
Plan Point Processes and Random Measures

1. What’s my motivation?
2. Counting and Random Measures
3. Point Processes and Examples
4. Properties

Reading: G&S: 13.1–13.3
Next Time: Diffusions and Brownian Motion

Homework 8 due Thursday

Perspective 1. A different view of the Poisson process.
We think of the Poisson process as generated from the random scatter of points on [0,∞). The

process N then counts the points in any set. That is, for a (measurable) set A, N(A) is a random
variable counting the number of points in A. N becomes a random measure.

To formalize this, consider the collections of random variables N(A) for all (Borel) sets A,
where N(A) counts the number of “points” in the set A.

Let Λ be a measure on [0,∞) such that Λ(A) < ∞ for every bounded set A. And assume that
for every collection of disjoint, bounded Borel sets A1, . . . , Ak, we have

P{N(Aj) = nj, j = 1, . . . , k} =
k
∏

j=1

(Λ(Aj))
n
j

nj!
e−Λ(Aj). (1)

That is, the N(Aj)s are independent Poisson〈Λ(Aj〉) random variables.
Let’s see how this works. Suppose that Λ(A) = λ`(A), where `(A) is the Lebesgue measure

(“length”) of A and λ > 0. Then, we have that

1. N({0}) = 0
2. The probability above shows that N(sj , tj ] are independent for disjoint intervals sj < tj.

It also shows that for any bounded Borel sets A1, . . . , Ak, the joint distribution of the random
variables N(A1 + t), . . . , N(Ak + t) does not depend on t, where A+ t represents {a+ t: a ∈ A},
for all t such that all of the shifted sets are contained in [0,∞).
In particular, N(s, t] has the same distribution as N(s + h, t + h] for all h ≥ −s.
Thus, we have stationary and independent increments.

3. P{N(0, h] = 1} = λhe−λh = λh + o(h).

4. P{N(0, h] > 1} =
∑∞

k=2
(λh)k

k! e−λh = o(h).

This gives us back the homogeneous Poisson process.
Now suppose that λ is a non-negative function, and define Λ(A) =

∫

A λ(x) dx. Then, we have

1. N({0}) = 0
2. Independent increments from the probability above.
3. P{N(t, t + h] = 1} =

∫ t+h
t λ(x) dxe−λh = λ(t)h + o(h).

4. P{N(t, t + h] > 1} =
∑∞

k=2

(
∫ t+h

t
λ(x) dx)k

k! e−λh = o(h).

And we get the inhomogeneous Poisson process.
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Definition 2. A counting measure ν on a space S is a measure with the following additional
properties:

1. ν(A) is non-negative-integer valued for any measurable A.
2. ν(A) < ∞ for any bounded, measurable A.

Any counting measure ν on S has the form

ν =
∑

i

kiδxi
, (2)

for a countable collection of positive integers ki and points xi ∈ S, where δx is a point-mass at x.
If all the ki = 1, then ν is said to be a simple counting measure.

Definition 3. Let (X ,B) be some measurable space and let (Ω,F ,E) be a probability space. A
random measure is a mapping M : Ω × B → R such that

1. For each ω ∈ Ω, M(ω, ·) is a measure on (X ,B).
2. For each A ∈ B, M(·, A) is a real-valued random variable.

We can also think of a random measure as a stochastic process indexed by B.
If the measure M(ω, ·) has some property – finiteness, σ-finiteness, integer-valued, and so forth

– for all (almost all) ω ∈ Ω, then we say that the random measure has that property as well (almost
surely).

Note: As with random variables generally, we suppress the ω argument in common usage.
Thus, the random measure of a set A is written as the random variable M(A).

Definition 4. If M is a random measure on (X ,B), then m(A) = EM(A) is a measure on (X ,B)
called the mean measure.

Definition 5. A point process is a random counting measure.
If the random counting measure is simple, we say that the process is a simple point process.

Example 6. Let (Xn)n≥0 be a collection of random variables taking values in the same measurable
space (X ,B). Define

M(ω,A) =
∑

n≥0

1A(Xn(ω)). (3)

Then, for each ω, we get a counting measure because it satisfies equation (2). For each A ∈ B,
we get a random variable because summation and composition with 1A are measurable. The point
process is simple as long as the Xns are distinct with probability 1.

Speaking loosely, we can invert this process. Given a point process M , we can find the “points”
of the counting measure for each ω and define a sequence of random variables such that equation
(3) holds. This can be made rigorous under some conditions.

Example 7. The homogeneous and inhomogeneous Poisson processes.
See Perspective 1 above.
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Example 8. Let M be a non-negative integer-valued random variable with distribution G. Given
M = m, draw X1, . . . , Xm be iid from F . Define

N(A) =
M
∑

i=1

1{Xi ∈ A} . (4)

Then, N(A) is a point process, a special case of the above..

