
Plan Counting, Renewal, and Point Processes

0. Finish FDR Example

1. The Basic Renewal Process

2. The Poisson Process Revisited

3. Variants and Extensions

4. Point Processes

Reading: G&S: 7.1–7.3, 7.10

Next Time: Poisson and Point Processes and Applications

Homework 7 due Thursday

Left-over Question 1. Does E|Z| < ∞ implie that E|Z|1{|Z| > c} → 0 as c → ∞?

Theorem 2. Optional Sampling

Let X be a submartingale with respect to (Fn).

1. If T is a stopping time for which P{T ≤ m} = 1 for some m < ∞, then EX+
T

< ∞ and
X0 ≤ E(XT | F0). (Hence, EX0 ≤ EXT .)

2. If T0 ≤ T1 ≤ · · · are stopping times with P{Ti ≤ mi} = 1 for mi < ∞, then Yn = XTn
is a

submartingale as well.

Corollary 3. Optional Stopping Theorem Let X be a martingale and T be a stopping time such
that

1. P{T < ∞} = 1.

2. E|XT | < ∞

3. EXn1{T > n} → 0 as n → ∞.

Then, EXT = EX0.

Corollary 4. Suppose that X = (Xn)n≥0 is a uniformly integrable martingale and T is a stopping
time with P{T < ∞} = 1, then EXT = EX0.

Corollary 5. If X is a martingale and T is a stopping time with ET < ∞ and assume that XT∧n

is a uniformly integrable sequence. Then EX0 = EXT .
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Application 6. False Discovery Rates
Suppose we have m hypothesis tests and corresponding p-values P1, . . . , Pm. Let P(0) ≡ 0 and
P(1) < · · ·P(m) are the p-values in increasing order. Then, Benjamini and Hocbherg (1995) used
the following threshold to determine which null hypotheses would be rejected.

P ∗ = max

{

P(i):P(i) ≤ α
i

m

}

(1)

They showed that if we reject all null hypothesis for which Pi ≤ P ∗, we will control the false

discovery rate at level α. That is,

E
falsely rejected nulls

rejected nulls
≤ α. (2)

Let’s make this more precise.
Let H0 and H1 be a partition of {1, . . . ,m}. H0 represents the indices of true null hypotheses;

H1 represents the indices of true alternatives (though which alternative is not specified by the index
alone). Let m0 = #(H0).

For any p-value threshold, 0 ≤ t ≤ 1, define the following:

V (t) =
∑

i∈H0

1{Pi ≤ t} (3)

R(t) =
∑

i∈H0∪H1

1{Pi ≤ t} . (4)

V (t) is the number of false rejects at threshold t; R(t) is the total number of rejections. Define the
False Discovery Proportion at threshold t by

FDP(t) =
V (t)

max(R(t), 1)
. (5)

Then, for a threshold T , fixed or random, the False Discovery Rate (FDR) is given by

FDR = EFDP(T ). (6)

Benjamini and Hochberg (1995) showed that a threshold equivalent to

Tα = sup

{

t ∈ [0, 1]:
mt

R(t)
≤ α

}

(7)

satisfies FDR ≤ α.
Let’s give a martingale proof in three steps. But in this case we need to do two things: take the

threshold as our time index, which is thus a continuous index, and reverse time. Both are technical
variations on the discrete-time martingales we’ve seen, but the basic ideas are the same.

Assume that the p-values for which the null is true are independent.

Claim 1. The process t 7→ V (t)/t is a reversed-time martingale with respect to the filtration

Ft = σ (1{Pi ≤ s} , s ∈ [t, 1], i ∈ {1, . . . ,m}) . (8)

Claim 2. Tα is a stopping time (with time reversed) with respect to (Ft).

Claim 3. The optional stopping theorem implies that EFDP(Tα) = (m0/m)α.
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Proof of Claim 1. What do we need to show? What do we know (or need to assume)? What are
the first steps?

Proof of Claim 2. What do we need to show? (It’s not exactly the same as in the discrete case but
what’s the natural analogue?) What do we know (or need to assume)? How does mt/R(t) change
with t?
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Proof of Claim 3. Thinking about the process mt/R(t), we see that

R(Tα) =
m

α
Tα. (9)

Hence,

FDP(Tα) =
α

m

V (Tα)

Tα

. (10)

Note that the stopped process is bounded by m/α. Hmmmm...
The optional stopping theorem gives

E
V (Tα)

Tα

= E
V (1)

1
= m0, (11)

and thus

FDRTα
=

α

m
E

V (Tα)

Tα

=
m0

m
α.

Sweet.

Definition 7. A counting process N = (Nt)t≥0 satisfies

1. Nt is non-negative integer-valued.
2. Nt is non-decreasing.

The increment Nt − Ns for s ≤ t represents the number of “events” that have occurred in the
interval (s, t].

Figure 8.
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The Basic Renewal Process 9.

Let X1, X2, . . . be a sequence of iid, non-negative random variables with common cdf F . Assume,
to avoid odd boundary cases, that F (0) = 0. Let µ = EX1.

We will interpret Xi as the time between the i − 1st and ith event or “renewal”.
Write S0 = 0 and Sn =

∑
n

i=1 Xi. Then, Sn is the time of the nth event.
Finally, define

Nt = sup{n ∈ Z⊕:Sn ≤ t}. (12)

This counting process is called a renewal process.

