a matrix is called *doubly stochastic*.

What is the stationary distribution of the chain?

Note that for any constant c, $\sum_{u} cP(u, u') = c$. Hence, this is an invariant measure. The unique invariant distribution π is then just a uniform distribution on S.

Example 3. Renewal Process and Forward Recurrence Time Chain

Consider a process $Z = (Z_n)_{n \ge 0}$ given by

$$Z_n = Z_0 + \sum_{k=1}^n \Xi_k \tag{6}$$

for IID random variables Ξ_i and arbitrary Z_0 . This is called a *renewal process*.

As an example, consider a critical part in a system that operates for some time and then fails. When it fails it is replaced. Think of Ξ as the lifetime of the replacement parts and Z_0 as the lifetime of the original part. Then, Z_n is the time of the *n*th replacement – a "renewal" of the system.

Given a renewal process, we can define $N_t = \sup\{n \ge 0 : Z_n \le t\}$. Then, N_t is a counting process that counts the renewals up to time t.

Suppose now that Z_0 and Ξ_1 take values in \mathbb{Z}_+ and have PMFs $\mu \equiv \mathsf{p}_{Z_0}$ and $\mathsf{p}_{\Xi} \equiv \mathsf{p}_{\Xi_1}$. Z_n is thus a countable-state Markov chain, but not a terribly interesting one as it marches inexorably toward ∞ .

But we can define two related processes that will turn out to be very interesting in general. Define V^+ and V^- to be, respectively, the *forward* and *backward recurrence time* chains, as follows for $n \ge 0$:

$$V_n^+ = \inf\{Z_m - n: Z_m > n\}$$
(7)

$$V_n^- = \inf\{n - Z_m : Z_m \le n\}.$$
 (8)

Then V_n^+ represents the time until the next renewal, and V_n^- represents the time since the last renewal. These are sometimes also called the *residual lifetime* and *age* processes.

Are these Markov chains? What are the state spaces?

We can check the Markov Property explicitly. But the regeneration of the system at each renewal gives us a simple way of seeing it. When $V_n^+ > 1$, for instance, the next time is determined. When $V_n^+ = 1$, a renewal ensues and the next time is an independent waiting time.

The state space of V^+ is \mathbb{Z}_+ ; the state space of V^- is \mathbb{Z}_{\oplus} .

What are the transition probabilities?

If $V_n^+ = k > 1$, then $V_{n+1}^+ = k - 1$ by construction. If $V_n^+ = 1$, then a renewal occurs at time n+1, so the time until the following renewal has distribution ξ . Hence,

$$P(k, k-1) = 1$$
 for $k > 1$, (9)

$$P(1,k) = \xi(k) \quad \text{for } k \in \mathbb{Z}_+.$$
(10)

For V^- , we can reason similarly. Let S_{Ξ} be the survival function of Ξ_1 . Then,

$$P(k, k+1) = \mathsf{P}\{\Xi > k+1 \mid \Xi > k\} = \frac{\mathsf{S}_{\Xi}(k+1)}{\mathsf{S}_{\Xi}(k)}$$
(11)

$$P(k,0) = \mathsf{P}\{\Xi = k+1 \mid \Xi > k\} = \frac{\mathsf{P}_{\Xi}(k+1)}{\mathsf{S}_{\Xi}(k)}.$$
(12)

Is V^+ irreducible? Is it recurrent?

If there exists an $M \in \mathbb{Z}_+$ such that $S_{\Xi}(M) = 0$ and $p_{\Xi}(M) > 0$, then all states j > M are transient, and all states $\{1, \ldots, M\}$ communicate and are recurrent since there is only a finite number. (To see the latter, note that we can find a positive probability path between each pair of states in this set.)

If no such M exists, then V^+ is irreducible. Note that for all states n > 1, $P_{!1}^{n-1}(n,1) = 1$. Hence,

$$R(1,1) = \sum_{n \ge 1} \mathsf{p}_{\Xi}(n) P_{!1}^{n-1}(n,1) = 1.$$
(13)

So the chain is recurrent in this case as well.

What is the long-run behavior of the chain?

