
Plan More Examples (Countable-state case)

0. Questions
1. Extended Examples
2. Drift
3. Reversibility

Next Time: General-state Markov Chains

Midterm Exam: Tuesday 28 March in class
Homework 4 typo: #1 G&S 6.1, 7–9.

Unless otherwise noted, let X be an irreducible, aperiodic Markov chain on countable state-space
S with initial distribution µ and transition probabilities P .

Example 1. Renewal Process and Forward Recurrence Time Chain
Consider a process Z = (Zn)n≥0 given by

Zn = Z0 +
n
∑

k=1

Ξk (1)

for iid random variables Ξi and arbitrary Z0. This is called a renewal process.
As an example, consider a critical part in a system that operates for some time and then fails.

When it fails it is replaced. Think of Ξ as the lifetime of the replacement parts and Z0 as the
lifetime of the original part. Then, Zn is the time of the nth replacement – a “renewal” of the
system.

Given a renewal process, we can define Nt = sup{n ≥ 0:Zn ≤ t}. Then, Nt is a counting
process that counts the renewals up to time t.

Suppose now that Z0 and Ξ1 take values in Z+ and have pmfs µ ≡ pZ0
and pΞ ≡ pΞ1

. Zn is
thus a countable-state Markov chain, but not a terribly interesting one as it marches inexorably
toward ∞.

But we can define two related processes that will turn out to be very interesting in general.
Define V + and V − to be, respectively, the forward and backward recurrence time chains, as follows
for n ≥ 0:

V +
n = inf{Zm − n:Zm > n} (2)

V −
n = inf{n − Zm:Zm ≤ n}. (3)

Then V +
n represents the time until the next renewal, and V −

n represents the time since the last
renewal. These are sometimes also called the residual lifetime and age processes.

Are these Markov chains? What are the state spaces?

We can check the Markov Property explicitly. But the regeneration of the system at each
renewal gives us a simple way of seeing it. When V +

n > 1, for instance, the next time is determined.
When V +

n = 1, a renewal ensues and the next time is an independent waiting time.
The state space of V + is Z+; the state space of V − is Z⊕.
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What are the transition probabilities?

If V +
n = k > 1, then V +

n+1 = k − 1 by construction. If V +
n = 1, then a renewal occurs at time

n + 1, so the time until the following renewal has distribution ξ. Hence,

P (k, k − 1) = 1 for k > 1, (4)

P (1, k) = ξ(k) for k ∈ Z+. (5)

For V −, we can reason similarly. Let SΞ be the survival function of Ξ1. Then,

P (k, k + 1) = P{Ξ > k + 1 | Ξ > k} =
SΞ(k + 1)

SΞ(k)
(6)

P (k, 0) = P{Ξ = k + 1 | Ξ > k} =
pΞ(k + 1)

SΞ(k)
. (7)

Is V + irreducible? Is it recurrent?

If there exists an M ∈ Z+ such that SΞ(M) = 0 and pΞ(M) > 0, then all states j > M
are transient, and all states {1, . . . ,M} communicate and are recurrent since there is only a finite
number. (To see the latter, note that we can find a positive probability path between each pair of
states in this set.)

If no such M exists, then V + is irreducible. Note that for all states n > 1, P n−1
!1 (n, 1) = 1.

Hence,
R(1, 1) =

∑

n≥1

pΞ(n)P n−1
!1 (n, 1) = 1. (8)

So the chain is recurrent in this case as well.

What is the long-run behavior of the chain?

Let ρ(j) =
∑

n≥1 P n
!1(1, j). Because P n

!1(1, j) = pΞ(j + n − 1) for n ≥ 1, we can write

ρ(j) =
∑

n≥1

pΞ(j + n − 1) =
∑

n≥j

pΞ(n) = SΞ(j − 1). (9)

Notice that

∑

j≥1

ρ(j)P (j, k) = ρ(1)pΞ(k) + ρ(k + 1) (10)

= pΞ(k) + SΞ(k) (11)

= ρ(k). (12)

This invariant measure is positive (on its support) and is finite if and only if

∑

n≥1

ρ(n) =
∑

n≥1

SΞ(n − 1) =
∑

n≥1

npΞ(n) = EΞ1 < ∞. (13)

