Plan Martingales cont'd

- 0. Questions for Exam
- 2. More Examples
- 3. Overview of Results

Reading: study Next Time: first exam

Midterm Exam: Tuesday 28 March in class Sample exam problems ("Homework 5") and HW4 solutions on-line

Example 1. Sums of Random Variables

The same trick works with more general sums. Suppose that $(X_n)_{n\geq 0}$ are independent random variables with $\mathsf{E}|X_n| < \infty$. Let $Y_n = X_1 + \cdots + X_n$ for $n \geq 0$. Then, (Y_n) is a martingale by the same argument. (Make it.)

We can generalize this. Let $(X_n)_{n\geq 0}$ be a sequence of real-valued random variables. Let g_k and h_k be functions on \mathbb{R}^k with the $|h_k| \leq H_k < \infty$ for some constants H_k . Let f be a function so that $\mathsf{E}|f(g_{k+1}(X_0,\ldots,X_k))| < \infty$. Let $Z_k = f(g_{k+1}(X_0,\ldots,X_k))$.

Define Y_n by

$$Y_n = \sum_{k=0}^n \left(Z_k - \mathsf{E}(Z_k \mid X_0, \dots, X_{k-1}) \right) h_k(X_0, \dots, X_{k-1}), \tag{1}$$

Then, $(Y_n)_{n\geq 0}$ is a martingale. Why?

This is example is not so interesting by itself, but it is quite a general mechanism for constructing martingales. And it helps you unpack complicated expressions. **Example 2.** The Doob Process

Let X be a random variable with $\mathsf{E}|X| < \infty$. Let $(Z_n)_{n \ge 0}$ be an arbitrary sequence of random variables.

Define $X_n = \mathsf{E}(X \mid Z_0, \dots, Z_n)$. Note that $\mathsf{E}|X_n| \le \mathsf{E}|X|$. (Why?)

And

$$\mathsf{E}(X_{n+1} \mid Z_0, \dots, Z_n) = \mathsf{E}(\mathsf{E}(X \mid Z_0, \dots, Z_{n+1}) \mid Z_0, \dots, Z_n)$$
(2)

$$=\mathsf{E}(X \mid Z_0, \dots, Z_n) \tag{3}$$

$$=X_n,\tag{4}$$

by the Mighty Conditioning Identity.

Example 3. Harmonic Functions on Markov Chains

Let X be a countable-state Markov chain on S with transition probabilities P. Let Δ be the drift operator: $\Delta V = PV - V$.

Recall that any V for which $\Delta V = 0$ we called *harmonic*. This is a function for which

$$\mathsf{E}(V(X_{n+1}) \mid X_n) = V(X_n). \tag{5}$$

Hmmm... Define $Y_n = V(X_n)$ for a harmonic V. As long as $\mathsf{E}|V(X_n)|$ is finite, we've got a martingale. This will hold, for example, if we choose a bounded harmonic function. This is a useful mechanism for discovering martingales in Markov Chains.

(Similarly, a V with $\Delta V \ge 0$ or $\Delta V \le 0$ is called subharmonic or superharmonic respectively. What do you think we get in that case?)

Example 4. Eigenvector Induced Martingales for Markov Chains

A slight generalization. Now, let V be an eigenfunction (eigenvector) of P with eigenvalue λ . That is, for all $s \in S$,

$$\sum_{s'\in\mathcal{S}} P(s,s')V(s') = \lambda V(s), \tag{6}$$

or equivalently,

$$\mathsf{E}(V(X_{n+1}) \mid X_n) = \lambda V(X_n). \tag{7}$$

So, define

$$Y_n = \lambda^{-n} V(X_n) \tag{8}$$

for such a V and $n \ge 0$. If $\mathsf{E}[V(X_n)] < \infty$, we have

$$\mathsf{E}(Y_{n+1} \mid X_0, \dots, X_n) = \mathsf{E}\left(\lambda^{-(n+1)}V(X_{n+1}) \mid X_0, \dots, X_n\right)$$
(9)

$$=\lambda^{-n}\lambda^{-1}\mathsf{E}(V(X_{n+1})\mid X_n) \tag{10}$$

$$=\lambda^{-n}\lambda^{-1}\lambda V(X_n) \tag{11}$$

$$=Y_n,\tag{12}$$

then (Y_n) is a martingale with respect to X.

This has a direct application to Branching Processes which we'll see in the near future.

Example 5. Discretization and Derivatives

Let U be a Uniform (0,1) random variable. Define $X_n = k2^{-n}$ for the unique k such that $k2^{-n} \leq U < (k+1)2^{-n}$. As n increases, X_n gives finer and finer information about U.

Let f be a bounded function on [0, 1] and define

$$Y_n = 2^n \left(f(X_n + 2^{-n}) - f(X_n) \right).$$
(13)

What is Y_n approximating here as $n \to \infty$?