Example 9. Poisson Random Measure (aka Poisson Scatter)
Let N be a point process with measn measure ν satisfying the following:

1. For each A ∈ B, N(A) has a Poisson〈ν(A〉) distribution.
2. Whenever A1, . . . , An ∈ B for n ≥ 2 are disjoint, N(A1), . . . , N(An) are independent random

variables.

Question 10. Do we have to check for a conflict between the two conditions for a Poisson random
measure? What conflict?

Question 11. Let f be a probability density on R
2. Generate a random scatter of points as

follows:

1. Let Ntotal be a Poisson〈λ〉 number with λ > 0.
2. Given Ntotal = n, draw n points iid from f .

Is this a Point Process? Describe it.
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Question 12. Suppose that Pittsburgh city buses arrive a bus stop every ∆ > 0 minutes and
that a passanger arrives at the bus stop at some random point uniformly distributed over the day.
How long on average does the passenger wait?

Suppose instead that the arrival times of the busses at the stop are described by a Poisson
random measure on the line with mean measure ν = Leb/∆. How long on average does the
passenger wait?

What’s going on here?
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Question 13. Suppose the positions of trees in a forest are well characterized by a Poisson
random measure N with mean measure ν = λLeb for λ > 0. What is the distribution of the
distance from an arbitrary point in the forest to the nearest tree? What is the distance from that
point that you can see to the east?
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Example 14. Let M be a non-negative integer-valued random variable with distribution G. Let
µ be a probability measure on a space S.

Given any k − 1 disjoint sets A1, . . . , Ak−1, let Ak = (
k−1
∪
1

Aj)
c. Let

P{N(Aj) = nj, j = 1, . . . , k} =

(

M

n1, . . . , nk

)

µn1(A1) · · · µ
nk(Ak). (5)

What is the marginal distribution of N(A1) here? Note that M = N(S).
We care not just about the distributions of N(A) but also moments. For example, if A1 and

A2 partition S:
E(N(A1)N(A2) | M) = M(M − 1)µ(A1)µ(A2). (6)

So Cov(N(A1), N(A2)) = c[2]µ(A1)µ(A2), where c[2] is second factorial cumulant of M .
These distributions and moments are easiest to study with generating functions.

Practical Motivation 15. There are two threads to keep hold of when delving into the theory
of point processes. The first is that we want to be able to characterize the implications of our
assumptions for the structure of the point scatter. The abstract tools are designed to capture
different features of this structure to help us understand it better. The second thread is that in
practice we are faced with point scatters with different types of structure, and we want to be able
to generate models that match what we observe.

The following properties, which will be more fully developed in homework, give insight into
different features of the process.

Stationarity 16. A point process N is stationary if for all bounded, measurable sets A1, . . . , Ak

for k ≥ 1, the joint distribution of N(A1 + t), . . . , N(Ak + t) does not depend on t over all t such
that the shifted sets Ai + t remain in the domain of N .

Question 17. Given an example of a stationary point process.

Definition 18. Covariance Measure.
Let N be a point process with mean measure ν, and define

C2(A,B) = Cov(N(A), N(B)). (7)

What does this mean? Can we simplify this in the stationary case?

Definition 19. Avoidance Measure.
Let N be a point process. Write

V (A) = P{N(A) = 0} . (8)

What is the avoidance measure for the Poisson random measure?

Definition 20. The K function.
The K-function K(t) for a stationary point process is defined as the expected number of points

within a distance t of a typical point, divided by the overall intensity of the process.
For a homogeneous Poisson scatter in d dimensions, K(t) = vdt

d, where vd is the volume of the
unit ball in d dimensions.
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Idea 21. Integrating Random Measures
We have seen that with a measure, one can compute the measure of sets or integrate functions

and that the latter is a more general representation.
If M is a random measure, then

∫

f dM is a random variable which gives for each ω ∈ Ω,
∫

f dM(ω, ·).
It is often useful to represent random measures via their integrals.

Definition 22. Laplace Functionals If M is a random measure, then

L[f ] = Ee−
∫

f dM , (9)

for non-negative, measurable functions f , is called the Laplace functional of the process.
The Laplace functional determines the distribution of the process.

Question 23. What is the Laplace functional of the Poisson random measure?

Definition 24. Probability Generating Functional
Let N be a point process and define

GN [h] = Ee
∫

log hdN = E
∏

i

h(Xi), (10)

where 0 ≤ h ≤ 1 is a function with 1 − h vanishing outside a compact set and where the latter
product is over the “points” of the process.

This also determines the distribution of the process.

Reminder 25. What does “distribution of the process” of the process mean?
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