
Plan Diffusions and Brownian Motion

1. Finish Point Processes
2. The Botanists Tale
3. Brownian Motion
4. Properties
5. Diffusions

Reading: G&S: 13.1–13.3
Next Time: We’ll see how far we get.

Homework 9 available next time

Question 1. Suppose that Pittsburgh city buses arrive a bus stop every ∆ > 0 minutes and that
a passanger arrives at the bus stop at some random point uniformly distributed over the day. How
long on average does the passenger wait?

Suppose instead that the arrival times of the busses at the stop are described by a Poisson
random measure on the line with mean measure ν = Leb/∆. How long on average does the
passenger wait?

What’s going on here?
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Question 2. Suppose the positions of trees in a forest are well characterized by a Poisson random
measure N with mean measure ν = λLeb for λ > 0. What is the distribution of the distance from
an arbitrary point in the forest to the nearest tree? What is the distance from that point that you
can see to the east?

2 25 Apr 2006



Example 3. Let M be a non-negative integer-valued random variable with distribution G. Let
µ be a probability measure on a space S.

Given any k − 1 disjoint sets A1, . . . , Ak−1, let Ak = (
k−1∪
1
Aj)

c. Let

P{N(Aj) = nj, j = 1, . . . , k} =

(

M

n1, . . . , nk

)

µn1(A1) · · · µnk(Ak). (1)

What is the marginal distribution of N(A1) here? Note that M = N(S).
We care not just about the distributions of N(A) but also moments. For example, if A1 and

A2 partition S:
E(N(A1)N(A2) |M) = M(M − 1)µ(A1)µ(A2). (2)

So Cov(N(A1), N(A2)) = c[2]µ(A1)µ(A2), where c[2] is second factorial cumulant of M .
These distributions and moments are easiest to study with generating functions.

Practical Motivation 4. There are two threads to keep hold of when delving into the theory
of point processes. The first is that we want to be able to characterize the implications of our
assumptions for the structure of the point scatter. The abstract tools are designed to capture
different features of this structure to help us understand it better. The second thread is that in
practice we are faced with point scatters with different types of structure, and we want to be able
to generate models that match what we observe.

The following properties, which will be more fully developed in homework, give insight into
different features of the process.

Stationarity 5. A point process N is stationary if for all bounded, measurable sets A1, . . . , Ak

for k ≥ 1, the joint distribution of N(A1 + t), . . . , N(Ak + t) does not depend on t over all t such
that the shifted sets Ai + t remain in the domain of N .

Question 6. Given an example of a stationary point process.

Definition 7. Covariance Measure.
Let N be a point process with mean measure ν, and define

C2(A,B) = Cov(N(A), N(B)). (3)

What does this mean? Can we simplify this in the stationary case?

Definition 8. Avoidance Measure.
Let N be a point process. Write

V (A) = P{N(A) = 0} . (4)

What is the avoidance measure for the Poisson random measure?

Definition 9. The K function.
The K-function K(t) for a stationary point process is defined as the expected number of points

within a distance t of a typical point, divided by the overall intensity of the process.
For a homogeneous Poisson scatter in d dimensions, K(t) = vdt

d, where vd is the volume of the
unit ball in d dimensions.
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Idea 10. Integrating Random Measures
We have seen that with a measure, one can compute the measure of sets or integrate functions

and that the latter is a more general representation.
If M is a random measure, then

∫

f dM is a random variable which gives for each ω ∈ Ω,
∫

f dM(ω, ·).
It is often useful to represent random measures via their integrals.

Definition 11. Laplace Functionals If M is a random measure, then

L[f ] = Ee−
∫

f dM , (5)

for non-negative, measurable functions f , is called the Laplace functional of the process.
The Laplace functional determines the distribution of the process.

Question 12. What is the Laplace functional of the Poisson random measure?

Definition 13. Probability Generating Functional
Let N be a point process and define

GN [h] = Ee
∫

log hdN = E
∏

i

h(Xi), (6)

where 0 ≤ h ≤ 1 is a function with 1 − h vanishing outside a compact set and where the latter
product is over the “points” of the process.

This also determines the distribution of the process.

Reminder 14. What does “distribution of the process” of the process mean?
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Brief History 15. The Botanist’s Tale

• Robert Brown (1773-1858), botanist
Examined pollen grains and moss spores in water under microscope,
Observed a jittery motion. This had been observed before and attributed to biological causes.
But when he looked at dust suspended in water, he saw the same motion, which ruled out
the biological. Brown didn’t explain the phenomena but noted the irregularity of paths and
the seeming independence of distinct particle paths. Others had made similar (though less
systematic) observations before.

• Many attempts to explain the phenomenon in physical terms, including by Bachelier, Boltz-
mann, and Gibbs.
Bachelier, in particular, attempted to describe fluctuations in stock prices mathematically in
1900 and might have had priority on some of Einstein’s 1905 results.

