Plan Renewal, Poisson, and Point Processes

More Renewal Process

The Poisson Process Revisited
Variants and Extensions

Point Processes

=W

Reading: G&S: 7.1-7.3, 7.10
Next Time: Applications and Intro to Diffusions

Homework 8 due next Thursday

Reminder 1. The Basic Renewal Process
Let X7, X5, ... be a sequence of 11D, non-negative random variables with common CDF F. Assume,
to avoid odd boundary cases, that F'(0) = 0. Let u = EX;.
We will interpret X; as the time between the ¢ — 1st and ith event or “renewal”.
Write Sop = 0 and S,, = >_1*; X;. Then, S, is the time of the nth event.
Finally, define
Ny = sup{n € Zg: S, < t}. (1)

This counting process is called a renewal process. We showed last time that
o
Ny =Y 1{S, <t}. (2)
k=1

Definition 2. Let m(t) = EN;. This is called the renewal function. By the above representation,
we have

m(t) = SOP(Sk <t} = 3 Fil) ®
k=1 k=1

where F}, is the CDF of S},.

Question 3. What is the distribution of Sj in terms of the distribution of Sy_1? (Start with
E=1.)

Derivation 4. The Distribution of V.
We have the following logical relation:

Ny>n < S,<t (4)
From this, we have
P{N¢=n}=P{N;>n}—-P{N; >n+1} (5)
=P{S, <t} —P{Su41 <t} (6)
= I (t) — Foya (D). (7)
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Notation 5. For our purposes here, we will use * for the convolution operator given by

(G # H)(t) = /0 "Gt — s)dH (), (8)

whenever the integral exists, for real-valued functions G, H on [0,00). You can show that this a
commutative and associative operator.

Equation 6. A function u is a solution to a renewal-type equation if it satisfies
u=G+uxF, 9)

for bounded G on [0, 00).
In particular, the renewal function satisfies

m=F+mxF. (10)

There are a couple ways to see this. First, we can plug in ), F} into the equation. Check. Second,
we can condition on the first arrival. The function E(/V; | X near s) takes the following form:

E(Ny | X1 near s) = {(1)+ m(t — s) i'; § i (11)
Why?
It follows that
m(t) = EN, (12)
= EE(NV; | X)) (13)
_ /0 T E(N, | X1 near s)ds (14)

_ /Ot(l m(t — ) dF(s) (15)
= F(t) + (m* F)(t). (16)

More generally, a solution to the renewal-type equation (9) is given by
u=G+G*xm. (17)

To see this, convolve both sides of the equation with F":

ux F=GxF+G+mxF (18)
=G+xF+G*(m—F) (19)
=G*m (20)
=u—G, (21)
hence,
u=G+uxF. (22)

We can also show that if G is bounded on compact sets, then u is a unique solution and is also
bounded on compact sets.
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Definition 7. A real-valued random variable is said to be lattice if it takes values in a set
{ka:k € Z}. The span (or period) of the lattice is the maximal such a.

Limit Theorems 8. Renewal processes behave asymptotically as you might expect. (ha ha) As
t — oo, the following hold

Ny
1. -~ 1 almost surely.

o M) L
t 1%
m(t + h) —m(t)
h
the span if X7 is lattice.

— —, for all h if X7 is not lattice and for all h that are integer multiples of

In addition, N;/t, properly centered and scaled, is asymptotically Normal. See the book (section
10.2) for proofs.

Process 9. The Poisson Process is a renewal process with interarrival distribution F' equal to an
Exponential(\). More precisely, this is called a (homogeneous) Poisson process with rate \.

Recall that from this setup, we showed that the Poisson process has two other important
properties.

First, independent increments. The random variables N; — N; and N, — N,, are independent
whenever (s,t] and (u,v] are disjoint. (The same goes for multiple such intervals.)

Second, stationary increments, the distribution of N; — N depends only on ¢ — s.

We can thus characterize this process in two other equivalent ways.

Alternate Definition 1 10.
Let N = (N¢)¢>0 be a process with the following properties:

1. Ng=0
2. For 0 < s < t, N; — Ny has a Poisson(\(t — s)) distribution.
3. For 0 <51 <t <89 <ty <--- <8y <y, the random variables Ny, — N, are independent.

Then, N is a Poisson process with rate .

Alternate Definition 2 11.
Let N = (Nt)¢>0 be a process with the following properties:

1. Ng=0

2. The process has stationary and independent increments.
3. P{N, =1} =Ah+o(h).

4. P{Ny > 2} = o(h).

Then, N is a Poisson process with rate .

