
Plan Group Work

0. The title says it all

Next Time: MCMC and General-state Markov Chains

Midterm Exam: Tuesday 28 March in class
Homework 4 due Thursday

Unless otherwise noted, let X be an irreducible, aperiodic Markov chain on countable state-space
S with initial distribution µ and transition probabilities P .

You are free to use the Reference items at the end. Note in particular Reference 11 which
strengthens the condition we saw last time.

Example 1. Define a Markov chain on {1, . . . , 6} with transition probability matrix

P =

















0.5 0 0.5 0 0 0
0.25 0.5 0.25 0 0 0
0.5 0 0.5 0 0 0
0 0 0 0.25 0.75 0
0 0 0 0.5 0.5 0
0 0 0.25 0.25 0 0.5

















(1)

Tell me everything you can about this chain.

Example 2. Define a Markov chain on {1, . . . , 6} with transition probability matrix

P =

















0 0 0.4 0.6 0 0
0 0 0.4 0.6 0 0
0 0 0 0 0.25 0.75
0 0 0 0 0.25 0.75

0.8 0.2 0 0 0 0
0.8 0.2 0 0 0 0

















(2)

Tell me everything you can about this chain.

Example 3. A Queueing Example
Let (uk)k≥0 be a non-negative sequence with

∑

k uk = 1. Let Zn, for n ≥ 0, denote the length
of a queue at time n, where at each time, one customer arrives and k customers are served with
probability uk, if there are at least k in the queue.

Then Z is a Markov chain on Z⊕.
(a) Find its transition probabilities.
(b) Decompose the state space
(c) Find the period of each communicating class.
(d) Find conditions for recurrence or transience of the chain.
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Example 4. Consider a Markov chain with two states and transition probabilities

P =

[

p 1 − p
1 − p p

]

(3)

Show by induction that

P n =

[ 1

2
+ 1

2
(2p − 1)n 1

2
− 1

2
(2p − 1)n

1

2
− 1

2
(2p − 1)n 1

2
+ 1

2
(2p − 1)n

]

(4)

What’s the limiting distribution of this chain?

Example 5.

Consider the following model for the diffusion of gas. Suppose that M molecules are distributed
between two chambers that are separated by a permeable boundary. At each time, one of the
molecules – with all equally likely to be chosen – crosses the boundary from one chamber to the
other.

Tell me everything you can about this process.

Example 6.

Consider non-negative sequences pi, qi, and ri for i ≥ 0 satisfying

q0 = 0 (5)

r0 + p0 = 1 (6)

qi + ri + pi = 1 for i > 0 (7)

Define a random walk on the integers with transition matrix

P (i, i − 1) = qi P (i, i) = ri P (i, i + 1) = pi, (8)

and all other entries zero.
Let α0 = 1 and αn =

q1 · · · qn

p1 · · · pn
. Show that the chain is transient if

∑

n αn < ∞ and recurrent

if
∑

n αn = ∞.
As an optional addition, show that the chain is positive recurrent if

∑

n p0/(αnpn) < ∞.

Example 7. A spider is hunting a fly, and the fly is trying to survive. The spider starts in
location 1 and moves between locations 1 and 2 according to the Markov transitions

P =

[

0.7 0.3
0.3 0.7

]

. (9)

The fly starts in location 2 and moves between the locations with transitions

P =

[

0.4 0.6
0.4 0.6

]

. (10)

The hunt ends if the two ever land on the same location, in which case the fly is eaten.
Show that this progress of the hunt can be described (except for knowing at which location the

hunt ends) by a three-state Markov chain. Find the transition probabilities for this chain. What
is the expected duration of the hunt?
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Example 8.

Consider a symmetric random walk in d dimensions.
The drift operator ∆ = PV − V for this chain is a normalized (by 1/d) version of an operator

called the discrete Laplacian because on finer and finer grids, it approximates the standard Lapla-
cian differential operator ∆ = ∇ · ∇ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. Thus, the behavior of random
walks on Euclidean space connects quite deeply to the solutions of differential equations.

For example, we’ve seen that the existence of bounded functions V with ∆V satisfying certain
inequalities corresponds to recurrence or transience of the chain. As another example, consider a
region S0 ⊂ S with boundary points ∂S0. If f is a function on S0 such that ∆f = 0 on S0 − ∂S0

and f = g on ∂S0, then f(s) = Esg(XT∂S0
).

