
Plan Martingales cont’d

0. Recap and Overview

1. More Martingale Examples

2. Overview of Results

Reading: 12.1–12.6

Next Time: Martingale Results

Homework 6: G&S 12.1: 1, 2, 4, 5, 6; 12.9: 13, 18. Due next Thursday, 6 April 2006.

Example 1. Sums of Random Variables

The same trick works with more general sums. Suppose that (Xn)n≥0 are independent random
variables with E|Xn| < ∞. Let Yn = X1 + · · · + Xn for n ≥ 0. Then, (Yn) is a martingale by the
same argument. (Make it.)

We can generalize this. Let (Xn)n≥0 be a sequence of real-valued random variables. Let gk and
hk be functions on R

k with the |hk| ≤ Hk < ∞ for some constants Hk. Let f be a function so that
E|f(gk+1(X0, . . . , Xk))| < ∞. Let Zk = f(gk+1(X0, . . . , Xk)).

Define Yn by

Yn =
n

∑

k=0

(Zk − E(Zk | X0, . . . , Xk−1))hk(X0, . . . , Xk−1), (1)

Then, (Yn)n≥0 is a martingale. Why?

This is example is not so interesting by itself, but it is quite a general mechanism for construct-
ing martingales. And it helps you unpack complicated expressions.

1 29 Mar 2006



Example 2. The Doob Process
Let X be a random variable with E|X| < ∞. Let (Zn)n≥0 be an arbitrary sequence of random

variables.
Define Xn = E(X | Z0, . . . , Zn).
Note that E|Xn| ≤ E|X|. (Why?)

And

E(Xn+1 | Z0, . . . , Zn) = E(E(X | Z0, . . . , Zn+1) | Z0, . . . , Zn) (2)

= E(X | Z0, . . . , Zn) (3)

= Xn, (4)

by the Mighty Conditioning Identity.

Example 3. Harmonic Functions on Markov Chains
Let X be a countable-state Markov chain on S with transition probabilities P . Let ∆ be the

drift operator: ∆V = PV − V .
Recall that any V for which ∆V = 0 we called harmonic. This is a function for which

E(V (Xn+1) | Xn) = V (Xn). (5)

Hmmm... Define Yn = V (Xn) for a harmonic V . As long as E|V (Xn)| is finite, we’ve got a
martingale. This will hold, for example, if we choose a bounded harmonic function. This is a useful
mechanism for discovering martingales in Markov Chains.

(Similarly, a V with ∆V ≥ 0 or ∆V ≤ 0 is called subharmonic or superharmonic respectively.
What do you think we get in that case?)

Example 4. Eigenvector Induced Martingales for Markov Chains
A slight generalization. Now, let V be an eigenfunction (eigenvector) of P with eigenvalue λ.

That is, for all s ∈ S,
∑

s′∈S

P (s, s′)V (s′) = λV (s), (6)

or equivalently,
E(V (Xn+1) | Xn) = λV (Xn). (7)

So, define
Yn = λ−nV (Xn) (8)

for such a V and n ≥ 0. If E|V (Xn)| < ∞, we have

E(Yn+1 | X0, . . . Xn) = E

(

λ−(n+1)V (Xn+1) | X0, . . . , Xn

)

(9)

= λ−nλ−1
E(V (Xn+1) | Xn) (10)

= λ−nλ−1λV (Xn) (11)

= Yn, (12)

then (Yn) is a martingale with respect to X.
This has a direct application to Branching Processes which we’ll see in the near future.
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Example 5. Discretization and Derivatives
Let U be a Uniform〈0, 1〉 random variable. Define Xn = k2−n for the unique k such that

k2−n ≤ U < (k + 1)2−n. As n increases, Xn gives finer and finer information about U .
Let f be a bounded function on [0, 1] and define

Yn = 2n
(

f(Xn + 2−n) − f(Xn)
)

. (13)

What is Yn approximating here as n → ∞?

What is the distribution of U given X0, . . . , Xn?

Show that Yn is a martingale wrt Xn.
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Past Example 6. Likelihood Ratios

This is an example from homework but still worth reminiscing about.

