
Pentagon WalkLet X0, X1, . . . be random variables that take values in the set

{A, B, C, D, E}. Suppose Xn is the node being visited at time n in the

Pentagon walk we discussed in class. That is, we assume that X0 = A

with probability 1 and that Xn moves to each node adjacent to node

Xn−1 with probability 1/2, independently of where it was before.

Let An = P{Xn = A} and similarly for Bn, Cn, Dn, and En. We

have
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where all these terms are 0 for n < 0. What are the corresponding

equations for the other nodes?

Let SA(z) =
∑

n Anzn and similarly for the other nodes. Multiplying

both sides of these recurrences by zn and summing over all integers,

we get
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This corresponds to the following linear system:
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Solving this system by one of many means gives us:

SA(z) =
4 − 2 z − z2

4 − 2 z − 3 z2 + z3

SB(z) =
z (2 − z)

4 − 2 z − 3 z2 + z3
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Now,
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Expanding this out, we get
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We can solve this directly to get

u1 =
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5
u2 =

2

5
u3 =

2

5
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Thus,
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Note that φn + φ̂n = Fn + 2Fn−1 = Fn+1 + Fn−1, where Fn is the nth

Fibonacci number.
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So,

An = P{Xn = A} =
1

5

(
1 +

(−1)n

2n−1
(φn + φ̂n)

)
.

This converges to 1/5 as n → ∞.

A few early values:

SA(z) = 1 +
z2
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+ · · · (2)
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