
Plan Martingales

1. Basic Definitions
2. Examples
3. Overview of Results

Reading: G&S Section 12.1-12.4
Next Time: More Martingales

Midterm Exam: Tuesday 28 March in class
Sample exam problems (“Homework 5”) available tomorrow at the latest

A Peculiar Etymology 1.

1. Horse Riding. A strap or arrangement of straps fastened at one end to the noseband, bit, or
reins of a horse and at the other to its girth, in order to prevent it from rearing or throwing its
head back, or to strengthen the action of the bit.

2. Nautical. A stay which holds down the jib-boom of a square-rigged ship, running from the
boom to the dolphin-striker.

3. Gambling. Any of various gambling systems in which a losing player repeatedly doubles or
otherwise increases a stake such that any win would cover losses accrued from preceding bets.

4. Probability and Statistics. stay tuned. . .

The Basic Definition 2. (from which the more general definition below will spring, and which
will be the most common case, by why by specific when we can be general, eh?)

A stochastic process (Xn)n≥0 is a martingale if

1. E|Xn| < ∞ for all n ≥ 0, and
2. E(Xn+1 | X0, . . . , Xn) = Xn.

This definition will be superseded below but is the base case.
Useful metaphor: Let Xn be a gambler’s wealth at after the nth bet. This definition of a

martingale captures a notion of a “fair” game. How?

The Original Martingale 3. Suppose you start with a large fortune w0. (How large it needs to
be, we will see.) You are offered a series of bets with a probability of winning equal to 1/2. (Yeah,
right.)

The original martingale strategy is to bet $d, say, on the first bet. If you win, stop. If you lose,
bet $2d on second bet. Continue this way, stopping play as soon as you win and betting $2nd on
the n + 1st bet.

You will win eventually, say at bet t ≥ 1, at which point you will have won

2t−1d − (d + 2d + 22d + · · · 2t−2d) = d (1)

dollars, where the second term is zero when t = 1. Seems like a sure thing, eh?
Let Wn denote your wealth after the nth bet in a series of bets like the above but without the

stopping rule. Then, W0 = w0 and

Wn = w0 +
n
∑

k=1

Ξkd2k−1, (2)

where Ξk are iid Bernoulli〈1/2〉.

1 21 Mar 2006



Now, (Wn) is a random walk, with E|Wn| < ∞ and

E(Wn+1 | W0, . . . ,Wn) = E(Wn+1 | Ξ0, . . . ,Ξn) = Wn + E(d2nΞn+1) = Wn. (3)

Hence, (Wn)n≥0 is a martingale by the above definition. Still, it’s not quite what we want.

Let T = minn ≥ 1: Ξn = 1 be the first bet that you win. What can we say about T ? Well
first off, it’s Geometric〈1/2〉, that is, P{T = n} = 2−n for n ≥ 1. But wait, is there more? There’s
something familiar abou this time. . ..

X0 = W0 = w0. This is your wealth. Define Xn = WT∧n for n ≥ 1. This is your wealth on the
the martingale system. Any questions?

Loosely, if n ≥ T , Xn+1 = Xn. If n < T , then Xn+1 = Wn+1 and Xn = Wn. So, (Xn) should be
a martingale. Formally, we need to show that E|Xn| < ∞. And that E(Xn+1 | X0, . . . , Xn) = Xn.

Note that

Xn+11{T ≤ n} = Xn1{T ≤ n} (4)

Xn+11{T > n} = (Xn + Ξn+1d2n) 1{T > n} . (5)

That is,

Xn+1 = Xn1{T ≤ n} + (Xn + Ξn+1d2n) 1{T > n} . (6)

What do we need to bring this home?

. . . the class steps in . . .

. . .and thus we get that (Xn)n≥0 is a martingale as defined above.

But would you want to use this strategy. Let D be the biggest debt you owed prior to winning.
That is, D = |XT−1|. Then,

ED =
∞
∑

n=1

2−nd
n−2
∑

k=0

2k = d
∞
∑

n=1

2−n(2n−1 − 1). (7)

Even Bill Gates should think twice about using this approach.
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Example 4. Another approach to Gambler’s Ruin
Let Sn be a simple random walk with S0 = w ∈ {0, . . . , N}. Suppose we stop the walk when

it first hits either 0 or N . Which will it hit first?
Write Sn = w +

∑n
k=1 Ξk where the ΞK are iid Bernoulli〈p〉. Let q = 1 − p.