Let f0 and f1 be known pdfs. Let Y0, . . . , Yn be an iid sample from a pdf f . We know that f
is either f0 or f1, but we don’t know which. One way to infer the generating density is through a
likelihood ratio test of

H0 :f = f0

H1 :f = f1

Define

Rn =
f0(Y0) · · · f0(Yn)

f1(Y0) · · · f1(Yn)
. (14)

for n ≥ 0. Rn is the likelihood ratio statistic computed from data up to index n. (We can assume
f0 > 0 on the support of f1 to make this well defined, but the notion extends beyond this.)

Suppose the null hypothesis (H0) is true. Then expected values of the Y s are taken relative to
f0, so

E
f1(Yn+1)

f0(Yn+1)
=

∫

f1(y)

f0(y)
f0(y) dy =

∫

f1(y) dy = 1. (15)

Thus,

E(Rn+1 | Y0, . . . , Yn) = E

(

Rn
f1(Yn+1)

f0(Yn+1)

∣

∣

∣

∣

Y0, . . . , Yn

)

(16)

= RnE

(

f1(Yn+1)

f0(Yn+1)

∣

∣

∣

∣

Y0, . . . , Yn

)

(17)

= RnE

(

f1(Yn+1)

f0(Yn+1)

)

(18)

= Rn. (19)

Under the null hypothesis Rn is a martingale with respect to the Y s.

Under the alternative hypothesis (H1), however, if there is a region with high f1 probability but

low f0 probability, then the Rns will tend to grow. If E

(

f1(Yn+1)
f0(Yn+1)

)

> 1 in this case, the process will

be a submartingale. For example, when f0 is a Normal〈0, 1〉 and f1 is a Normal〈1, 1〉, the expected
ratio is about 2.7 under the alternative.
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Future Example 7. False Discovery Rates
Suppose we have m hypothesis tests and corresponding p-values P1, . . . , Pm. Let P(0) ≡ 0 and
P(1) < · · ·P(m) are the p-values in increasing order. Then, Benjamini and Hocbherg (1995) used
the following threshold to determine which null hypotheses would be rejected.

P ∗ = max

{

P(i):P(i) ≤ α
i

m

}

(20)

They showed that if we reject all null hypothesis for which Pi ≤ P ∗, we will control the false

discovery rate at level α. That is,

E
falsely rejected nulls

rejected nulls
≤ α. (21)

We will see later how to prove this using a cute martingal argument.

Outline 8. Main Results for (sub and super) martingales
Just to give you a flavor for what we can do with these processes.

1. Decomposition into martingale plus predictable process
A submartingale Sn can be written as Sn = Mn + Kn, where Mn is a Martingale and Kn is
an increasing “predictable” process, meaning that Kn is determined by the history up to time
n − 1 (that is, Kn is a Fn−1-measurable random-variable).

2. Strong convergence theorems
If Y is a submartingale with EY +

n ≤ M < ∞ for some M and all n, then there exists a random
variable Y∞ such that Yn converges to Y∞ with probability 1. Under some conditions, this can
be made even stronger.

3. Crossing Inequalities
Let X = (Xn)n≥0 be a submartingale, and let Un(a, b) for any a < b be the number of
“upcrossings” of [a, b] by the process X, that is, the number of times the process crosses from
below a to above b (in a sense to be made precise later).
Then, EUn(a, b) ≤ E(Xn − a)+/(b − a).

4. Large Deviation Bounds
Bounds on the probabilities of large excursions in the process.

5. Maximal Inequalities
Example: if X is a submartingale, then

P

{

max
1≤i≤n

Xi > u

}

≤
EX+

n

u
. (22)

6. Optional Sampling of Process at Stopping Times
If T1 ≤ T2 ≤ · · · are stopping times satisfying some conditions (such as being bounded by a
sequence of deterministic times), then a submartingale Y sampled at these times remains a
submartingale.

7. Optional Stopping Theorem
Let X be a martingale and T a stopping time. Then, EXT = EX0 if

A. P{T < ∞} = 1,
B. E|XT | < ∞,
C. E(Xn1{T > n}) → 0 as n → ∞.

These conditions, fairly mild, can be simplified in some cases.
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