Let $\rho(j) = \sum_{n \ge 1} P_{!1}^n(1, j)$. Because $P_{!1}^n(1, j) = \mathsf{p}_{\Xi}(j + n - 1)$ for $n \ge 1$, we can write

$$\rho(j) = \sum_{n \ge 1} \mathsf{p}_{\Xi}(j+n-1) = \sum_{n \ge j} \mathsf{p}_{\Xi}(n) = \mathsf{S}_{\Xi}(j-1).$$
(14)

Notice that

$$\sum_{j \ge 1} \rho(j) P(j,k) = \rho(1) \mathsf{p}_{\Xi}(k) + \rho(k+1)$$
(15)

$$=\mathsf{p}_{\!\scriptscriptstyle \Xi}(k)+\mathsf{S}_{\!\scriptscriptstyle \Xi}(k) \tag{16}$$

$$=\rho(k).\tag{17}$$

This invariant measure is positive (on its support) and is finite if and only if

$$\sum_{n \ge 1} \rho(n) = \sum_{n \ge 1} \mathsf{S}_{\Xi}(n-1) = \sum_{n \ge 1} n\mathsf{p}_{\Xi}(n) = \mathsf{E}\Xi_1 < \infty.$$
(18)

In this case, $\pi(k) = \rho(k) / \mathsf{E}\Xi_1$ is a stationary distribution.

Idea 4. The above argument leads to an interesting idea for the countable case.

Suppose that X is recurrent, Pick a state $s_0 \in S$ such that it is easy to compute $P_{!s_0}^n(s_0, s)$ for any $s \in S$. Define

$$\rho(s) = \sum_{n \ge 1} P_{!s_0}^n(s_0, s).$$
(19)

Note that $\rho(s_0) = 1$ because the chain is recurrent (i.e., $R(s_0, s_0) = 1$). Then, mimicking the above argument, we get

$$\sum_{s \in \mathcal{S}} \rho(s) P(s, s') = \rho(s_0) P(s_0, s') + \sum_{s \neq s_0} \sum_{n \ge 1} P_{!s_0}^n(s_0, s) P(s, s')$$
(20)

$$= P(s_0, s') + \sum_{n \ge 2} P_{!s_0}^n(s_0, s')$$
(21)

$$= P_{!s_0}(s_0, s') + \sum_{n \ge 2} P_{!s_0}^n(s_0, s')$$
(22)

$$=\rho(s'). \tag{23}$$

This is finite only if

$$\rho(\mathcal{S}) = \sum_{s \in \mathcal{S}} \sum_{n \ge 1} P^n_{!s_0}(s_0, s)$$
(24)

$$= \sum_{n \ge 1} \sum_{s \in \mathcal{S}} P^n_{!s_0}(s_0, s)$$
(25)

$$=\sum_{n\geq 1} P_{!s_0}^n(s_0, \mathcal{S})$$
(26)

$$= \sum_{n \ge 1} \mathsf{P}_{s_0} \{ T_{s_0} \ge n \}$$
(27)

$$=\mathsf{E}_{s_0}T_{s_0} \tag{28}$$

$$<\infty,$$
 (29)

which is just the positive recurrence condition.

Hence,

$$\pi(s) = \frac{\sum_{n \ge 1} P_{!s_0}^n(s_0, s)}{\sum_{n \ge 1} P_{!s_0}^n(s_0, \mathcal{S})} = \frac{1}{\mathsf{E}_{s_0} T_{s_0}}.$$
(30)

We already knew the last equality, but this gives a new way of finding a stationary distribution, using equation (19).

Example 5. Upper Hessenberg Transition Probabilities

Suppose $\mathcal{S} = \mathbb{Z}_{\oplus}$ and suppose the non-zero transition probabilities are of the form

$$P(0,k) = a_k \qquad \text{for } k \ge 0, \tag{31}$$

$$P(j,k) = a_{k-j+1}$$
 for $j \ge 1, k \ge j-1$, (32)

where $(a_n)_{n\geq 0}$ is a non-negative sequence satisfying $\sum_n a_n = 1$ and $\sum_n na_n < \infty$.