In this case, π(k) = ρ(k)/EΞ1 is a stationary distribution.
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Idea 2. The above argument leads to an interesting idea for the countable case.
Suppose that X is recurrent, Pick a state s0 ∈ S such that it is easy to compute P n

!s0
(s0, s) for

any s ∈ S. Define
ρ(s) =

∑

n≥1

P n
!s0

(s0, s). (14)

Note that ρ(s0) = 1 because the chain is recurrent (i.e., R(s0, s0) = 1). Then, mimicking the above
argument, we get

∑

s∈S

ρ(s)P (s, s′) = ρ(s0)P (s0, s
′) +

∑

s6=s0

∑

n≥1

P n
!s0

(s0, s)P (s, s′) (15)

= P (s0, s
′) +

∑

n≥2

P n
!s0

(s0, s
′) (16)

= P!s0
(s0, s

′) +
∑

n≥2

P n
!s0

(s0, s
′) (17)

= ρ(s′). (18)

This is finite only if

ρ(S) =
∑

s∈S

∑

n≥1

P n
!s0

(s0, s) (19)

=
∑

n≥1

∑

s∈S

P n
!s0

(s0, s) (20)

=
∑

n≥1

P n
!s0

(s0,S) (21)

=
∑

n≥1

Ps0
{Ts0

≥ n} (22)

= Es0
Ts0

(23)

< ∞, (24)

which is just the positive recurrence condition.
Hence,

π(s) =

∑

n≥1 P n
!s0

(s0, s)
∑

n≥1 P n
!s0

(s0,S)
=

1

Es0
Ts0

. (25)

We already knew the last equality, but this gives a new way of finding a stationary distribution,
using equation (14).
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Example 3. And now, for something completely different
Define a Markov chain on {1, . . . , 6} with transition probability matrix

P =

















0.5 0.5 0 0 0 0
0.5 0.5 0 0 0 0
0 0 1/3 2/3 0 0
0 0 2/3 1/3 0 0
0 0 0 0 1 0

1/6 1/6 1/6 1/6 1/6 1/6

















(26)

Let’s go to town.
What are the communicating classes? Are they each absorbing or not? Recurrent or transient?

What is the limiting behavior of the chain corresponding to each class? What does this say about

the long-run behavior of the chain itself? What can we say about the transient class? What is

limn→∞ P n?

Let D denote the set of states in non-absorbing communicating classes. Let C1, . . . , Cm be the
absorbing communicating classes. Let hr(i) = H(i, Cr) for i ∈ S. By conditioning on the first step,
we get for i ∈ D taht

hr(i) =
∑

j∈Cr

P (i, j) +
∑

j∈D

P (i, j)hr(j). (27)

hr is a non-negative solution to this equation. It can be shown (by induction on time n) that hr is
the smallest non-negative solution of this equation.

Intuitively, what should limn→∞ P n(i, j) be for i ∈ D and j ∈ Cr, assuming Cr is aperiodic?
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Example 4. Upper Hessenberg Transition Probabilities

Suppose S = Z⊕ and suppose the non-zero transition probabilities are of the form

P (0, k) = ak for k ≥ 0, (28)

P (j, k) = ak−j+1 for j ≥ 1, k ≥ j − 1, (29)

where (an)n≥0 is a non-negative sequence satisfying
∑

n an = 1 and
∑

n nan < ∞.

We want to determine the stability of this chain. Consider the function ∆(s) on the state
space, given by

∆(s) = E(Xn+1 − Xn | Xn = s). (30)

This tells us how much the chain “drifts” on average in one step when starting at s. Note that
because we are dealing with a time-homogeneous chain,

∆(s) = EsX1 − s =
∑

s′

P (s, s′)s′ − s. (31)

Let’s compute this function.

∆(0) =
∑

k

P (0, k)k (32)

=
∑

k

kak < ∞ (33)

∆(j) =
∑

k

P (j, k)k − j (34)

=
∞
∑

k=j−1

ak−j+1k − j (35)

=
∞
∑

k=j−1

ak−j+1(k − j + 1) +
∞
∑

k=j−1

ak−j+1(j − 1) − j (36)

=
∞
∑

n=0

nan − 1 < ∞, (37)

for j ≥ 1.

