
1. First return to zero for a simple random walk

1.1. From last time: 31 Jan

Let T = min{n ≥ 1 such that Sn = 0}.
Let un = P{Sn = 0} and fn = P{T = n} = P{S1 6= 0, . . . , Sn−1 6= 0, Sn = 0}.
We know that u0 = 1 and f0 = 0. For n ≥ 1, condition on T :

un = P{Sn = 0}
= EP{Sn = 0 | T }

=
n
∑

k=1

P{Sn = 0 | T = k}P{T = k}

=
n
∑

k=1

un−kfk

=
n
∑

k=0

un−kfk [because f0 = 0]

Constructing the generating functions gives:

U(z) = 1 +
∑

n≥0

n
∑

k=0

un−kfkz
n

= 1 +
∑

k≥0

fkz
k
∑

n≥k

un−kz
n−k

= 1 + GT (z)U(z)

Hence,

GT (z) = 1 − 1

U(z)
.

Note that un = 0 if n odd. If n = 2m is even, Sn = 0 iff there are as many upward as
downward steps. Hence,

u2m = (pq)m

(

2m

m

)

,

and

U(z) =
∞
∑

m=0

(

2m

m

)

(pq)mz2m

=
∞
∑

m=0

(

2m

m

)

(pqz2)m

=
1√

1 − 4pqz2
.
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Note
(

2m

m

)

= (−1)m4m

(

−1/2

m

)

and use the binomial theorem.
Hence, GT (z) = 1 −

√
1 − 4pqz2.

Note, if we take GT (1), we get 1−√
1 − 4pq, where 4pq = 4p−4p2. So, 1−4pq = (2p−1)2

Then,

GT (1) = 1 − |2p − 1|
= 1 − |p − (1 − p)|
= 1 − |p − q|.

It eventually returns if p = q!
Now, take p = q = 1/2 and compute G′

T (z). We get G′
T (1) = ∞ in this case, so ET = ∞.

1.2. From Today: 2 Feb

Note that by the binomial theorem

√
1 + z =

∑

k≥0

(

1
2

k

)

zk = 1 +
∑

k≥1

(

2(k − 1)

k − 1

)

(−1)k−1

k22k−1
zk.

Hence,

F (z) = 1 − 1 −
∑

k≥1

(

2(k − 1)

k − 1

)

(−1)k−1

k22k−1
(−4)k(pq)kz2k.

=
∑

k≥1

(

2(k − 1)

k − 1

)

2

k
(pq)kz2k

=
∑

k≥1

(

2k

k

)

(pq)k

2k − 1
z2k.

because
2

k

(

2(k − 1)

k − 1

)

=
2k(2k − 1)

k2(2k − 1)

(

2(k − 1)

k − 1

)

=

(

2k

k

)

1

2k − 1
,

by the absorption identity. So, P{T = 2k} = 0 for k = 0 and for k ≥ 1,

P{T = 2k} =

(

2k

k

)

pkqk

2k − 1
=

P{S2k = 0}
2k − 1

.

Or put another way,

P{T = n} =
1

n − 1
P{Sn = 0} 1Z+

(n)
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2. Hitting time

Same basic analysis as with the return time but a different conditioning setp.
Let Tr = min{n ≥ 1 such that Sn = r} be the first hitting time of r ≥ 1.
Let fr,n = P{Tr = n} = P{S1 6= r, . . . , Sn−1 6= r, Sn = r}.
Condition on T1:

P{Tr = n} = EP{Tr = n | T1}

=
∞
∑

k=1

P{Tr = n | T1 = k}P{T1 = k}

=
n−1
∑

k=1

P{Tr = n | T1 = k}P{T1 = k}

=
n−1
∑

k=1

fr−1,n−kf1,k

Thus, GTr
(z) = GTr−1

(z)GT1
(z) which implies by induction that

GTr
(z) = (GT1

(z))r .

What does this imply about the distribution of Tr?
Now, note that f1,0 = 0, f1,1 = p, and

f1,n = pP{T1 = n | X1 = 1} + qP{T1 = n | X1 = −1} = p1(n=1) + qf2,n−1.

Expanding the recurrence gives

GT1
(z) = zp + zqGT2

(z) = zp + zqG2
T1

(z).

So, zqG2
T1

(z)−GT1
(z)+zp = 0. There are two solutions to this quadratic equation, but only

one of them is a G because we require that GT1
(0) = 0 (take limits).

Thus, we get the unique solution:

GT1
(z) =

1 −
√

1 − 4pqz2

2qz
.

Using the above analysis, we get

GT1
(z) =

1

2qz

∑

k≥1

(

2(k − 1)

k − 1

)

2

k
(pq)kz2k

=
∑

k≥1

(

2(k − 1)

k − 1

)

2k − 1

k

1

2k − 1
pkqk−1z2k−1

=
∑

k≥1

(

2k − 1

k

)

1

2k − 1
pkqk−1z2k−1.
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Hence, for k ≥ 1,

P{T1 = 2k − 1} =
P{S2k−1 = 1}

2k − 1
.

Or re-expressed:

P{T1 = n} =
1

n

P{Sn = 1}
1 (n>0, n odd)

.

But what about GTr
(z)? We can guess from the above what the form will be. Is it true?

Lemma. For r > 0,

(

1 −
√

1 − 4z

2z

)r

=
∞
∑

k=0

r

k + r

(

2k + r − 1

k

)

zk.

Proof by Lagrange Inversion Formula below.
Using the lemma, we get for r > 1,

GTr
(z) = (GT1

(z))r

=

(

1 −
√

1 − 4pqz2

2qz

)r

= przr

(

1 −
√

1 − 4pqz2

2pqz2

)r

= przr
∞
∑

k=0

r

k + r

(

2k + r − 1

k

)

pkqkz2k

=
∞
∑

k=0

r

k + r

(

2k + r − 1

k

)

pk+rqkz2k+r

=
∞
∑

k=0

r

k + r

(

2k + r − 1

k + r − 1

)

pk+rqkz2k+r

=
∞
∑

k=0

r

2k + r

(

2k + r

k + r

)

pk+rqkz2k+r

Hence,

P{Tr = 2k + r} =
r

2k + r

(

2k + r

k + r

)

pk+rqk =
r

2k + r
P{S2k+r = r} .

So, for r ≥ 1.

P{Tr = n} =
r

n
P{Sn = r} .

For r < 0, the situation is reversed with p and q exchanging roles. But this is just the
expression P{Sn = r} again. Thus, for r 6= 0,

P{Tr = n} =
|r|
n

P{Sn = r} 1Z+
(n).

4 2 Feb 2006



Nice.
Now, proving the lemma leads us to the Lagrange Inversion Formula stated in Theorem

9 in the handout.
Let’s prove the lemma in a related form. We want

[zn]

(√
1 + 4z − 1

2

)k

for each n and k. Let F (u) = uk. Note that
√

1+4z−1
2

is the root of the polynomial equation
u2 + u − z = 0. Solving this gives

u =
z

1 + u
.

Aha! Take G(u) = 1/(1 + u). Now apply the theorem

[zn]F (U(z)) = [zn]Uk(z)

=
1

n
[un−1](F ′(u)Gn(u))

=
1

n
[un−1]

kuk−1

(1 + u)n

=
1

n
[un−1]kuk−1

∑

j≥0

(

−n

j

)

uj

=
k

n
[un−1]

∑

j≥0

(−1)j

(

n + j − 1

j

)

uk+j−1

=
k

n
(−1)n−k

(

2n − k − 1

n − k

)

.

Very Cool! The transformation to what we need in the lemma is straightforward.
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