
Plan Martingales Results and Applications

1. Main Martingale Results
2. Two selected Applications

Reading: G&S: 12.7, 12.8
Next Time: Poisson and Renewal Processes

Homework 7: G&S 12.3: 1–4; 12.4: 1, 2, 5, 6, 7; 12.5: 3,4; and question from class.
Due Thu 13 Apr 2006.

Theorem 1. The Martingale Convergence Theorem
Let Y = (Yn) be a submartingale (with respect to the filtration (Fn)). If supn≥0 EY +

n < ∞,
then there exists a random variable Y∞ such that P{Yn → Y∞} = 1.

In addition:

1. If E|Y0| < ∞, then E|Y∞| < ∞.
2. If

lim
c→∞

sup
n≥0

E (|Yn|1{|Yn| > c}) = 0, (1)

which we call uniform integrability, then

lim
n→∞

E|Xn − X∞| = 0 (2)

EX∞ = EXn for n ≥ 0. (3)

Question 2. What is the significance of the first condition in the theorem? When might that
fail? What does that uniform integrability condition mean? Can you find cases when it holds?

How does the upcrossings inequality help us sketch a proof?

Question 3. What can we say about a bounded submartingale?
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Homework Question 4. Recall Doob’s martingale. Let X be a random variable with E|X| < ∞.
Define Yn = E(X | Fn) for a filtration (Fn).

Show that (Yn) is a uniformly integrable sequence.
Intuitively, what form should Y∞ take?
Careful: don’t ignore the filtration. Let F∞ be the smallest σ-field containing every Fn. This

might be F and might be smaller. Now, consider the question again.

Idea 5. Fun with Stopping Times
Stopping times play a big role in martingale theory. To see their importance, consider a

gambling system that attempts to beat a fair game. What strategies do you have available? What
information can you use to decide whether to stop playing? When you account for those constraints,
can you beat the game?

That the answer is no is a fundamental result in the theory. Let’s work up to it.
Proposition. Suppose X = (Xn) is a submartingale with respect to (Fn) and let T be a stopping

time.
Then, the “stopped process” defined by Yn = XT∧n is also a sub-martingale.
Why?

.
So, stopping at a random time won’t help our gambler. What about playing a different game?

Suppose the gambler changes at some random time (necessarily a stopping time) and brings his
current wealth to a new game.

Proposition. Let X and Y be martingales with respect to (Fn). Let T be a stopping time and
suppose that XT = YT on the event {T < ∞}. Then, define

Zn = Xn1{T > n} + Yn1{T ≤ n} . (4)

This too is a martingale with respect to (Fn).
Why is this true?

Now suppose our gambler wants to pick and choose which trials to bet on. This corresponds
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to finding a sequence of times on which to play.
Suppose T0 ≤ T1 ≤ T2 ≤ · · · is an increasing series of stopping times and X is a martingale.

What can we say about the process Yn = XTn
for n ≥ 0.

Is it a martingale? In general, no. Consider the simple random walk with p = 1/2 and let T
be the first hitting time of k > 0. Then, ES0 = 0 6= EST = k.

But the result is true if the stopping times are bounded.

Theorem 6. Optional Sampling
Let X be a submartingale with respect to (Fn).

1. If T is a stopping time for which P{T ≤ m} = 1 for some m < ∞, then EX+
T < ∞ and

X0 ≤ E(XT | F0). (Hence, EX0 ≤ EXT .)
2. If T0 ≤ T1 ≤ · · · are stopping times with P{Ti ≤ mi} = 1 for mi < ∞, then Yn = XTn

is a
submartingale as well.

Question 7. What happens in the above when X is a martingale?
How do we prove this theorem?

Corollary 8. Optional Stopping Theorem Let X be a martingale and T be a stopping time such
that

1. P{T < ∞} = 1.
2. E|XT | < ∞
3. EXn1{T > n} → 0 as n → ∞.

Then, EXT = EX0.

Application 9. Wald’s Identity.
Let (Ξn) be iid integrable random variables and N a stopping time of the sequence. What is

E
∑N

i=1 Ξi?
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Application 10. False Discovery Rates
Suppose we have m hypothesis tests and corresponding p-values P1, . . . , Pm. Let P(0) ≡ 0 and
P(1) < · · ·P(m) are the p-values in increasing order. Then, Benjamini and Hocbherg (1995) used
the following threshold to determine which null hypotheses would be rejected.

P ∗ = max

{

P(i):P(i) ≤ α
i

m

}

(5)

They showed that if we reject all null hypothesis for which Pi ≤ P ∗, we will control the false

discovery rate at level α. That is,

E
falsely rejected nulls

rejected nulls
≤ α. (6)

Let’s make this more precise.
Let H0 and H1 be a partition of {1, . . . ,m}. H0 represents the indices of true null hypotheses;

H1 represents the indices of true alternatives (though which alternative is not specified by the index
alone). Let m0 = #(H0).

