1. First return to zero for a simple random walk

1.1. From last time: 31 Jan

Let T'= min{n > 1 such that S,, = 0}.
Let u, =P{S, =0} and f, =P{T =n}=P{S1 #0,...,5,.1#0,5,=0}.
We know that ug = 1 and fy = 0. For n > 1, condition on 7T

u, = P{S, =0}
— EP{S, =0T}
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Constructing the generating functions gives:

U(Z) =1+ Z i Un_kszn

>0 k=0
=14+> fiz" > w2
k>0 n>k

=14+ Gr(2)U(z)

Hence,
1

Ulz)
Note that u, = 0 if n odd. If n = 2m is even, S,, = 0 iff there are as many upward as
downward steps. Hence,

GT(Z) =1-

and
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Note
2 —-1/2
() = ()
m m
and use the binomial theorem.

Hence, Gr(z) =1 — /1 — 4pgz2.
Note, if we take G7(1), we get 1—+/T — dpq, where 4pq = 4p—4p?. So, 1 —4pq = (2p—1)?
Then,
Gr(l) =1—2p—1
=1—|p—(1-p)|
=1—-1|p—ql.

It eventually returns if p = ¢!
Now, take p = ¢ = 1/2 and compute G’-(z). We get G’-(1) = oo in this case, so ET' = oc.

1.2. From Today: 2 Feb
Note that by the binomial theorem

e (e orey (D)

k>0 k>1 -1 ) k221
Hence,
Fls)—1—1 2(k — 1)\ (=D ne k 2k
E>1
2(k — 1)) 2 ko
= —(pq)"z
=1 < k—1 Jk
5 (%) (10"
o1 k )2k —1
because

2(2(k—1)\ 2Kk —1) (2(k—1)\  (2k) 1
E\ k—1 ) kKk-D\ k-1 ) \k)2k—1
by the absorption identity. So, P{T" =2k} =0 for k = 0 and for k > 1,

2k\ pFq” P{So =0}
P{T =2k} = = .
{1 =2k} <k>2k—1 2%k — 1

Or put another way,
1
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2. Hitting time

Same basic analysis as with the return time but a different conditioning setp.
Let T, = min{n > 1 such that S,, = r} be the first hitting time of r > 1.
Let frn =P{T, =n}=P{S1#r,...,8 1 #n S, =r}
Condition on T7i:

P{T, =n}=EP{T, =n|T1}

:iP{TT:n|T1:k}P{T1:k}

n—1

k=1
n—1

= Z fr—l,n—k.fl,k
k=1

Thus, Gr,(2) = Gr._,(2)Gr, (2) which implies by induction that
Gr,.(2) = (Gr(2))"

What does this imply about the distribution of 7,7
Now, note that f10 =0, fi1 =p, and

fin=pP{Th =n| X, =1} +¢P{T1 =n | X1 = =1} = plu=1) + ¢fon-1-
Expanding the recurrence gives
Gri(2) = 2p + 2qGr,(2) = 2p + 24G7, (2).

So, 2qG7%, (2) — Gr,(2) + zp = 0. There are two solutions to this quadratic equation, but only
one of them is a G because we require that G, (0) = 0 (take limits).
Thus, we get the unique solution:

1 — /1 —4pqz?

2qz

GT1 (Z) =

Using the above analysis, we get

Gy (2) = = <2(k B U) 2 (pg)2*

29z 51 k—1 Jk

20k —1)\2k—1 1 _ _
_ <(]<;_1)> - Qk_lpqu 1, 2k—1
k>1

2k —1 1
= < " )ﬁpqu_lz%_l'
k>1
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Hence, for k& > 1,

P{Sor_1 =1}
P{Ty=2k-1} = —F——7—.
{th =2k -1} 2k — 1
Or re-expressed:
1 P{S,=1}
P{Ty=n}=—-——7"-—= )
{1 =n} n 1 (n>0, n odd)

But what about G'7,(2)? We can guess from the above what the form will be. Is it true?
Lemma. For r > 0,

(1_m>":i r (%w-l)zk_

2z ikt k

Proof by Lagrange Inversion Formula below.
Using the lemma, we get for r > 1,

Gr,(2) = (Gr (2))
_ (1 =Y

2qz

— V1 - 4pqz2>T

< 2pqz?
B X r 2k+7r—1\ , & o
- Z_:k;w( k )pqz
* 2k+r—1 . .,
Z Pk 2k
ok k

— T (2k+r— tr k2k+r
E

= r (2k+7r , ,
S (B
o2k +r\k+r

Hence,

{S2k+r = 7“}

2%
P{T, = 2k +r} = — ( ”)pkHQk

2k +r\ k+r 2/{:4—

So, for r > 1.
P{T, =n} = %P{Sn =r}.

For » < 0, the situation is reversed with p and ¢ exchanging roles. But this is just the
expression P{S, = r} again. Thus, for r # 0,

7|

P{T, =n} = P{S =17}z, (n).
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Nice.
Now, proving the lemma leads us to the Lagrange Inversion Formula stated in Theorem

9 in the handout.
Let’s prove the lemma in a related form. We want

(ST

for each n and k. Let F(u) = u*. Note that 7”242_1 is the root of the polynomial equation

u? +u — 2z = 0. Solving this gives
z

U=
Ahal Take G(u) = 1/(1 4+ u). Now apply the theorem

[Z"F(U(2) = ["|U*(2)

= ()G ()

%[UH] (1k f;n
S ()
G A T
- %(_m—k <2”n__k"]; 1).

Very Cool! The transformation to what we need in the lemma is straightforward.
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