
Plan Martingales cont’d

0. Questions for Exam

2. More Examples

3. Overview of Results

Reading: study

Next Time: first exam

Midterm Exam: Tuesday 28 March in class

Sample exam problems (“Homework 5”) and HW4 solutions on-line

Example 1. Sums of Random Variables

The same trick works with more general sums. Suppose that (Xn)n≥0 are independent random
variables with E|Xn| < ∞. Let Yn = X1 + · · · + Xn for n ≥ 0. Then, (Yn) is a martingale by the
same argument. (Make it.)

We can generalize this. Let (Xn)n≥0 be a sequence of real-valued random variables. Let gk and
hk be functions on R

k with the |hk| ≤ Hk < ∞ for some constants Hk. Let f be a function so that
E|f(gk+1(X0, . . . , Xk))| < ∞. Let Zk = f(gk+1(X0, . . . , Xk)).

Define Yn by

Yn =
n

∑

k=0

(Zk − E(Zk | X0, . . . , Xk−1))hk(X0, . . . , Xk−1), (1)

Then, (Yn)n≥0 is a martingale. Why?

This is example is not so interesting by itself, but it is quite a general mechanism for construct-
ing martingales. And it helps you unpack complicated expressions.
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Example 2. The Doob Process
Let X be a random variable with E|X| < ∞. Let (Zn)n≥0 be an arbitrary sequence of random

variables.
Define Xn = E(X | Z0, . . . , Zn).
Note that E|Xn| ≤ E|X|. (Why?)

And

E(Xn+1 | Z0, . . . , Zn) = E(E(X | Z0, . . . , Zn+1) | Z0, . . . , Zn) (2)

= E(X | Z0, . . . , Zn) (3)

= Xn, (4)

by the Mighty Conditioning Identity.

Example 3. Harmonic Functions on Markov Chains
Let X be a countable-state Markov chain on S with transition probabilities P . Let ∆ be the

drift operator: ∆V = PV − V .
Recall that any V for which ∆V = 0 we called harmonic. This is a function for which

E(V (Xn+1) | Xn) = V (Xn). (5)

Hmmm... Define Yn = V (Xn) for a harmonic V . As long as E|V (Xn)| is finite, we’ve got a
martingale. This will hold, for example, if we choose a bounded harmonic function. This is a useful
mechanism for discovering martingales in Markov Chains.

(Similarly, a V with ∆V ≥ 0 or ∆V ≤ 0 is called subharmonic or superharmonic respectively.
What do you think we get in that case?)

Example 4. Eigenvector Induced Martingales for Markov Chains
A slight generalization. Now, let V be an eigenfunction (eigenvector) of P with eigenvalue λ.

That is, for all s ∈ S,
∑

s′∈S

P (s, s′)V (s′) = λV (s), (6)

or equivalently,
E(V (Xn+1) | Xn) = λV (Xn). (7)

So, define
Yn = λ−nV (Xn) (8)

for such a V and n ≥ 0. If E|V (Xn)| < ∞, we have

E(Yn+1 | X0, . . . Xn) = E

(

λ−(n+1)V (Xn+1) | X0, . . . , Xn

)

(9)

= λ−nλ−1
E(V (Xn+1) | Xn) (10)

= λ−nλ−1λV (Xn) (11)

= Yn, (12)

then (Yn) is a martingale with respect to X.
This has a direct application to Branching Processes which we’ll see in the near future.
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Example 5. Discretization and Derivatives
Let U be a Uniform〈0, 1〉 random variable. Define Xn = k2−n for the unique k such that

k2−n ≤ U < (k + 1)2−n. As n increases, Xn gives finer and finer information about U .
Let f be a bounded function on [0, 1] and define

Yn = 2n
(

f(Xn + 2−n) − f(Xn)
)

. (13)

What is Yn approximating here as n → ∞?

What is the distribution of U given X0, . . . , Xn?

Show that Yn is a martingale wrt Xn.
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Past Example 6. Likelihood Ratios

This is an example from homework but still worth reminiscing about.

Let f0 and f1 be known pdfs. Let Y0, . . . , Yn be an iid sample from a pdf f . We know that f

is either f0 or f1, but we don’t know which. One way to infer the generating density is through a
likelihood ratio test of

H0 :f = f0

H1 :f = f1

Define

Rn =
f0(Y0) · · · f0(Yn)

f1(Y0) · · · f1(Yn)
. (14)

for n ≥ 0. Rn is the likelihood ratio statistic computed from data up to index n. (We can assume
f0 > 0 on the support of f1 to make this well defined, but the notion extends beyond this.)

Suppose the null hypothesis (H0) is true. Then expected values of the Y s are taken relative to
f0, so

E
f1(Yn+1)

f0(Yn+1)
=

∫

f1(y)

f0(y)
f0(y) dy =

∫

f1(y) dy = 1. (15)

Thus,

E(Rn+1 | Y0, . . . , Yn) = E

(

Rn
f1(Yn+1)

f0(Yn+1)

∣

∣

∣

∣

Y0, . . . , Yn

)

(16)

= RnE

(

f1(Yn+1)

f0(Yn+1)

∣

∣

∣

∣

Y0, . . . , Yn

)

(17)

= RnE

(

f1(Yn+1)

f0(Yn+1)

)

(18)

= Rn. (19)

Under the null hypothesis Rn is a martingale with respect to the Y s.

Under the alternative hypothesis (H1), however, if there is a region with high f1 probability but

low f0 probability, then the Rns will tend to grow. If E

(

f1(Yn+1)
f0(Yn+1)

)

> 1 in this case, the process will

be a submartingale. For example, when f0 is a Normal〈0, 1〉 and f1 is a Normal〈1, 1〉, the expected
ratio is about 2.7 under the alternative.
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Future Example 7. False Discovery Rates
Suppose we have m hypothesis tests and corresponding p-values P1, . . . , Pm. Let P(0) ≡ 0 and
P(1) < · · ·P(m) are the p-values in increasing order. Then, Benjamini and Hocbherg (1995) used
the following threshold to determine which null hypotheses would be rejected.

P ∗ = max

{

P(i):P(i) ≤ α
i

m

}

(20)

They showed that if we reject all null hypothesis for which Pi ≤ P ∗, we will control the false

discovery rate at level α. That is,

E
falsely rejected nulls

rejected nulls
≤ α. (21)

We will see later how to prove this using a cute martingal argument.

Outline 8. Main Results for (sub and super) martingales
Just to give you a flavor for what we can do with this.

1. Decomposition into martingale plus predictable process
A submartingale can

2. Strong convergence theorems
If Y is a submartingale with EY +

n ≤ M < ∞ for some M and all n, then there exists a random
variable Y∞ such that Yn converges to Y∞ with probability 1. Under some conditions, this can
be made even stronger.

3. Crossing Inequalities
Bounds on the expected number of crossings of any level.

4. Large Deviation Bounds
Bounds on the probabilities of large excursions in the process.

5. Maximal Inequalities
Example: if X is a submartingale, then

P

{

max
1≤i≤n

Xi > u

}

≤
EX+

n

u
. (22)

6. Optional Sampling of Process at Stopping Times
If T1 ≤ T2 ≤ · · · are stopping times satisfying some conditions (such as being bounded by a
sequence of deterministic times), then a submartingale Y sampled at these times remains a
submartingale.

7. Optional Stopping Theorem
Let X be a martingale and T a stopping time. Then, EXT = EX0 if

A. P{T < ∞} = 1,
B. E|XT | < ∞,
C. E(Xn1{T > n}) → 0 as n → ∞.

These conditions, fairly mild, can be simplified in some cases.
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