For any p-value threshold, 0 ≤ t ≤ 1, define the following:

V (t) =
∑

i∈H0

1{Pi ≤ t} (7)

R(t) =
∑

i∈H0∪H1

1{Pi ≤ t} . (8)

V (t) is the number of false rejects at threshold t; R(t) is the total number of rejections. Define the
False Discovery Proportion at threshold t by

FDP(t) =
V (t)

max(R(t), 1)
. (9)

Then, for a threshold T , fixed or random, the False Discovery Rate (FDR) is given by

FDR = EFDP(T ). (10)

Benjamini and Hochberg (1995) showed that a threshold equivalent to

Tα = sup

{

t ∈ [0, 1]:
mt

R(t)
≤ α

}

(11)

satisfies FDR ≤ α.
Let’s give a martingale proof in three steps. But in this case we need to do two things: take the

threshold as our time index, which is thus a continuous index, and reverse time. Both are technical
variations on the discrete-time martingales we’ve seen, but the basic ideas are the same.

Claim 1. The process t 7→ V (t)/t is a reversed-time martingale with respect to the filtration

Ft = σ (1{Pi ≤ s} , s ∈ [t, 1], i ∈ {1, . . . ,m}) . (12)

Claim 2. Tα is a stopping time (with time reversed) with respect to (Ft).

Claim 3. The optional stopping theorem implies that EFDP(Tα) = (m0/m)α.
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Proof of Claim 1. What do we need to show? What do we know (or need to assume)? What are
the first steps?

Proof of Claim 2. What do we need to show? (It’s not exactly the same as in the discrete case but
what’s the natural analogue?) What do we know (or need to assume)? How does mt/R(t) change
with t?

5 6 Apr 2006



Proof of Claim 3. Thinking about the process mt/R(t), we see that

R(Tα) =
m

α
Tα. (13)

Hence,

FDP(Tα) =
α

m

V (Tα)

Tα

. (14)

Note that the stopped process is bounded by m/α. Hmmmm...
The optional stopping theorem gives

E
V (Tα)

Tα

= E
V (1)

1
= m0, (15)

and thus

FDRTα
=

α

m
E

V (Tα)

Tα

=
m0

m
α.

Sweet.

Applications 11. Options Pricing
Let Wn be the price of an asset on day n. And let Yn be the ratio of the price on day n to that

on day n − 1, so Wn = wY1 · · · Yn for current price W0 = w.
Assume (for simplicity) a continuously-discounted inflation rate α ≥ 0, so that value at day n

is discounted by a factor e−αn.
Assume that e−αnWn is a martingale with respect to the Yns. Then, Ee−αnWn = EW0 = w,

and EWn = weαn shows mean growth rate α.
A call option contract enables one to purchase an asset at a fixed price regardless of the market

price. Suppose for simplicity that the fixed price is 1 (we can always rescale). Then, if you held
an option, you could exercise it whenever Wn > 1 for a profit of Wn − 1; when Wn < 1, there is no
gain in exercising it. Hence, your profit from exercising the option at time n, suitably discounted
would be e−αn(Wn − 1)+.

How valuable is this option contract? If the value of the option grows at rate less than α, then
you might as well hold the asset instead.

Let β ≥ α be the rate of return on the option, and assume that there exists a q > 1 such that

E(Y q
n | Y1, . . . , Yn−1) ≤ eβ , n = 1, 2, . . . . (16)

Define

f(w) =

{

wq(q−1)q−1

qq if w ≤ q/(q − 1)

w − 1 if w > q/(q − 1).
(17)

We can show that Xn = e−βnf(Wn) forms a non-negative supermartingale. Hence, for any
stopping time T ,

f(w) = EX0 ≥ Ee−βT f(WT ). (18)

Because f(w) ≥ (w − 1)+, we have

Ee−βT (WT − 1)+ ≤ f(w). (19)

This gives us a bound on the discounted profit obtainable with any stopping strategy. In particular,
if w > q/(q − 1), then the discounted value of the option is at most w − 1, suggesting that it be
exercised immediately.

6 6 Apr 2006



Example 12. Discretization and Derivatives
Let U be a Uniform〈0, 1〉 random variable. Define Xn = k2−n for the unique k such that

k2−n ≤ U < (k + 1)2−n. As n increases, Xn gives finer and finer information about U .
Let f be a bounded function on [0, 1] and define

Yn = 2n
(

f(Xn + 2−n) − f(Xn)
)

. (20)

What is Yn approximating here as n → ∞?

What is the distribution of U given X0, . . . , Xn?

Show that Yn is a martingale wrt Xn.
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