
Plan MCMC and General State Chains

0. A few notational notes
1. Markov Chain Monte Carlo (MCMC) for finding posteriors
2. General-state MC theory: similarities and differences
3. Back to MCMC

Next Time: Spring Break

Midterm Exam: Tuesday 28 March in class
Homework 5 (sample exam) coming soon

Minor Notes on Notation 1.

• Comment: The set D in the state decomposition D ∪
⋃

Cr is a countable union of transient
sets. Such a set is called dissipative, which explains the “D.”

• A measure ν on a set S is σ-finite if S can be written as a countable union of ν-finite sets.
That is, S =

⋃

i

Fi with ν(Fi) <∞. Examples? Cases where it does not hold? The “σ” in this

term and in σ-field refers to countable unions (think σ for sum).
• If P1 and P2 are two probability measures on a measurable space (X ,F), then we can define a

distance metric, called total variation distance, by

dTV(P1, P2) = sup
A∈F

|P1(A) − P2(A)|. (1)

• If ρ is a measure on a set S, then for any suitable function h on S, we can write

ρh =

∫

S

h(s)ρ(ds). (2)

This should evoke the matrix-vector multiplication. In particular, for a Markov transition
kernel P (s,A), recall that we have

(ρP )(A) =

∫

P (s,A)ρ(ds) (3)

(Ph)(s′) =

∫

h(s′)P (s, ds′). (4)
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A Problem 2. Consider a statistical model where the data Y are drawn from one of the
distributions in the collection {fθ: θ ∈ H}. Each fθ is a probability distribution indexed by a
parameter θ from some parameter space H.

In Bayesian inference, we use probability as a calculus of uncertainty. We put a prior distribu-

tion on the unknown parameter, treating it as a random variable Θ. The posterior distribution, the
conditional distribution of Θ given Y , updates our uncertainties about the parameter and contains
all the information we need for inference.

Suppose fθ(y) is the conditional density of Y | Θ near θ, and the prior p is the marginal
distribution of Θ. We want to update our uncertainty for Θ in light of the observed data Y . This
can be expressed by the posterior distribution π:

π(A) = P{Θ ∈ A | Y near y} (5)

=
P{Θ ∈ A and Y near y}

P{Y near y}
(6)

=

∫

θ∈A P{Y near y and Θ near θ}
∫

θ∈H P{Y near y and Theta near θ}
(7)

=

∫

θ∈A P{Y near y | Θ near θ}P{Θ near θ}
∫

θ∈H P{Y near y | Theta near θ}P{Θ near θ}
(8)

=

∫

θ∈A fθ(y)p(dθ)
∫

θ∈H fθ(y)p(dθ)
. (9)

If we take π and p to be densities (i.e., π(dθ) = π(θ)dθ and p(dθ) = p(θ)dθ), then we have

π(θ) =
fθ(y)p(θ)

∫

ψ∈H fθ(y)p(dψ)
. (10)

This is straightforward to express but in general is difficult to calculate because the normalizing
constant in the numerator is hard to compute.

One Approach 3. Importance Sampling
Suppose we find a probability density g on H that approximates the density π to some degree

and for whic Let Θ1,Θ2, . . . be a random sample drawn from g.
Then for any measurable function h on H,

1

n

n
∑

k=1

h(Θi)
fΘk

(y)p(Θk)

g(Θk)
→ Egh(Θ)

fΘ(y)p(Θ)

g(Θ)
(11)

=

(
∫

ψ∈H
fθ(y)p(dψ)

)

Eπh(Θ). (12)

Taking h ≡ 1 gives us a way to estimate the normalizing constant.
Much research has gone into Importance Sampling, but he short story is that in general, it is

difficult to get right. One reason is that the tails of g must be at least as thick as the tails of π if
the estimate is to be stable.
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A Better(?) Approach 4. Markov Chain Monte Carlo
Here’s the idea: Create a Markov chain with limiting distribution π. Run the chain and then

(after a while to achieve equilibrium), read off the values as a sample from π. From that we can
estimate the distribution or any functional thereof.