So for example, in the one-dimensional symmetric random walk. Let S0 = {0, . . . ,m} and let
g(0) = 1 and g(m) = 0. Then, the solution f gives the Gambler’s ruin probabilities for every initial
wealth. But solutions are just of the form

f(s) = 1 − s

m
(11)

by direct calculation.
(a) What is ∆ for the 1 dimensional random walk? Express it in terms that are reminiscent of

the continuous Laplacian describd above. See Reference 13 to check your answer, but don’t look
before trying it.

Note that we can think of ∆ as an operator or as a matrix. What does the matrix look like in
the one-dimensional case?

(b) In the Gambler’s ruin example above, we computed the solution by inspection because a
linear function has zero second differences. But we can use the theorem in Reference 14 as well.

Show that

φk(j) =

√

2

m
sin

πjk

m
(12)

is an eigenfunction (of the operator, or equivalently eigenvector of the matrix form) with eigenvalue
λk = 1 − cos πk/m.

Then, using the equation in the theorem, we get we get

f(j) =
1

m

m−1
∑

k=1

sin πk
m sin πkj

m

1 − cos πk
m

= 1 − j

m
, (13)

as we found above.
(c) Now, let d = 2 and let S0 ⊂ S be a finite set with boundary points ∂S0. We want to show

here that if f is a function on S0 such that ∆f = 0 on Interior(S0) ≡ S0 − ∂S0 and f = g on ∂S0,
then f(s) = Esg(XT∂S0

). We’ll do this in several steps.

i. Draw a picture of a region S0 satisfying the conditions above.
ii. If s ∈ S0, then there are two possibilities, either the chain stays in Interior(S0) forever or it

hits the boundary ∂S0. Show that the latter has probability 1.
iii. Let U = g(XT∂S0

). For any s ∈ S, let sN , sE , sW , sS denote the neighbors of s (to the “north”,
“east”, “west”, and “south”, respectively). By conditioning on the first step, show that

EsU =
1

4
EsN

U +
1

4
EsE

U +
1

4
EsS

U +
1

4
EsW

U. (14)

iv. Show f , defined above, satisfies ∆f = 0 on Interior(S0) and f = g on ∂S0.
v. What can you say about the uniqueness of this solution?
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Example 9. Storage Model
Consider a storage system (dam, warehouse, insurance policy) that receives inputs at random

times but otherwise drains at a regular rate.
Let T0 = 0 and let the rest of the Tis be iid Z⊕-valued with cdf G. These are inter-arrival

times for the inputs to our storage system. Let the Sns be iid Z⊕ with cdf H. These are the
amounts input at the time Zn = T0 + · · · + Tn. Assume that the Sns and Tns are independent of
each other as well. Suppose also that the storage system “drains” or outputs at rate r between
inputs.

Define a process (Vn)n≥0 by

Vn+1 = (Vn + Sn − rTn+1)+. (15)

Here, Vn represents the contents of the storage system just before the nth input (that is, at time
Zn−).
Is V a Markov chain?

What is the structure of the transition probabilities?

What can we say about the long-run behavior of the chain?

What is special about the state {0}?

How might we generalize this model to make it more realistic?
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Reference 10.

Let D denote the set of states in non-absorbing communicating classes and C1, . . . , Cm be the
absorbing communicating classes in the usual state decomposition.

Let hr(s) = H(s, Cr) for i ∈ S. By conditioning on the first step, we get for i ∈ D that

hr(s) =
∑

s′∈Cr

P (s, s′) +
∑

u∈D

P (s, u)hr(u). (16)

Hence, hr is a non-negative solution to this equation. It can be shown (by induction on time n)
that hr is the smallest non-negative solution of this equation.

Let s ∈ D and s′ ∈ Cr for some r. Then,

• If Cr is transient or null recurrent, lim
n→∞

P n(s, s′) = 0.

• If Cr is positive recurrent and aperiodic, lim
n→∞

P n(s, s′) = πr(s
′)hr(s), where πr is the stationary

distribution for the chain restricted to Cr.
• If Cr is positive recurrent and periodic with period dr

lim
n→∞

1

n

n
∑

m=0

P n(s, s′) = πr(s
′)hr(s) (17)

as above, but P n(s, s′) itself does not converge.

Reference 11. Another Drift Criterion for Transience
Let Z be an irreducible, countable-state Markov chain on S with drift operator ∆. Then, Z is

transient if and only if there exists an s0 ∈ S and a bounded, nonconstant function V such that

∆V (s) = 0 for s 6= s0. (18)

Reference 12. Random Walks
We’ve already seen that the one-dimensional random walk is recurrent. To see that it’s null

recurrent, note that the transition probabilities are doubly stochastic. (Why?) So, ρ = ρP has a
solution ρ(i) ≡ 1. This is not normalizable, so the chain is null recurrent.