Define Yn =
(

q
p

)Sn

. Let T be the first hitting time of {0, N}. We want to understand the

limiting behavior of Xn = YT∧n.
As before,

Xn+1 = Xn1{T ≥ n} +

(

q

p

)Sn+Ξn+1

1{T < n} . (8)

Note that T is a stopping time with respect to Ξ1, . . . ,Ξn. Hence,

E(Xn+1 | Ξ1, . . . ,Ξn) = E(Xn1{T ≥ n} | Ξ1, . . . ,Ξn) + E

(

(

q

p

)Sn+Ξn+1

1{T < n}

∣

∣

∣

∣

Ξ1, . . . ,Ξn

)

(9)

= Xn1{T ≥ n} +

(

q

p

)Sn

E

(

(

q

p

)Ξn+1
∣

∣

∣

∣

Ξ1, . . . ,Ξn

)

1{T < n} (10)

= Xn1{T ≥ n} +

(

q

p

)Sn

E

(

q

p

)Ξn+1

1{T < n} (11)

= Xn1{T ≥ n} +

(

q

p

)Sn

(p(q/p) + q(p/q))1{T < n} (12)

= Xn1{T ≥ n} + Xn1{T < n} (13)

= Xn. (14)

This isn’t quite the definition, though. Perhaps we would work it out that the information in
Ξ1, . . . ,Ξn is the same as the information in X0, . . . , Xn. A good strategy. But what a bother.
Take this as motivation for the general definition below.

Now, EYn = (q/p)w for all n, so doesn’t it make sense that EYT would be the same? And thus,
EXn = (q/p)w = EXT for all n. Hmmm...let’s suppose it’s true. Take this as motivation for one of
the main results later.

If true, then

EXT =

(

q

p

)0

rw +

(

q

p

)N

(1 − rw) =

(

q

p

)w

, (15)

where rw is the ruin probability with initial wealth w. Then,

rw =

(

q
p

)w
−
(

q
p

)N

1 −
(

q
p

)N
n (16)

as long as p 6= 1
2 . That’s what we got before. Nice.

We’ve seen a martingale argument for the p = 1
2 case as well. A lot of power in that simple

assumption.
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Intermediate Definition 5. A sequence of random variables (Yn)n≥0 is a martingale with
respect to a sequence (Xn)n≥0 if for all n ≥ 0,

1. E|Yn| < ∞
2. E(Yn+1 | X0, . . . , Xn) = Yn.

If Xn = Yn for all n, this reduces to the previous definition.

Definition 6. A filtration in a σ-field F is a sequence (Fn)n≥0 of sub-σ-fields of F such that
Fn ⊂ Fn+1 for all n ≥ 0.

Write F∞ = limn→∞Fn for the smallest σ-field containing all the Fns.
A sequence of random variables (Xn)n≥0 is adapted to the filtration if Xn is Fn-measurable for

all n ≥ 0. That is, events {Xn ∈ A} ∈ Fn.
Intuitive unpacking follows.

General Definition 7. Let (Fn)n≥0 be a filtration in F and let (Yn)n≥0 be a sequence of random
variables adapted to that filtration.

Then, (Yn) is a martingale (with respect to (Fn)) if

1. E|Yn| < ∞
2. E(Yn+1 | Fn) = Yn.

If Fn = σ(Y0, . . . , Yn), we get the basic definition. If Fn = σ(X0, . . . , Xn), we get the intermediate
definition. More intuitive unpacking . . ..

Definition 8. Let (Fn)n≥0 be a filtration in F and let (Yn)n≥0 be a sequence of random variables
adapted to that filtration.

Then, (Yn) is a sub-martingale (with respect to (Fn)) if

1. Emax(Yn, 0) < ∞
2. Yn ≤ E(Yn+1 | Fn).

And (Yn) is a super-martingale (with respect to (Fn)) if

1. Emax(−Yn, 0) < ∞
2. Yn ≥ E(Yn+1 | Fn).

Questions 9.

a. Show that Yn is a martingale if and only if it is a sub-martingale and a super-martingale.
b. Suppose that Yn is a sub-martingale, what can you say about −Yn?
c. Find three examples of a sub- or super-martingale.
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Example 10. Simple Random Walk

Let Sn be a simple random walk as we have defined so often. Then, E|Sn| < ∞ for all n because
|Sn| ≤ n and

E(Sn+1 | S0, . . . , Sn) = Sn + (p − q), (17)

Note that σ(S0, . . . , Sn) = σ(S0,Ξ1, . . . ,Ξn). Define Xn = Sn −n(p− q). Then Xn is a martingale.
(Why?)