Issues:

A. If we can’t compute π, how do we make a chain that converges to it?
B. What conditions on the chain do we need to make this work?
C. When is equilibrium reached to sufficient approximation?
D. How accurate are the approximations derived from the chain, given especially that the samples

are dependent?
E. And wait, this will not usually be on a countable state space, does what we know still work?

Comment 5. I’m going to assume that everything in site has a density over the line and that
π(x) > 0 everywhere. All this can be done more carefully using weaker conditions and other base
measures.

Algorithm 6. Metropolis-Hastings
Let Q be a probability transition kernel defined by

Q(x, dy) = q(x, y)dy. (13)

Define a Markov chain (Xn)n≥0 with transition probabilities

P (x, dy) = p(x, y)dy + r(x)δx(dy) (14)

where

p(x, y) =

{

q(x, y)α(x, y) if y 6= x

0 if y = x
(15)

r(x) = 1 −

∫

p(x, t)dt, (16)

and where

α(x, y) =

{

min
{

π(y)q(y,x)
π(x)q(x,y) , 1

}

if π(x)q(x, y) > 0

0 if π(x)q(x, y) = 0.
(17)

Describe the behavior of this chain? What does α(x, y) represent?
Notice that the transition probabilities are defined only in terms of ratios of π, so the unknown

normalizing constant cancels. This gives one answer to question A above.
Notice first that

π(x)p(x, y) = π(y)p(y, x). (18)

(This implies the reversibility condition that you read about.)
Now, we can show that π is an invariant distribution for the chain. For a measurable set

A ⊂ H:

πP (A) =

∫

P (x,A)π(dx) (19)

=

∫
[
∫

y∈A
p(x, y)dy

]

π(x)dx +

∫

r(x)δx(A)π(x)dx (20)
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=

∫
[
∫

y∈A
π(x)p(x, y)dy

]

dx+

∫

x∈A
r(x)π(x)dx (21)

=

∫
[
∫

y∈A
π(y)p(y, x)dy

]

dx+

∫

x∈A
r(x)π(x)dx (22)

=

∫

y∈A

[
∫

p(y, x)dx

]

π(y)dy +

∫

x∈A
r(x)π(x)dx (23)

=

∫

y∈A
(1 − r(y))π(y)dy +

∫

x∈A
r(x)π(x)dx (24)

=

∫

y∈A
π(y)dy (25)

= π(A). (26)

Examples 7. A few Metropolis-Hastings Chains

1. Independence chains: q(x, y) = f(y) for some density f
2. Random Walk chains: q(, y) = f(y − x) for some density f .
3. Symmetrix Candidate distribution: q(x, y) = q(y, x)

Algorithm 8. Gibbs Sampling
Suppose X has distribution π and h is a function on H. If Y = h(X), then define

P (x,A) = P{X ∈ A | Y near h(x)} . (27)

We sample Xn+1 from the conditional distribution of X | Y = h(Xn). This produces a Markov
chain (Xn)n≥0.

Notice that π is an invariant distribution for the chain.

πP (A) =

∫

x∈H
P (x,A)π(dx) (28)

=

∫

x∈H

∫

t∈A
P (x, dt)π(dx) (29)

=

∫

x∈H

∫

t∈A

h(t)=h(x)

P (x, dt)π(dx) (30)

=

∫

x∈H

∫

t∈A

h(t)=h(x)

P{X near t | Y near h(x)}P{X near x} (31)

=

∫

x∈H

∫

t∈A

h(t)=h(x)

P{Y near h(t) | X near t}
P{X near x}

P{Y near h(x)}
P{X near t} (32)

=

∫

x∈H

∫

t∈A

h(t)=h(x)

P{X near x, Y near h(x)}

P{Y near h(x)}
P{X near t} (33)

=

∫

x∈H

∫

t∈A

h(t)=h(x)

P{X near x, Y near h(t)}

P{Y near h(t)}
P{X near t} (34)

=

∫

x∈H

∫

t∈A

h(t)=h(x)

P (t, dx)π(dt) (35)
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=

∫

t∈A

∫

x∈H

h(x)=h(t)

P (t, dx)π(dt) (36)

=

∫

t∈A
π(dt) (37)

= π(A). (38)

In general, P (x,A) will not be irreducible, but we can find a set of functions h1, ldots, hm with
corresponding kernels P1, . . . , Pm and then construct a new kernel by choosing one at random at
each stage or cycling between them.