We want to determine the stability of this chain. Consider the function $\Delta(s)$ on the state space, given by

$$\Delta(s) = \mathsf{E}(X_{n+1} - X_n \mid X_n = s).$$
(33)

This tells us how much the chain "drifts" on average in one step when starting at s. Note that because we are dealing with a time-homogeneous chain,

$$\Delta(s) = \mathsf{E}_s X_1 - s = \sum_{s'} P(s, s') s' - s.$$
(34)

Let's compute this function.

$$\Delta(0) = \sum_{k} P(0,k)k \tag{35}$$

$$=\sum_{k}ka_{k}<\infty$$
(36)

$$\Delta(j) = \sum_{k} P(j,k)k - j \tag{37}$$

$$=\sum_{k=j-1}^{\infty} a_{k-j+1}k - j$$
(38)

$$=\sum_{k=j-1}^{\infty}a_{k-j+1}(k-j+1)+\sum_{k=j-1}^{\infty}a_{k-j+1}(j-1)-j$$
(39)

$$=\sum_{n=0}^{\infty}na_n-1<\infty,$$
(40)

for $j \ge 1$.

Case (i): $\sum_n na_n > 1$.

In this case, $\Delta(j) > 0$ for every j, hence on average in any state, we tend toward higher states. This "positive drift" seems to suggest (though does not prove) transience.

Case (ii): $\sum_n na_n < 1$.

In this case, $\Delta(0) > 0$ and $\Delta(j) < -\epsilon \equiv \sum_n na_n - 1$ for all $j \ge 1$. Hence, on average, whenever the chain is away from zero, it tends to move back toward zero. This suggests recurrence.

What we can we make of this?

Definition 6. Drift

Let V be a non-negative function on the state space (that is, $V: \mathcal{S} \to \mathbb{R}_{\oplus}$). Define the drift operator Δ_X by

$$\Delta_X V = PV - V. \tag{41}$$

That is,

$$(\Delta_X V)(s) = \sum_{s' \in \mathcal{S}} P(s, s') V(s') - V(s) = \mathsf{E}(V(X_{n+1}) - V(X_n) \mid X_n = s) = \mathsf{E}_s(V(X_1)) - V(s).$$
(42)

Note that, in general, $\Delta_X V$ takes values in $[-\infty, \infty]$.

Theorem 7. Foster's Drift Criterion

Suppose there exists a non-negative function $V: \mathcal{S} \to \mathbb{R}_{\oplus}$, an $\epsilon > 0$, and a finite set $S_0 \subset \mathcal{S}$ such that

$$|\Delta_X V(s)| < \infty \quad \text{for } s \in S_0 \tag{43}$$

$$\Delta_X V(s) \le -\epsilon \quad \text{for } s \notin S_0. \tag{44}$$

Then, X is positive recurrent. Proof

For $s \in S_0$, $|\Delta_X V(s)| < \infty$ implies that $|PV| < \infty$ on S_0 . Define

$$u^{[n]}(s) = \sum_{s'} P^n(s, s') V(s'), \tag{45}$$

for $n \ge 0$.

Notice that for $m \ge 0$,

$$u^{[m+1]}(s) = \sum_{s'} P^{m+1}(s, s') V(s')$$
(46)

$$= \sum_{s'} \sum_{t \in S} P^{m}(s, t) P(t, s') V(s')$$
(47)

$$=\sum_{t\in\mathcal{S}}P^{m}(s,t)\sum_{s'}P(t,s')V(s')$$
(48)

$$=\sum_{t\in\mathcal{S}}P^{m}(s,t)(PV)(t)$$
(49)

$$=\sum_{t\in S_0} P^m(s,t)(PV)(t) + \sum_{t\notin S_0} P^m(s,t)(PV)(t)$$
(50)

$$\leq \sum_{t \in S_0} P^m(s,t)(PV)(t) + \sum_{t \notin S_0} P^m(s,t)(V(t) - \epsilon)$$
(51)

$$\leq \sum_{t \in S_0} P^m(s,t)((PV)(t) + \epsilon) + \sum_{t \in \mathcal{S}} P^m(s,t)(V(t) - \epsilon)$$
(52)

$$= \sum_{t \in S_0} P^m(s,t)((PV)(t) + \epsilon) + u^{[m]}(s) - \epsilon.$$
(53)