• Einstein, apparently unaware of the earlier attempts, predicted the phenomenon on theoretical
grounds: according to the kinetic theory of gases (fluids), water molecules undergo repeated
random collisions, so a small object in water would experience impacts of random size and
direction.
Einstein’s “major aim was to find facts which would guarantee as much as possible the existence
of atoms of definite finite size.” At the time, the atomic theory remained controversial.
Einstein formulated a quantitative model as follows. Let p(x, t) be the probability density near
position x and time t for a “Brownian” particle. Einstein made some intuitive probabilistic
assumptions:

A. The probability that the particle moves from x to x+ h in a small time τ is g(h, τ) dh.
B. g(h, τ) = g(−h, τ), so

∫

hg(h, τ) dh = 0
C.

∫

h2g(h, τ) dh = Dτ for some D > 0.

It follows that in one dimension

p(x, t+ τ) =

∫

p(x− y, t)g(y, τ) dy (7)

=

∫

(

p(x, t) − ∂p(x, t)

∂x
y +

1

2

∂2p(x, t)

∂x2
− · · ·

)

g(y, τ) dy (8)

≈ p(x, t) +
D

2

∂2p(x, t)

∂x2
. (9)

The same argument in three dimensions gives the diffusion equation

∂p

∂t
=
D

2
∆p(x, t), (10)

where ∆ is the Laplacian and D is a positive constant – the coefficient of diffusivity. If we take
the initial position of the particle to be 0, then

p(x, t) = (2πDt)−3/2e
−|x|2

2Dt , (11)

a Gaussian(0, Dt) distribution on R
3.

The second part of Einstein’s argument is physical and intuitive. He relates D to other physical
quanties such as the Boltzmann constant k, the temperature T , the particle’s mass m, and
another constant β with dimensions of frequencies.

D =
kT

mβ
=
RT

Nφ
, (12)
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where R is the gas constant, N is Avogadro’s number, and φ is another constant. If the
Brownian particles are spheres of radius r, then Stoke’s theory of friction gives mβ = 3πηr,
where η is the coefficient of viscosity of the fluid and

D =
kT

3πηr
. (13)

Both the temperature and viscosity can be measured and a population of uniform particles
created, which is one way to determine Boltzmann’s constant.

• Langevin, Smoluchowski, Ornstein, and Uhlenbeck built on this to develop a dynamical theory
of diffusion.

• Weiner systematized the basic mathematical theory of Brownian motion – which is often called
a Weiner process and denoted by W – and prepared the way for the theory of stochastic
differential equations.

Process 16. Gaussian Processes
We know what it means for a scalar random variable to have a Normal (i.e., Gaussian) distri-

bution.
A finite collection X1, . . . , Xn has a (joint) Gaussian distribution if

∑n
i=1 aiXi is a scalar Gaus-

sian random variable for all choices of a1, . . . , an ∈ R.
We know that a scalar Gaussian is determined by its mean and variance. Note that

E
∑

i

aiXi =
∑

i

aiEXi (14)

Var
∑

i

aiXi =
∑

i

∑

j

aiaj Cov(Xi, Xj). (15)

Hence, the mean vector (EX1, . . . ,EXn) and covariance matrix (Cov(Xi, Xj))1≤i,j≤n determine the
distribution of the finite collection.

What about an infinite collection?
A real-valued stochastic process X = (Xt) is said to be a Gaussian process if all its finite-

dimensional distributions are Gaussian.
That is, X is Gaussian if for all choice of n ≥ 1 and t1, . . . , tn, the finite collection Xt1 , . . . , Xtn

is Gaussian. The mean vector and covariance matrix of this collection can depend on the ts.
The mean vector of the finite dimensional distributions ofX is determined by the mean function

µ(t) = EXt. The covariance matrix of the finite dimensional distributions of X is determined by
the autocovariance function ρ(s, t) = Cov(Xs, Xt).

Thus, the “distribution” of a Gaussian process is determined by µ and ρ.
ρ must be a positive definite function:

∑

j,k ρ(tj , tk)zjzk ≥ 0 for all n ≥ 1, t1 < · · · < tn, and
complex numbers z1, . . . , zn.

Theorem 17. A Gaussian process X is a Markov process if and only if

E(Xtn | Xtn−1
near un−1, . . . , Xt1 near u1) = E(Xtn | Xtn−1

near un−1), (16)

for all u1, . . . , un−1 and all times t1 < . . . < tn.
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Question 18. What might the Markov property look like for a continuous-time process?

Process 19. Brownian Motion, aka The Weiner Process
A Weiner process (or Brownian motion) W = (Wt)t≥0 is a real-valued Gaussian process satis-

fying:

1. W has independent and stationary increments
2. Wt+h −Wt has a Normal〈0, σ2h〉 distribution, for all t, h ≥ 0 and a constant σ2 > 0.
3. The sample paths of W are almost surely continuous.