Case (i):
∑

n nan > 1.

In this case, ∆(j) > 0 for every j, hence on average in any state, we tend toward higher states.
This “positive drift” seems to suggest (though does not prove) transience.

Case (ii):
∑

n nan < 1.

In this case, ∆(0) > 0 and ∆(j) < −ε ≡ ∑

n nan − 1 for all j ≥ 1. Hence, on average, whenever
the chain is away from zero, it tends to move back toward zero. This suggests recurrence.

What we can we make of this?
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Definition 5. Drift
Let V be a non-negative function on the state space (that is, V :S → R⊕). Define the drift

operator ∆X by

∆XV = PV − V. (38)

That is,

(∆XV )(s) =
∑

s′∈S

P (s, s′)V (s′)−V (s) = E(V (Xn+1)−V (Xn) | Xn = s) = Es(V (X1))−V (s). (39)

Note that, in general, ∆XV takes values in [−∞,∞]. When the chain is understood, I’ll use ∆
instead of ∆X .

Theorem 6. Foster’s Drift Criterion
Suppose there exists a non-negative function V :S → R⊕, an ε > 0, and a finite set S0 ⊂ S

such that

|∆XV (s)| < ∞ for s ∈ S0 (40)

∆XV (s) ≤ −ε for s 6∈ S0. (41)

Then, X is positive recurrent.
Proof

For s ∈ S0, |∆XV (s)| < ∞ implies that |PV | < ∞ on S0. Define

u[n](s) =
∑

s′

P n(s, s′)V (s′), (42)

for n ≥ 0.
Notice that for m ≥ 0,

u[m+1](s) =
∑

s′

Pm+1(s, s′)V (s′) (43)

=
∑

s′

∑

t∈S

Pm(s, t)P (t, s′)V (s′) (44)

=
∑

t∈S

Pm(s, t)
∑

s′

P (t, s′)V (s′) (45)

=
∑

t∈S

Pm(s, t)(PV )(t) (46)

=
∑

t∈S0

Pm(s, t)(PV )(t) +
∑

t6∈S0

Pm(s, t)(PV )(t) (47)

≤
∑

t∈S0

Pm(s, t)(PV )(t) +
∑

t6∈S0

Pm(s, t)(V (t) − ε) (48)

≤
∑

t∈S0

Pm(s, t)((PV )(t) + ε) +
∑

t∈S

Pm(s, t)(V (t) − ε) (49)

=
∑

t∈S0

Pm(s, t)((PV )(t) + ε) + u[m](s) − ε. (50)
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This gives us an upper bound for u[m+1] − u[m]. Summing these together by telescoping gives

0 ≤ u[n+1](s) ≤ u[0](s) +
∑

t∈§0

n
∑

m=0

Pm(s, t)(PV (t) + ε) − (n + 1)ε. (51)

Rearranging and dividing by n + 1 gives

u[0](s)

n + 1
+
∑

t∈§0

(

1

n + 1

n
∑

m=0

Pm(s, t)

)

(PV (t) + ε) ≥ ε. (52)

Taking limits on both sides as n → ∞ and using the fact that S0 is finite and 0 ≤ PV (t) < ∞ on
S0, gives us

lim
n→∞

1

n + 1

n
∑

m=0

Pm(s, t) > 0, (53)

for sum t ∈ S0. But it follows that (Césaro summation), that
∑

n P n(s, t) cannot converge. Hence,
X is recurrent. Positive recurrence follows as well, though somewhat more delicately.

Example 4 cont’d Upper Hessenberg Transition Probabilities
We know from the above that

∑

n nan < 1 implies that this chain is positive recurrence. What
about when

∑

n nan ≥ 1? Can we deduce transience from this?
It turns out that Foster’s criterion cannot simply be reversed. We can get the following.

