
Plan Renewal, Poisson, and Point Processes

1. More Renewal Process
2. The Poisson Process Revisited
3. Variants and Extensions
4. Point Processes

Reading: G&S: 7.1–7.3, 7.10
Next Time: Applications and Intro to Diffusions

Homework 8 due next Thursday

Reminder 1. The Basic Renewal Process
Let X1, X2, . . . be a sequence of iid, non-negative random variables with common cdf F . Assume,
to avoid odd boundary cases, that F (0) = 0. Let µ = EX1.

We will interpret Xi as the time between the i − 1st and ith event or “renewal”.
Write S0 = 0 and Sn =

∑n
i=1 Xi. Then, Sn is the time of the nth event.

Finally, define
Nt = sup{n ∈ Z⊕:Sn ≤ t}. (1)

This counting process is called a renewal process. We showed last time that

Nt =
∞
∑

k=1

1{Sk ≤ t} . (2)

Definition 2. Let m(t) = ENt. This is called the renewal function. By the above representation,
we have

m(t) =
∞
∑

k=1

P{Sk ≤ t} =
∞
∑

k=1

Fk(t), (3)

where Fk is the cdf of Sk.

Question 3. What is the distribution of Sk in terms of the distribution of Sk−1? (Start with
k = 1.)

Derivation 4. The Distribution of Nt.
We have the following logical relation:

Nt ≥ n ⇐⇒ Sn ≤ t. (4)

From this, we have

P{Nt = n} = P{Nt ≥ n} − P{Nt ≥ n + 1} (5)

= P{Sn ≤ t} − P{Sn+1 ≤ t} (6)

= Fn(t) − Fn+1(t). (7)
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Notation 5. For our purposes here, we will use ? for the convolution operator given by

(G ? H)(t) =

∫ t

0
G(t − s) dH(s), (8)

whenever the integral exists, for real-valued functions G,H on [0,∞). You can show that this a
commutative and associative operator.

Equation 6. A function u is a solution to a renewal-type equation if it satisfies

u = G + u ? F, (9)

for bounded G on [0,∞).
In particular, the renewal function satisfies

m = F + m ? F. (10)

There are a couple ways to see this. First, we can plug in
∑

k Fk into the equation. Check. Second,
we can condition on the first arrival. The function E(Nt | X1 near s) takes the following form:

E(Nt | X1 near s) =

{

1 + m(t − s) if s ≤ t
0 if s > t.

(11)

Why?
It follows that

m(t) = ENt (12)

= EE(Nt | X1) (13)

=

∫ ∞

0
E(Nt | X1 near s) ds (14)

=

∫ t

0
(1 + m(t − s)) dF (s) (15)

= F (t) + (m ? F )(t). (16)

More generally, a solution to the renewal-type equation (9) is given by

u = G + G ? m. (17)

To see this, convolve both sides of the equation with F :

u ? F = G ? F + G ? m ? F (18)

= G ? F + G ? (m − F ) (19)

= G ? m (20)

= u − G, (21)

hence,

u = G + u ? F. (22)

We can also show that if G is bounded on compact sets, then u is a unique solution and is also
bounded on compact sets.
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Definition 7. A real-valued random variable is said to be lattice if it takes values in a set
{ka: k ∈ Z}. The span (or period) of the lattice is the maximal such a.

Limit Theorems 8. Renewal processes behave asymptotically as you might expect. (ha ha) As
t → ∞, the following hold

1.
Nt

t
→

1

µ
almost surely.

2.
m(t)

t
→

1

µ
.

3.
m(t + h) − m(t)

h
→

1

µ
, for all h if X1 is not lattice and for all h that are integer multiples of

the span if X1 is lattice.

In addition, Nt/t, properly centered and scaled, is asymptotically Normal. See the book (section
10.2) for proofs.

Process 9. The Poisson Process is a renewal process with interarrival distribution F equal to an
Exponential〈λ〉. More precisely, this is called a (homogeneous) Poisson process with rate λ.

Recall that from this setup, we showed that the Poisson process has two other important
properties.

First, independent increments. The random variables Nt − Ns and Nv − Nu are independent
whenever (s, t] and (u, v] are disjoint. (The same goes for multiple such intervals.)

Second, stationary increments, the distribution of Nt − Ns depends only on t − s.
We can thus characterize this process in two other equivalent ways.

Alternate Definition 1 10.

Let N = (Nt)t≥0 be a process with the following properties:

1. N0 = 0
2. For 0 ≤ s < t, Nt − Ns has a Poisson〈λ(t − s〉) distribution.
3. For 0 ≤ s1 < t1 < s2 < t2 < · · · < sm < tm, the random variables Nti − Nsi

are independent.

Then, N is a Poisson process with rate λ.

Alternate Definition 2 11.

Let N = (Nt)t≥0 be a process with the following properties:

1. N0 = 0
2. The process has stationary and independent increments.
3. P{Nh = 1} = λh + o(h).
4. P{Nh ≥ 2} = o(h).

Then, N is a Poisson process with rate λ.