4 11 Apr 2006



Question 10. Can an infinite number of events occur in a finite time interval? Why or why not?

A Representation 11. Consider the following claim:

Nt =
∞∑

k=1

1{Sk ≤ t} . (13)

Is this true? Why?

Definition 12. Let m(t) = ENt. This is called the renewal function. By the above representation,
we have

m(t) =
∞∑

k=1

P{Sk ≤ t} =
∞∑

k=1

Fk(t), (14)

where Fk is the cdf of Sk.

Question 13. What is the distribution of Sk in terms of the distribution of Sk−1? (Start with
k = 1.)

Derivation 14. The Distribution of Nt.
We have the following logical relation:

Nt ≥ n ⇐⇒ Sn ≤ t. (15)

From this, we have

P{Nt = n} = P{Nt ≥ n} − P{Nt ≥ n + 1} (16)

= P{Sn ≤ t} − P{Sn+1 ≤ t} (17)

= Fn(t) − Fn+1(t). (18)
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Notation 15. For our purposes here, we will use ? for the convolution operator given by

(G ? H)(t) =

∫
t

0
G(t − s) dH(s), (19)

whenever the integral exists, for real-valued functions G,H on [0,∞). You can show that this a
commutative and associative operator.

Equation 16. A function u is a solution to a renewal-type equation if it satisfies

u = G + u ? F, (20)

for bounded G on [0,∞).
In particular, the renewal function satisfies

m = F + m ? F. (21)

There are a couple ways to see this. First, we can plug in
∑

k Fk into the equation. Check. Second,
we can condition on the first arrival. The function E(Nt | X1 near s) takes the following form:

E(Nt | X1 near s) =

{

1 + m(t − s) if s ≤ t
0 if s > t.

(22)

Why?
It follows that

m(t) = ENt (23)

= EE(Nt | X1) (24)

=

∫ ∞

0
E(Nt | X1 near s) ds (25)

=

∫
t

0
(1 + m(t − s)) dF (s) (26)

= F (t) + (m ? F )(t). (27)

More generally, a solution to the renewal-type equation (20) is given by

u = G + G ? m. (28)

To see this, convolve both sides of the equation with F :

u ? F = G ? F + G ? m ? F (29)

= G ? F + G ? (m − F ) (30)

= G ? m (31)

= u − G, (32)

hence,

u = G + u ? F. (33)

We can also show that if G is bounded on compact sets, then u is a unique solution and is also
bounded on compact sets.
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Definition 17. A real-valued random variable is said to be lattice if it takes values in a set
{ka: k ∈ Z}. The span (or period) of the lattice is the maximal such a.

Limit Theorems 18. Renewal processes behave asymptotically as you might expect. (ha ha)
As t → ∞, the following hold

1.
Nt

t
→

1

µ
almost surely.

2.
m(t)

t
→

1

µ
.

3.
m(t + h) − m(t)

h
→

1

µ
, for all h if X1 is not lattice and for all h that are integer multiples of

the span if X1 is lattice.

In addition, Nt/t, properly centered and scaled, is asymptotically Normal. See the book (section
10.2) for proofs.

Process 19. The Poisson Process is a renewal process with interarrival distribution F equal to
an Exponential〈λ〉. More precisely, this is called a (homogeneous) Poisson process with rate λ.

Recall that from this setup, we showed that the Poisson process has two other important
properties.

First, independent increments. The random variables Nt − Ns and Nv − Nu are independent
whenever (s, t] and (u, v] are disjoint. (The same goes for multiple such intervals.)

Second, stationary increments, the distribution of Nt − Ns depends only on t − s.
We can thus characterize this process in two other equivalent ways.

Alternate Definition 1 20.

Let N = (Nt)t≥0 be a process with the following properties:

1. N0 = 0
2. For 0 ≤ s < t, Nt − Ns has a Poisson〈λ(t − s〉) distribution.
3. For 0 ≤ s1 < t1 < s2 < t2 < · · · < sm < tm, the random variables Nti

− Nsi
are independent.

Then, N is a Poisson process with rate λ.

Alternate Definition 2 21.

Let N = (Nt)t≥0 be a process with the following properties:

1. N0 = 0
2. The process has stationary and independent increments.
3. P{Nh = 1} = λh + o(h).
4. P{Nh ≥ 2} = o(h).

Then, N is a Poisson process with rate λ.

Theorem 22. The two alternate definitions are equivalent.
Basic idea of the proof: Poisson approximation to the binomial.
Note that from these alternative definitions, we can derive the interarrival distribution by

P{X1 > t} = P{Nt = 0} = e−λt. (34)

Useful Fact 23. . . . which you derived in homework.
Given Nt = n, the set of n arrival times {S1, . . . , Sn} have the same distribution as the order

statistics of n independent Uniform〈0, t〉 random variables.
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Process 24. By generalizing the alternate definitions, we get a whole new class of interesting
processes.

Let N = (Nt)t≥0 be a process with the following properties:

1. N0 = 0
2. The process has independent increments.
3. P{Nt+h − Nh ≥ 2} = o(h).
4. P{Nt+h − Nh = 1} = λ(t)h + o(h).

Then, N is called an inhomogeneous Poisson process with rate function λ(t).
We can show that Nt+s − Nt has a Poisson distribution with mean m(t + s) − m(t), where

m(t) =
∫

t

0 λ(s) ds.
This leads us to the idea of Point Processes which we’ll take up next time.
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