Example 11. Sums of Random Variables

The same trick works with more general sums. Suppose that (Xn)n≥0 are independent random
variables with E|Xn| < ∞. Let Yn = X1 + · · · + Xn for n ≥ 0. Then, (Yn) is a martingale by the
same argument. (Make it.)

We can generalize this. Let (Xn)n≥0 be a sequence of real-valued random variables. Let gk and
hk be functions on R

k with the |hk| ≤ Hk < ∞ for some constants Hk. Let f be a function so that
E|f(gk+1(X0, . . . , Xk))| < ∞. Let Zk = f(gk+1(X0, . . . , Xk)).

Define Yn by

Yn =
n
∑

k=0

(Zk − E(Zk | X0, . . . , Xk−1))hk(X0, . . . , Xk−1), (18)

Then, (Yn)n≥0 is a martingale. Why?

This is example is not so interesting by itself, but it is quite a general mechanism for construct-
ing martingales. And it helps you unpack complicated expressions.
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Example 12. Variance of a Sum
Let (Xn)n≥0 be iid random variables with X0 = 0 and EXn = 0 and EX2

n = σ2 for n ≥ 1.
Define

Yn =

(

n
∑

k=1

Xk

)2

− nσ2. (19)

Then (Yn) is a martingale. Show this.

What can you say about Mn =

(

1

n

n
∑

k=1

Xk

)2

−
σ2

n
?

Example 13. The Doob Process
Let X be a random variable with E|X| < ∞. Let (Zn)n≥0 be an arbitrary sequence of random

variables.
Define Xn = E(X | Z0, . . . , Zn).
Note that E|Xn| ≤ E|X|. (Why?)

And

E(Xn+1 | Z0, . . . , Zn) = E(E(X | Z0, . . . , Zn+1) | Z0, . . . , Zn) (20)

= E(X | Z0, . . . , Zn) (21)

= Xn, (22)

by the Mighty Conditioning Identity.

Example 14. Harmonic Functions on Markov Chains
Let X be a countable-state Markov chain on S with transition probabilities P . Let ∆ be the

drift operator: ∆V = PV − V .
Recall that any V for which ∆V = 0 we called harmonic. This is a function for which

E(V (Xn+1) | Xn) = V (Xn). (23)

Hmmm...
Define Yn = V (Xn) for a harmonic V . As long as E|V (Xn)| is finite, we’ve got a martingale.

This will hold, for example, if we choose a bounded harmonic function. This is a useful mechanism
for discovering martingales in Markov Chains.
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Example 15. Eigenvector Induced Martingales for Markov Chains
A slight generalization. Now, let V be an eigenfunction (eigenvector) of P with eigenvalue λ.

That is, for all s ∈ S,
∑

s′∈S

P (s, s′)V (s′) = λV (s), (24)

or equivalently,
E(V (Xn+1) | Xn) = λV (Xn). (25)

So, define
Yn = λ−nV (Xn) (26)

for such a V and n ≥ 0. If E|V (Xn)| < ∞, we have

E(Yn+1 | X0, . . . Xn) = E

(

λ−(n+1)V (Xn+1)givenX0, . . . , Xn

)

(27)

= λ−nλ−1
E(V (Xn+1) | Xn) (28)

= λ−nλ−1λV (Xn) (29)

= Yn, (30)

then (Yn) is a martingale with respect to X.
This has a direct application to Branching Processes which we’ll see in the near future.

Example 16. Discretization and Derivatives
Let U be a Uniform〈0, 1〉 random variable. Define Xn = k2−n for the unique k such that

k2−n ≤ U < (k + 1)2−n. As n increases, Xn gives finer and finer information about U .
Let f be a bounded function on [0, 1] and define

Yn = 2n
(

f(Xn + 2−n) − f(Xn)
)

. (31)

What is Yn approximating here as n → ∞?

What is the distribution of U given X0, . . . , Xn?

Show that Yn is a martingale wrt Xn.
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Past Example 17. Likelihood Ratios
Example from homework. Very important in some applications such as sequential analysis.

Future Example 18. False Discovery Rates
Next time will show how a martingale argument proves the result of Benjamini and Hochberg
(1995).

Outline 19. Main Results for (sub and super) martingales

1. Decomposition into martingale plus predictable process
2. Strong convergence theorems
3. Upcrossing Inequalities
4. Large Deviation Bounds
5. Maximal Inequalities
6. Optional Sampling of Process at Stopping Times
7. Optional Stopping of Process at Stopping Times
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