This gives us an upper bound for $u^{[m+1]} - u^{[m]}$. Summing these together by telescoping gives

$$0 \le u^{[n+1]}(s) \le u^{[0]}(s) + \sum_{t \in \S_0} \sum_{m=0}^n P^m(s,t) (PV(t) + \epsilon) - (n+1)\epsilon.$$
(54)

 $28 \ {\rm Feb} \ 2006$

Rearranging and dividing by n+1 gives

$$\frac{u^{[0]}(s)}{n+1} + \sum_{t \in \S_0} \left(\frac{1}{n+1} \sum_{m=0}^n P^m(s,t) \right) (PV(t) + \epsilon) \ge \epsilon.$$
(55)

Taking limits on both sides as $n \to \infty$ and using the fact that S_0 is finite and $0 \le PV(t) < \infty$ on S_0 , gives us

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{m=0}^{n} P^m(s,t) > 0,$$
(56)

for sum $t \in S_0$. But it follows that (Césaro summation), that $\sum_n P^n(s,t)$ cannot converge. Hence, X is recurrent. Positive recurrence follows as well, though somewhat more delicately.

Example 5 cont'd Upper Hessenberg Transition Probabilities

We know from the above that $\sum_n na_n < 1$ implies that this chain is positive recurrence. What about when $\sum_n na_n \ge 1$? Can we deduce transience from this?

It turns out that Foster's criterion cannot simply be reversed. We can get the following.

Theorem 8. Suppose there exists a bounded, non-negative function V on S and $r \ge 0$ such that $\{s \in S: V(s) > r\}$ and $\{s \in S: V(s) \le r\}$ are both nonempty and

$$\Delta_X V(s) > 0 \qquad \text{if } V(s) > r. \tag{57}$$

Then, X is transient. The converse is also true.

The proof of this relies on a rather cute result:

Lemma Let $C \subset S$. Let $h_*(s) = H(s, C)$ be the hitting probability of S_0 from S. (Recall, the hitting time S_C is zero if the chain starts in C and is otherwise equal to T_C .)

Then, if $h: \mathcal{S} \to \mathbb{R}_{\oplus}$ is a solution to

$$\Delta_X h(s) \le 0 \text{ if } s \in C^c \tag{58}$$

$$\Delta_X h(s) \ge 1 \quad \text{if } s \in C \tag{59}$$

Then, $h \le h$.

Now, to the theorem, suppose that $|V| \leq M$. We must have, by the conditions, that M > r. (Why?) Define

$$h_V(s) = \begin{cases} 1 & \text{if } V(s) \le r\\ \frac{M-V(s)}{M-r} & \text{if } V(s) > r. \end{cases}$$

$$\tag{60}$$

Then, we can show that h_V solves (58) and (59) with $C = \{s: V(s) \leq r\}$. So $h_* \leq h_V$. But then $h_*(s) \leq h_V(s) < 1$ if $s \notin C$, which shows that R(s, s') < 1 for $s \in C^c$ and $s' \in C$. Transience follows.

Example 5 cont'd Upper Hessenberg Transition Probabilities

Can we show that $\sum_n a_n > 1$ implies transience, using the above?

Example 9. Storage Model

Consider a storage system (dam, warehouse, insurance policy) that receives inputs at random times but otherwise drains at a regular rate.

Let $T_0 = 0$ and let the rest of the T_i s be IID \mathbb{Z}_{\oplus} -valued with CDF G. These are inter-arrival times for the inputs to our storage system. Let the S_n s be IID \mathbb{Z}_{\oplus} with CDF H. These are the amounts input at the time $Z_n = T_0 + \cdots + T_n$. Assume that the S_n s and T_n s are independent of each other as well. Suppose also that the storage system "drains" or outputs at rate r between inputs.

Define a process $(V_n)_{n>0}$ by

$$V_{n+1} = (V_n + S_n - rT_{n+1})_+.$$
(61)

Here, V_n represents the contents of the storage system just before the *n*th input (that is, at time Z_n -).

Is V a Markov chain?

What is the structure of the transition probabilities?

What can we say about the long-run behavior of the chain?

What is special about the state $\{0\}$?

How might we generalize this model to make it more realistic?