A standard Weiner process (or standard Brownian motion) has W0 = 0 and σ2 = 1.
Among the interesting properties of W :

1. W is a Gaussian process.
2. W is a Markov process.
3. W is a Martingale.
4. The sample paths of W are nowhere differentiable.
5. In some sense to be discussed, W is integrated white noise.
6. Extends easily to multiple dimensions.

Exercise 20. Derive the autocovariance function of W .

Detail 21. Does the Weiner process exist?
Yes, though the proof is nontrivial. It is “easy” to show that a process with the distributional

properties exists; the hard part is showing that such a process has continuous sample paths.
Two interesting constructions follow.

Construction 22. The Random Walk Construction
Let Sn denote a simple symmetric random walk, where the particle moves left or right a distance

∆x > 0 at each step. Moreover, assume that each time point takes time ∆t > 0.
Let Ut be the position of the particle at time t = n∆t for n ≥ 0. We have that

Ut = Sn∆x+ (n− Sn)(−∆x) (17)

= (2Sn − n)∆x. (18)

Moreover,

Var(Ut) = (∆x)2 Var(2Sn − n) (19)

= 4(∆x)2
n

4
(20)

= n(∆x)2 (21)

= t
(∆x)2

∆t
. (22)

Now, we are going to let ∆x→ 0 and ∆t→ 0 while keeping

(∆x)2

∆t
= D, , (23)
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for a constant D > 0. The number of steps of the random walk within any fixed time will increase
to infinity.

Then, we have that

Ut = (2Sn − n)∆x (24)

=

(

Sn − n/2
√

n/4

)

√
n∆x (25)

=

(

Sn − n/2
√

n/4

) √
t

∆x√
∆t

(26)

=

(

Sn − n/2
√

n/4

) √
Dt (27)

d→ N(0, Dt), (28)

as n→ ∞.

Construction 23. The Haar Construction
Define a process (ξt)t≥0 as follows. Let (An)n≥0 be a standard normal white noise Process, i.e.,

An are iid Normal〈0, 1〉. Define

ξt(ω) =
∞
∑

n=0

An(ω)ψn(t), (29)

for a particular complete orthonormal basis (ψn)n≥0.
Now, just as we got a random walk process by taking cumulative sums of a discrete white noise

process, we can see what we get when we take cumulative integrals of a continuous white noise
process.

Define

Wt =

∫ t

0
ξs ds =

∞
∑

n=0

An

∫ t

0
ψn(s) ds, (30)

where we choose a specific basis ψn.
Now order the Haar functions (H0,H00,H10,H11,H20,H21,H22,H23, . . .) and label these as ψn

for n ≥ 0. (For 2j ≤ n < 2j+1 and j ∈ Z+, take k = n− 2j and let Hn ≡ Hjk.)
For n ≥ 1,

∫ t

0
Hn(s) ds ≡ Sn(t), (31)

called the Schauder function.

Sn(t)
2j ≤ n < 2j+1

k = n− 2j

k2−j (k + 1)2−j

2−j/2−1

It follows that
Wt =

∑

n≥0

AnSn(t). (32)
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By the properties of the Schauder functions, we get the following:

EWt =
∑

n≥0

EAnSn(t) = 0 (33)

EW 2
t =

∑

n≥0

EA2
nSn(t) = t (34)

EWsWt =
∑

n,m≥0

EAnAmSn(t)Sm(s) = min(s, t) (35)

and for u < s < t,

E(Wt −Ws)Wu =
∑

n,m≥0

EAnAm(Sn(t) − Sn(s))Sm(u) = min(t, u) − min(s, u) = 0. (36)

Moreover, using the characteristic generating functions with s ≤ t,

Eeiλ(Wt−Ws) = Eeiλ
∑

n
An(Sn(t)−Sn(s)) (37)

=
∞
∏

n=0

EeiλAn(Sn(t)−Sn(s)) (38)

=
∞
∏

n=0

e−
λ
2

2
(Sn(t)−Sn(s))2 (39)

= e−
λ
2

2

∑

n
(Sn(t)−Sn(s))2 (40)

= e−
λ
2

2
(t−2s+s) (41)

= e−
λ
2

2
(t−s), (42)

using normality of the Ans. Hence, Wt −Ws has a Normal〈0, t − s〉 distribution.
This is the Weiner process. But have we shown continuity of the sample paths?

Appendix 24. Properties of Schauder functions

1. Let (ak) be a real sequence that satisfies |ak| = O(kγ) for some 0 ≤ γ < 1/2. Define f(t) =
∑

k≥0 akSk(t) and fn(t) be the corresponding partial sum. Then fn → f uniformly on (0, 1),
meaning that sup0<t<1 |fn(t) − f(t)| → 0.
(Note: A standard normal white noise sequence An satisfies |An| = O(

√
log n) with prob. 1.)

2. If 0 ≤ s, t ≤ 1,
∑

n≥0

Sn(s)Sn(t) = min(s, t). (43)
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