Theorem 12. The two alternate definitions are equivalent.
Basic idea of the proof: Poisson approximation to the binomial.
Note that from these alternative definitions, we can derive the interarrival distribution by

P{X, >t} =P{N; =0} =e M (23)
Useful Fact 13. ... which you derived in homework.
Given Ny = n, the set of n arrival times {S1,...,S5,} have the same distribution as the order

statistics of n independent Uniform(0,¢) random variables.
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Process 14. By generalizing the alternate definitions, we get a whole new class of interesting
processes.
Let N = (N¢)¢>0 be a process with the following properties:

No=0

The process has independent increments.
P{Nt+h — Nh > 2} = O(h)

4. P{Nt+h — Nh = 1} = )\(t)h + O(h)

Then, N is called an inhomogeneous Poisson process with rate function A(¢).
We can show that Ny — Ny has a Poisson distribution with mean m(t 4+ s) — m(t), where

m(t) = [ A(s)ds

W N

Perspective 15. A different view of the Poisson process.

We think of the Poisson process as generated from the random scatter of points on [0, 00). The
process N then counts the points in any set. That is, for a (measurable) set A, N(A) is a random
variable counting the number of points in A. N becomes a random measure.

To formalize this, consider the collections of random variables N(A) for all (Borel) sets A,
where N(A) counts the number of “points” in the set A.

Let A be a measure on [0,00) such that A(A) < oo for every bounded set A. And assume that

for every collection of disjoint, bounded Borel sets Ay, ..., A, we have
E(AAY))] ,
P{N(Aj))=nj,j=1,....k} = _Hl#e—wm. (24)
j:

That is, the N(A;)s are independent Poisson(A(A;)) random variables.
Let’s see how this works. Suppose that A(A) = M(A), where £(A) is the Lebesgue measure
(“length”) of A and A > 0. Then, we have that

1. N({0})=0

2. The probability above shows that N(s;,t;] are independent for disjoint intervals s; < ¢;.
It also shows that for any bounded Borel sets A1, ..., Ay, the joint distribution of the random
variables N(Ay +1t),..., N(A +t) does not depend on ¢, where A+t represents {a+t:a € A},
for all ¢ such that all of the shifted sets are contained in [0, co).
In particular, N(s,t] has the same distribution as N (s + h,t + h| for all h > —s.
Thus, we have stationary and independent increments.

3. P{N(0,h] =1} = Ahe™*" = Ah + o(h).

4 P{N(0,h] > 1} = S22, BAE =M — o(p),

This gives us back the homogeneous Poisson process.
Now suppose that X is a non-negative function, and define A(A) = [, A(x) dz. Then, we have

N({0}) =0
Independent increments from the probability above.
P{N(t,t +h] =1} = [T \(x) dze™>" = A(t)h + o(h).

tth X XL k
4PNt 4 ] > 1) = e, Yo 208 oy,

And we get the inhomogeneous Poisson process.

W=
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Definition 16. A counting measure v on a space S is a measure with the following additional
properties:

1. v(A) is non-negative-integer valued for any measurable A.
2. v(A) < oo for any bounded, measurable A.

Any counting measure v on § has the form
v=> kibs,, (25)
i

for a countable collection of positive integers k; and points x; € S, where §, is a point-mass at x.
If all the k; = 1, then v is said to be a simple counting measure.

Definition 17. A point process is a random counting measure.
That is, if point process is a (measurable) mapping of each w € Q to a counting measure.

Example 18. The homogeneous and inhomogeneous Poisson processes.

Example 19. Let M be a non-negative integer-valued random variable with distribution G.
Given M = m, draw X1,..., X, be IID from F. Define

M
N(A) =) 1{X; € A}. (26)
i=1
Then, N(A) is a point process.
Example 20. Let M be a non-negative integer-valued random variable with distribution G. Let

1 be a probability measure on a space S.

k—1
Given any k — 1 disjoint sets Aj,..., Ax_1, let Ax = ( LIJ Aj)¢. Let

PIN(A)) = njj = L,... .k} = (n M nk)mAl) o (Ag). (27)

What is the marginal distribution of N(A;) here? Note that M = N(S).
We care not just about the distributions of N(A) but also moments. For example, if A; and
Ay partition S:
E(N(A1)N(A2) | M) = M(M — 1)p(Ar)p(Az). (28)

So Cov(N (A1), N(As2)) = cpgiu(A1)pu(Az), where cjg) is second factorial cumulant of M.
These distributions and moments are easiest to study with generating functions.
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