Let’s consider the case of a symmetric, two dimensional random walk which moves up, down,
left, or right with probability 1/4 each. The chain is irreducible because we can find a non-zero
probability path from any one state to another. It is also has period 2 for the same reason as in
the one-dimensional case.

Thus, to assess the recurrence of the chain, we can look at only one point, let’s say 0. We
know, then, that P 2n+1(0, 0) = 0 for all n ≥ 0 and, by considering all paths two and from zero, we
get that

P 2n(0, 0) =
∑

i,j
i+j=n

(2n)!

i!j!i!j!

(

1

4

)2n

. (19)

Why?
Our goal is to compute

∑

m Pm(0, 0) to test recurrence for the chain. By multiplying P 2n(0, 0)
by (n!)2/(n!)2, we get

∑

m

Pm(0, 0) =
∑

n

P 2n(0, 0) (20)
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=
∑

n

∑

i,j
i+j=n

(2n)!

i!j!i!j!

(

1

4

)2n

(21)

=
∑

n

n
∑

i=0

(2n)!

i!(n − i)!i!(n − i)!

(

1

4

)2n

(22)

=
∑

n

4−2n

(

2n

n

)

n
∑

i=0

(

n

i

)(

n

i

)

(23)

=
∑

n

4−2n

(

2n

n

)

n
∑

i=0

(

n

i

)(

n

n − i

)

(24)

=
∑

n

4−2n

(

2n

n

)(

2n

n

)

(why?) (25)

∼
∑

n

1

πn
(26)

= ∞. (27)

The penultimate equation follows by Stirling’s approximation n! ∼ √
nnne−n

√
2π, from which

(

2n
n

)

∼ 22n/
√

πn. Hence, the chain is recurrent, and because again the matrix is doubly stochastic,
the invariant measure has infinite mass. The chain is thus positive recurrent.

Next, consider three dimensional case. Using the same logic, we have that

∑

m

Pm(0, 0) =
∑

n

P 2n(0, 0) (28)

=
∑

n

∑

i,j
0≤i+j≤n

(2n)!

i!j!(n − i − j)!i!j!(n − i − j)!

(

1

6

)2n

(29)

=
∑

n

2−2n

(

2n

n

)

∑

i,j
0≤i+j≤n

(

n

i j

)(

n

i j

)

3−2n (30)

≤
∑

n

2−2n

(

2n

n

)

cn3−n
∑

i,j
0≤i+j≤n

(

n

i j

)

3−n (31)

=
∑

n

2−2n

(

2n

n

)

cn3−n, (32)

where cn = max
i,j

0≤i+j≤n

(

n

i j

)

. We can show that cn ∼
( n
n/3 n/3

)

. We thus get that

P 2n(0, 0) ≤ 2−2n

(

2n

n

)

n!

(n/3)!(n/3)!(n/3)!
3−n ∼ Cn−3/2, (33)

by Stirling’s approximation. Thus, the chain is transient.
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Reference 13. Let ∆ be the drift operator ∆V = PV − V for the symmetric random walk in d
dimensions. When d = 1,

∆V (i) =
1

2
(V (i + 1) + V (i − 1)) − V (i) (34)

=
V (i + 1) − 2V (i) + V (i − 1)

2
(35)

=
(V (i + 1) − V (i)) − (V (i) − V (i − 1))

2
. (36)

In general, we have that

∆V (i1, . . . , id) = (37)

1

d

d
∑

k=1

V (i1, . . . , ik−1, ik + 1, ik+1, . . . , id) − 2V (i1, . . . , id) + V (i1, . . . , ik−1, ik − 1, ik+1, . . . , id)

2
, (38)

which looks much worse than it is. Notice that we have second-order divided differences in each
variable, reminiscent of second derivatives.

Reference 14. Let X be a symmetric random walk on S = Z
d. Let S0 ⊂ S have boundary ∂S0.

Then, ∆ restricted to S0 corresponds to a symmetric matrix on S0 and thus has eigenvalues (λk)
and eigenfunctions (φk) and the solution to the above problem takes the form

f(s) =
1

d

∑

k







∑

u∈S0,v∈∂S0
u,vadjacent

φk(u)g(v)







φk(s)

λk
. (39)

Again, this looks bad, but don’t worry about the details. The key point is that given the
computable properties of the operator ∆ and given boundary conditions, we can find what we need
quite simply.
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