What is the distribution of U given X_0, \ldots, X_n ?

Show that Y_n is a martingale wrt X_n .

Past Example 6. Likelihood Ratios

This is an example from homework but still worth reminiscing about.

Let f_0 and f_1 be known PDFs. Let Y_0, \ldots, Y_n be an IID sample from a PDF f. We know that f is either f_0 or f_1 , but we don't know which. One way to infer the generating density is through a likelihood ratio test of

$$H_0 : f = f_0$$
$$H_1 : f = f_1$$

Define

$$R_n = \frac{f_0(Y_0) \cdots f_0(Y_n)}{f_1(Y_0) \cdots f_1(Y_n)}.$$
(14)

for $n \ge 0$. R_n is the likelihood ratio statistic computed from data up to index n. (We can assume $f_0 > 0$ on the support of f_1 to make this well defined, but the notion extends beyond this.)

Suppose the null hypothesis (H₀) is true. Then expected values of the Ys are taken relative to f_0 , so

$$\mathsf{E}\frac{f_1(Y_{n+1})}{f_0(Y_{n+1})} = \int \frac{f_1(y)}{f_0(y)} f_0(y) \,\mathrm{d}y = \int f_1(y) \,\mathrm{d}y = 1.$$
(15)

Thus,

$$\mathsf{E}(R_{n+1} \mid Y_0, \dots, Y_n) = \mathsf{E}\left(R_n \frac{f_1(Y_{n+1})}{f_0(Y_{n+1})} \mid Y_0, \dots, Y_n\right)$$
(16)

$$= R_n \mathsf{E}\left(\frac{f_1(Y_{n+1})}{f_0(Y_{n+1})} \mid Y_0, \dots, Y_n\right)$$
(17)

$$= R_n \mathsf{E}\left(\frac{f_1(Y_{n+1})}{f_0(Y_{n+1})}\right)$$
(18)

$$=R_n.$$
 (19)

Under the null hypothesis R_n is a martingale with respect to the Ys.

Under the alternative hypothesis (H₁), however, if there is a region with high f_1 probability but low f_0 probability, then the R_n s will tend to grow. If $\mathsf{E}\left(\frac{f_1(Y_{n+1})}{f_0(Y_{n+1})}\right) > 1$ in this case, the process will be a submartingale. For example, when f_0 is a Normal $\langle 0, 1 \rangle$ and f_1 is a Normal $\langle 1, 1 \rangle$, the expected ratio is about 2.7 under the alternative.

Future Example 7. False Discovery Rates

Suppose we have *m* hypothesis tests and corresponding p-values P_1, \ldots, P_m . Let $P_{(0)} \equiv 0$ and $P_{(1)} < \cdots P_{(m)}$ are the p-values in increasing order. Then, Benjamini and Hochberg (1995) used the following threshold to determine which null hypotheses would be rejected.

$$P^* = \max\left\{P_{(i)}: P_{(i)} \le \alpha \frac{i}{m}\right\}$$
(20)

They showed that if we reject all null hypothesis for which $P_i \leq P^*$, we will control the *false* discovery rate at level α . That is,

$$\mathsf{E}\frac{\text{falsely rejected nulls}}{\text{rejected nulls}} \le \alpha. \tag{21}$$

We will see later how to prove this using a cute martingal argument.

Outline 8. Main Results for (sub and super) martingales Just to give you a flavor for what we can do with this.

- 1. Decomposition into martingale plus predictable process A submartingale can
- 2. Strong convergence theorems If Y is a submartingale with $\mathsf{E}Y_n^+ \leq M < \infty$ for some M and all n, then there exists a random variable Y_∞ such that Y_n converges to Y_∞ with probability 1. Under some conditions, this can be made even stronger.
- 3. Crossing Inequalities Bounds on the expected number of crossings of any level.
- 4. Large Deviation Bounds Bounds on the probabilities of large excursions in the process.
- 5. Maximal Inequalities Example: if X is a submartingale, then

$$\mathsf{P}\left\{\max_{1\le i\le n} X_i > u\right\} \le \frac{\mathsf{E}X_n^+}{u}.$$
(22)

6. Optional Sampling of Process at Stopping Times

If $T_1 \leq T_2 \leq \cdots$ are stopping times satisfying some conditions (such as being bounded by a sequence of deterministic times), then a submartingale Y sampled at these times remains a submartingale.

- 7. Optional Stopping Theorem Let X be a martingale and T a stopping time. Then, $\mathsf{E}X_T = \mathsf{E}X_0$ if
 - A. $\mathsf{P}\{T < \infty\} = 1$, B. $\mathsf{E}|X_T| < \infty$, C. $\mathsf{E}(X_n \mathbb{1}\{T > n\}) \to 0 \text{ as } n \to \infty$.

These conditions, fairly mild, can be simplified in some cases.