Theorem 7. X is transient if and only if there exists a bounded, non-negative function V on S
and r ≥ 0 such that {s ∈ S:V (s) > r} and {s ∈ S:V (s) ≤ r} are both nonempty and

∆V (s) > 0 if V (s) > r. (54)

(Recall that we have assumed here that X is an irreducible chain with countable state space.)
The proof of this relies on a rather cute result:
Lemma Let C ⊂ S. Let h∗(s) = H(s, C) be the hitting probability of C from s. (Recall, the

hitting time SC is zero if the chain starts in C and is otherwise equal to TC .)
Then, if h:S → R⊕ is a solution to

∆h(s) ≤ 0 if s ∈ Cc (55)

h(s) ≥ 1 if s ∈ C (56)

Then, h∗ ≤ h.
Now, to the theorem, suppose that |V | ≤ M . We must have, by the conditions, that M > r.

(Why?) Define

hV (s) =

{

1 if V (s) ≤ r
M−V (s)

M−r if V (s) > r.
(57)

Then, we can show that hV solves (55) and (56) with C = {s:V (s) ≤ r}. So h∗ ≤ hV . But then
h∗(s) ≤ hV (s) < 1 if s 6∈ C, which shows that R(s, s′) < 1 for s ∈ Cc and s′ ∈ C. Transience
follows.

Example 4 cont’d Upper Hessenberg Transition Probabilities
Can we show that

∑

n an > 1 implies transience, using the above?
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Example 8. Random Walks
We’ve already seen that the one-dimensional random walk is recurrent. To see that it’s null

recurrent, note that the transition probabilities are doubly stochastic. (Why?) So, ρ = ρP has a
solution ρ(i) ≡ 1. This is not normalizable, so the chain is null recurrent.

Let’s consider the case of a symmetric, two dimensional random walk which moves up, down,
left, or right with probability 1/4 each. The chain is irreducible because we can find a non-zero
probability path from any one state to another. It is also has period 2 for the same reason as in
the one-dimensional case.

Thus, to assess the recurrence of the chain, we can look at only one point, let’s say 0. We
know, then, that P 2n+1(0, 0) = 0 for all n ≥ 0 and, by considering all paths two and from zero, we
get that

P 2n(0, 0) =
∑

i,j
i+j=n

(2n)!

i!j!i!j!

(

1

4

)2n

. (58)

Why?
Our goal is to compute

∑

m Pm(0, 0) to test recurrence for the chain. By multiplying P 2n(0, 0)
by (n!)2/(n!)2, we get

∑

m

Pm(0, 0) =
∑

n

P 2n(0, 0) (59)

=
∑

n

∑

i,j
i+j=n

(2n)!

i!j!i!j!

(

1

4

)2n

(60)

=
∑

n

n
∑

i=0

(2n)!

i!(n − i)!i!(n − i)!

(

1

4

)2n

(61)

=
∑

n

4−2n

(

2n

n

)

n
∑

i=0

(

n

i

)(

n

i

)

(62)

=
∑

n

4−2n

(

2n

n

)

n
∑

i=0

(

n

i

)(

n

n − i

)

(63)

=
∑

n

4−2n

(

2n

n

)(

2n

n

)

(why?) (64)

∼
∑

n

1

πn
(65)

= ∞. (66)

The penultimate equation follows by Stirling’s approximation n! ∼ √
nnne−n

√
2π, from which

(2n
n

)

∼ 22n/
√

πn. Hence, the chain is recurrent, and because again the matrix is doubly stochastic,
the invariant measure has infinite mass. The chain is thus positive recurrent.

Next, consider three dimensional case. Using the same logic, we have that

∑

m

Pm(0, 0) =
∑

n

P 2n(0, 0) (67)

=
∑

n

∑

i,j
0≤i+j≤n

(2n)!

i!j!(n − i − j)!i!j!(n − i − j)!

(

1

6

)2n

(68)
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=
∑

n

2−2n

(

2n

n

)

∑

i,j
0≤i+j≤n

(

n

i j

)(

n

i j

)

3−2n (69)

≤
∑

n

2−2n

(

2n

n

)

cn3−n
∑

i,j
0≤i+j≤n

(

n

i j

)

3−n (70)

=
∑

n

2−2n

(

2n

n

)

cn3−n, (71)

where cn = max
i,j

0≤i+j≤n

(

n

i j

)

. We can show that cn ∼
( n
n/3 n/3

)

. We thus get that

P 2n(0, 0) ≤ 2−2n

(

2n

n

)

n!