The Gibbs sampler uses this strategy with

hi(x) ≡ hi(x1, . . . , xm) = (x1, . . . , xi−1, xi+1, . . . , xm). (39)

How does this chain operate?

A Quick Tour of General State Markov Chains

Tour Stop 9. Irreducibility

Irreducibility in the general state case cannot define a relation like ↔ because the probability
of hitting particular states might be zero.

The replacement notion is in some sense even simpler.

Definition. Let φ be a measure on the state space S (now equipped with a σ-field of measurable
sets) of a general-state Markov chain X. Then X is φ-irreducible if whenever φ(A) > 0, then
R(s,A) > 0 for all s ∈ S.

Equivalently, X is φ-irreducible if there exists an n > 0 (possibly depending on A and s) such
that P n(s,A) > 0¿

This tells us that “big” sets (as measured by φ are reached from any starting point, precluding
“reducible” type behavior.

But what about the reverse? If φ(B) = 0, will the chain avoid B? (Consider a countable-state
chain and φ = δs0 ; such that s → s0 for every s. That is weaker than what we expect from the
countable state case.)

So we want “bigger” measures. In fact, we can find a maximal such measure.

Theorem. If X is φ-irreducible for some measure φ, then there exists a probability measure
ψ such that

1. X is ψ-irreducible.

2. For any measure ν, X is ν irreducible if and only if ψ(A) = 0 implies ν(A) = 0 for all A.

3. If ψ(A) = 0, then ψ {s:R(s,A) > 0} = 0.

We have then that if ψ(Ac) = 0, then A contains an absorbing set and that any absorbing set
A has ψ(Ac) = 0.

Such a chain is called ψ-irreducible.

Decompositions exactly like the one we found in the countable-state space do not exist, but
there are several approximations that are quite close.
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Tour Stop 10. Recurrence and Transience
A ψ-irreducible chain is recurrent if O(s,A) = ∞ for all s and A such that ψ(A) > 0. Otherwise,
the chain is transient.
A recurrent chain satisfies Ps{Xn ∈ Ai.o.} = 1 for all s in a set of ψ probability 1.
A stronger property is Harris recurrence which says that Ps{Xn ∈ Ai.o.} = 1 for all s ∈ S.
Much more convenient. A recurrent chain is Harris recurrent if and only if every bounded V

with ∆V = 0 is constant, where ∆ is the drift operator.
There are also a variety of drift criteria similar to what we’ve seen.

Tour Stop 11. Periodicity
A ψ-irreducible chain is aperiodic if there do not exist the cyclic classes that we’ve seen. If
there exist d cyclic classes (with the remainder of the space ψ-null), then the chain has period
d.

Tour Stop 12. Invariant Measures
Define just as before πP = π, but of course, meaning of πP is as above not a matrix-vector
multiplication.
Theorem Let π be a probability measure on S. If P is φ-irreducible for some measure φ on
S and if πP = π, then P is π-irreducible, positive recurrent, and π is the unique invariant
distribution of the chain.
If P is also aperiodic, then for all s outside a set of π-measure 0,

dTV(π, P n(s, ·)) → 0. (40)

If the chain is also Harris recurrent, then this convergence occurs for all s.

Tour Stop 13. Atoms and Small Sets
The discrete states in countable state chain have no exact analogue in the general-state case.
But we can find sets of states that act much the same way. Atoms and small sets are two
important kinds. The definitions of these sets rely on finding lower bounds on P n(s, ·) by some
measure for s in the set.
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