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FUNCTIONS

1. Fundamentals

Suppose that we have two non-empty sets X and Y (keep in mind

that these two sets may be equal). A function that maps X to Y is

rule that associates to each element x ∈ X one and only one element

y ∈ Y. (Functions are sometimes called mappings to emphasize this

association between the two sets.) The figure1 shows a “conceptual

icon” to illustrate this idea. As usual, we like to give objects names.

For example, we might say that f is a function. To indicate that f maps

X to Y we write2 f :X → Y. When speaking, we read “f :X → Y” as

“f maps X to Y” or “f from X to Y” depending on the context.

You have seen functions before. In your math courses, you were

probably asked to do something like the following: “Graph the curve

y = x2.” What you were representing with your graph was a function

because to each number on the “x-axis” you associated one and only

one number on the “y-axis”. (This would fail, for instance, if graph

folded over on itself.) The y-coordinate is computed in this case by

squaring the x-coordinate, which gives a definite rule for mapping one

set of numbers (the real numbers) to another set of numbers (also the

real numbers). That’s all a function is.

Let’s call this function f . What do we know about it? First, f maps

real numbers to real numbers, so we can write f : R → R. Moreover, we

know that to any real number x, f associates the real number x2. We

write this in argument-result form as f(x) = x2. The value of x is an

argument to the function and the value x2 is the result.3

There are a few things to notice about this function f . First, different

values of the argument can give the same return value, for instance

x = ±1 both give f(x) = 1, but each value of the argument only

1

X Y

2 If X and Y are clear from

context, we need not state the

:X → Y part.

3 In C++ notation, we would

write this function as

real f( real x )

{

return( x*x );

}

which emphasizes the

distinction between argument

and return value.
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4 See the discussion of

domain, codomain, and range

below.

has one associated return value. This uniqueness property is at the

heart of the definition of a function. Second, the argument can be any

real number whatsoever, but the result is always non-negative. Thus

it would be just as correct to write f : R → [0,∞[ . Which is to be

preferred is largely cosmetic; unless we have a good reason we go with

the option that is simpler to write.4 Note that it is not accurate to

write f : R → [0, 1[ since f(2) = 4 is not an element of [0, 1[ .

A quick aside on the terminology. The phrase “Graph the curve

y = x2” from your algebra and calculus classes is a bit too loose for

our purposes. We will express this in two steps. First, we define the

function: “Let f be the function f(x) = x2.” What we mean by this is

that f : R → R is the function that takes x as an argument and returns

x2 for any x ∈ R. It is important to note that the variable x here is

a local variable; it is a placeholder for defining the function that has

no meaning outside the definition. The variable x in the code of note

3 above has the same property; the compiler would not recognize as

the same variable any reference to x outside the function. Second, hav-

ing defined f we can “Graph the function f”. This emphasizes that

the object of interest is the function itself and deemphasizes the role

played by dummy variables like y and x. Incidently, the graph itself is

one way of identifying the function; it is useful for numerically valued

functions like f(x) = x2. Sometimes thinking of the two sets separately

with the function represented by explicit mappings between points (as

in the figures above) can be more helpful. Pictures can be a big help in

thinking about mathematical ideas like functions. Remember in either

case that, in general, functions are mappings from one set to another.

Thought Question Draw a curve on the x-y plane that does not

represent the graph of a function.

Thought Question Can the graph of a valid function have breaks

or jumps in it? Why or why not?

Thought Question Define a function that maps Z+ to Z so that

every k ∈ Z is the value of the function for some j ∈ Z+.
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Let f :X → Y be a general function. If x ∈ X , we say that f “takes

the value” or “maps to” f(x) at x. The set X is called the domain of the

function f and the set Y is called the codomain of the function f . The

domain is the set of possible arguments of f , and the codomain is the

set of possible values f can take. Often, as in the case of f : R → R with

f(x) = x2, the set of values that a function takes must be a subset of but

need not be equal to the codomain. The set {f(x) such that x ∈ X} is

called the range of f .

The choice of codomain for a function is largely arbitrary as long as

the chosen set contains the range of the function. Unless there is some

compelling reason to choose a more specific set, in practice, we usually

define functions so that the codomain is some familiar space, such as

R, R+, R⊕, Z, Z+, Z⊕, C, or Rn for some n > 1. In this case, where the

codomain of a function g is a named set Y, we say that g is Y-valued.5

The common cases are as follows for a function g:

g takes values in g is a function

R real-valued

R+ positive real-valued

R⊕ non-negative real-valued

Z integer-valued

Z+ positive integer-valued

Z⊕ non-negative integer-valued

Q rational-valued

C complex-valued

Rn Rn-valued

Notice that these categories are not necessarily exclusive. For example,

an integer-valued function takes values in R since Z ⊂ R, so it is also a

real-valued function. There is another, related distinction to be made.

If g is Rn-valued for integer n > 1, then we say that g is vector valued.6

Otherwise, if g takes values in some subset of R or C, we say that g is

scalar valued.

Comparing Functions. Functions are mathematical objects in their

own right. We can name them, operate on them, study sets or sequences

of them. We can also compare them. Two functions are equal if they

have the same domain and if for every element of the domain the two

5 When we want to be precise,

we say that g:X → Y is a Y-

valued function defined on X .

6 See subsection 2.7 for more

details about vector-valued

functions.
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functions take the same value.

Conditions for Equality of Functions.

Two functions f and g are equal if and only if they have

the same domain, and

f(x) = g(x) for all x in their common domain. (F.1)

Because real numbers can be ordered – there is a way of determining

which of two numbers is bigger – some real-valued functions can also

be ordered. Consider the functions f(x) = ex and g(x) = 1 + x defined

on R. No matter which x ∈ R you consider it is always true that

f(x) ≥ g(x). It makes sense, then, to consider the function f to be ≥
the function g.