(n/3)!(n/3)!(n/3)!
3−n ∼ Cn−3/2, (72)

by Stirling’s approximation. Thus, the chain is transient.
One more thing about these symmetric random walks in d dimensions. Consider a non-negative

function V on the state space and let ∆ be the drift operator ∆V = PV − V for the chain. When
d = 1,

∆V (i) =
1

2
(V (i + 1) + V (i − 1)) − V (i) (73)

=
V (i + 1) − 2V (i) + V (i − 1)

2
(74)

=
(V (i + 1) − V (i)) − (V (i) − V (i − 1))

2
. (75)

In general, we have that

∆V (i1, . . . , id) = (76)

1

d

d
∑

k=1

V (i1, . . . , ik−1, ik + 1, ik+1, . . . , id) − 2V (i1, . . . , id) + V (i1, . . . , ik−1, ik − 1, ik+1, . . . , id)

2
, (77)

which looks much worse than it is.
The operator ∆ is a normalized (by 1/d) version of an operator called the discrete Laplacian

because on finer and finer grids, it approximates the standard Laplacian differential operator ∆ =
∇ · ∇ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. Thus, the behavior of random walks on Euclidean space
connects quite deeply to the solutions of differential equations.

For example, the existence of bounded functions V with ∆V satisfying certain inequalities
corresponds to recurrence or transience of the chain. As another example, consider a region S0 ⊂ S
with boundary points ∂S0. If f is a function on S0 such that ∆f = 0 on S0 − ∂S0 and f = g on
∂S0, then f(s) = Esg(XT∂S0

).
So for example, in the one-dimensional symmetric random walk. Let S0 = {0, . . . ,m} and let

g(0) = 1 and g(m) = 0. Then, the solution f gives the Gambler’s ruin probabilities for every initial
wealth. But solutions are just of the form

f(s) = 1 − s

m
(78)

by direct calculation.
We can even state a general theorem in this case.
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Theorem 9. Let X be a symmetric random walk on S = Z
d. Let S0 ⊂ S have boundary ∂S0.

Then, ∆ restricted to S0 corresponds to a symmetric matrix on S0 and thus has eigenvalues (λk)
and eigenfunctions (φk) and the solution to the above problem takes the form

f(s) =
1

d

∑

k







∑

u∈S0,v∈∂S0
u,vadjacent

φk(u)g(v)







φk(s)

λk
. (79)

Again, this looks bad, but don’t worry about the details. The key point is that given the
computable properties of the operator ∆ and given boundary conditions, we can find what we need
quite simply.

In the example above, we computed the solution by inspection because a linear function has
zero second differences. But we can use the above theorem as well.

We can find by direct computation that

φk(j) =

√

2

m
sin

πjk

m
(80)

and λk = 1 − cos πk/m. Then, using the above equation, we get

f(j) =
1

m

m−1
∑

k=1

sin πk
m sin πkj

m

1 − cos πk
m

= 1 − j

m
, (81)

as we found.
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Example 10. Storage Model

Consider a storage system (dam, warehouse, insurance policy) that receives inputs at random
times but otherwise drains at a regular rate.

Let T0 = 0 and let the rest of the Tis be iid Z⊕-valued with cdf G. These are inter-arrival
times for the inputs to our storage system. Let the Sns be iid Z⊕ with cdf H. These are the
amounts input at the time Zn = T0 + · · · + Tn. Assume that the Sns and Tns are independent of
each other as well. Suppose also that the storage system “drains” or outputs at rate r between
inputs.

Define a process (Vn)n≥0 by

Vn+1 = (Vn + Sn − rTn+1)+. (82)

Here, Vn represents the contents of the storage system just before the nth input (that is, at time
Zn−).

Is V a Markov chain?

What is the structure of the transition probabilities?

What can we say about the long-run behavior of the chain?

What is special about the state {0}?

How might we generalize this model to make it more realistic?
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