Theorem 12. The two alternate definitions are equivalent.
Basic idea of the proof: Poisson approximation to the binomial.
Note that from these alternative definitions, we can derive the interarrival distribution by

P{X1 > t} = P{Nt = 0} = e−λt. (23)

Useful Fact 13. . . . which you derived in homework.
Given Nt = n, the set of n arrival times {S1, . . . , Sn} have the same distribution as the order

statistics of n independent Uniform〈0, t〉 random variables.
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Process 14. By generalizing the alternate definitions, we get a whole new class of interesting
processes.

Let N = (Nt)t≥0 be a process with the following properties:

1. N0 = 0
2. The process has independent increments.
3. P{Nt+h − Nh ≥ 2} = o(h).
4. P{Nt+h − Nh = 1} = λ(t)h + o(h).

Then, N is called an inhomogeneous Poisson process with rate function λ(t).
We can show that Nt+s − Nt has a Poisson distribution with mean m(t + s) − m(t), where

m(t) =
∫ t
0 λ(s) ds.

Perspective 15. A different view of the Poisson process.
We think of the Poisson process as generated from the random scatter of points on [0,∞). The

process N then counts the points in any set. That is, for a (measurable) set A, N(A) is a random
variable counting the number of points in A. N becomes a random measure.

To formalize this, consider the collections of random variables N(A) for all (Borel) sets A,
where N(A) counts the number of “points” in the set A.

Let Λ be a measure on [0,∞) such that Λ(A) < ∞ for every bounded set A. And assume that
for every collection of disjoint, bounded Borel sets A1, . . . , Ak, we have

P{N(Aj) = nj, j = 1, . . . , k} =
k
∏

j=1

(Λ(Aj))
n
j

nj!
e−Λ(Aj). (24)

That is, the N(Aj)s are independent Poisson〈Λ(Aj〉) random variables.
Let’s see how this works. Suppose that Λ(A) = λ`(A), where `(A) is the Lebesgue measure

(“length”) of A and λ > 0. Then, we have that

1. N({0}) = 0
2. The probability above shows that N(sj , tj ] are independent for disjoint intervals sj < tj.

It also shows that for any bounded Borel sets A1, . . . , Ak, the joint distribution of the random
variables N(A1 + t), . . . , N(Ak + t) does not depend on t, where A+ t represents {a+ t: a ∈ A},
for all t such that all of the shifted sets are contained in [0,∞).
In particular, N(s, t] has the same distribution as N(s + h, t + h] for all h ≥ −s.
Thus, we have stationary and independent increments.

3. P{N(0, h] = 1} = λhe−λh = λh + o(h).

4. P{N(0, h] > 1} =
∑∞

k=2
(λh)k

k! e−λh = o(h).

This gives us back the homogeneous Poisson process.
Now suppose that λ is a non-negative function, and define Λ(A) =

∫

A λ(x) dx. Then, we have

1. N({0}) = 0
2. Independent increments from the probability above.
3. P{N(t, t + h] = 1} =

∫ t+h
t λ(x) dxe−λh = λ(t)h + o(h).

4. P{N(t, t + h] > 1} =
∑∞

k=2

(
∫ t+h

t
λ(x) dx)k

k! e−λh = o(h).

And we get the inhomogeneous Poisson process.
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Definition 16. A counting measure ν on a space S is a measure with the following additional
properties:

1. ν(A) is non-negative-integer valued for any measurable A.
2. ν(A) < ∞ for any bounded, measurable A.

Any counting measure ν on S has the form

ν =
∑

i

kiδxi
, (25)

for a countable collection of positive integers ki and points xi ∈ S, where δx is a point-mass at x.
If all the ki = 1, then ν is said to be a simple counting measure.

Definition 17. A point process is a random counting measure.
That is, if point process is a (measurable) mapping of each ω ∈ Ω to a counting measure.

Example 18. The homogeneous and inhomogeneous Poisson processes.

Example 19. Let M be a non-negative integer-valued random variable with distribution G.
Given M = m, draw X1, . . . , Xm be iid from F . Define

N(A) =
M
∑

i=1

1{Xi ∈ A} . (26)

Then, N(A) is a point process.

Example 20. Let M be a non-negative integer-valued random variable with distribution G. Let
µ be a probability measure on a space S.

Given any k − 1 disjoint sets A1, . . . , Ak−1, let Ak = (
k−1
∪
1

Aj)
c. Let

P{N(Aj) = nj, j = 1, . . . , k} =

(

M

n1, . . . , nk

)

µn1(A1) · · · µ
nk(Ak). (27)

What is the marginal distribution of N(A1) here? Note that M = N(S).
We care not just about the distributions of N(A) but also moments. For example, if A1 and

A2 partition S:
E(N(A1)N(A2) | M) = M(M − 1)µ(A1)µ(A2). (28)

So Cov(N(A1), N(A2)) = c[2]µ(A1)µ(A2), where c[2] is second factorial cumulant of M .
These distributions and moments are easiest to study with generating functions.
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