Conditions for Ordering Real-Valued Functions.

For functions f and g defined on the same domain and

taking values in R, we have f ≤ g if and only if

f(x) ≤ g(x) for all x in their common domain. (F.2)

The same conditions apply with >, <, or ≥ replacing ≤.

Thus, for example, a non-negative (positive) real-valued function f

satisfies f ≥ 0 (f > 0), where 0 is the constant function on the domain

of f ,

Function Images. If A ⊂ X , then the image of A is the subset of the

codomain Y given by

f(A) = {f(x) such that x ∈ A} .

The image of A tells us the set of all results we obtain by giving every

element of A as a function of f . For f(x) = x2, f({−1, 1}) = {1}. To

generate, a more complicated example, look at the image of a set of

points in X in figure 1. The range of f is just the set f(X ) which is

necessarily a subset of Y.

If B ⊂ Y, then the inverse image of B is the subset of the domain X
given by

f−1(B) = {x ∈ X such that f(x) ∈ B} .
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The inverse image of B tells us all the possible arguments whose values

lie in B. For f(x) = x2, f−1({1}) = {−1, 1}. To generate, a more

complicated example, look at the inverse image of a set of points in Y
in figure 1.

Thought Question If f :X → Y is a function A1,A2 ⊂ X ,

is f(A1 ∩A2) = f(A1)∩ f(A2)? If so, why, and if not, given an

example where it fails.

Thought Question If f :X → Y is a function, what is f−1(∅)?
What is f−1(Y)?

Thought Question If f(x) = x2, what is f−1({−1, 1})?

Thought Question If f :X → Y is a function, A ⊂ X , and

B ⊂ Y, then explain with a couple sentences, with a picture, or

with an example why f(f−1(B)) ⊂ B and f−1(f(A)) ⊃ A.

2. Some Important Examples

2.1. Constant Functions

The simplest function is a constant function which takes the same value

for every argument. For example, f(x) = 1, g(x) = 0, and h(x) =

117.017394 for x ∈ R are all real-valued constants. A general function

f :X → Y is constant if there is a y ∈ Y such that f(x) = y for all

x ∈ X .

In practice, we treat the notation for constant functions a bit loosely,

by allowing a constant value c to stand for the number and the function.

For example, we use the symbol 1 for both the number 1 and the

function that takes the value 1 for every point in its domain. Which

meaning is being used should be clear from context. Thus, when we

write E1 = 1, the 1 on the left is a function because the expected value

operator acts on functions and the 1 on the right is a number because

the expected value operator returns a number.
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2.2. Indicator Functions

An indicator function is any function that take only the values 0 and

1. These will be very important in our work.

If A is a subset of X for any set X , then the indicator function

1A:X → R is defined by

1A(x) =
{

1 if x ∈ A
0 if x 6∈ A.

(F.3)

The notation “1” is intended as a mnemonic; this function takes the

value 1 on the set given in the subscript and is zero otherwise. We call

this the “indicator of A”.

Thought Question To get a feel for indicators, sketch the graph

of the indicators of the following sets: [0, 1] , [−2,−1] ∪ [1, 2] , [0,∞[ ,

and R.

Thought Question Describe the function 1X :X → R more sim-

ply.

Thought Question If A,B ⊂ X , define 1A∩B using 1A and 1B.

Thought Question If A,B ⊂ X and A∩B = ∅ (i.e., A and B
are disjoint), define 1A∪B in terms of 1A and 1B.

Thought Question Define the function 1compl(A) in terms of 1A.

Indicators are very useful for representing functions that take on a

finite number of values. For example, suppose the function g is defined

as follows:

g(x) =















3 if x > 4
−2 if 2 ≤ x ≤ 4
1 if −1 < x < 2
0 otherwise.

Then, we can write

g = 3 · 1 ]4,∞[ − 2 · 1 [2,4] + 1 ]−1,2[ .

To see this, plug in a variety of arguments on both sides and compare

the values. Notice that only one of the indicators in the above expres-

sion is ever non-zero. In general, suppose g is a function that takes the

value yi on the set Ai for i = 1, . . . , n, where y1, . . . , yn ∈ R and the

sets A1, . . . ,An are disjoint. We could write this g as

g(x) =







y1 if x ∈ A1

y2 if x ∈ A2

. . . if . . .,
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but this is both tedious and can make g hard to work with. Instead,

we can write

g =
n

∑

i=1

yi · 1Ai
.

2.3. Polynomials

If x is a real number, then powers of x, such as x ·x, x ·x ·x, x ·x ·x ·x,

and so forth, are also real numbers, which we denote respectively by x2,

x3, x4, and so forth. Notice that because multiplication is commutative

x2x4 = x6; more generally for integers j, k, xkxj = xk+j for the same

reason. Incidentally, by this rule, x4x−1 = x3;. But what does x−1

mean? In order to cancel the extra factor of x, we must take x−1 = 1/x.

It follows by similar logic that x−k = 1/xk for any positive integer.

Similarly, x0 = 1 because 0+0+0+ · · · = 1. As suggested by the above

equation, we define x−1 = 1/x Thus, for each k ∈ Z, we define the kth

degree power function which maps x to xk. If k is even, then the power

function xk takes only non-negative values; if k is odd, then the power

function xk takes all real values. Whenever k 6= 0, the power function

xk takes the value 0 at 0. The function x0 is just the constant 1.

Suppose that a0, a1, . . . , am are real numbers. Then, the function that

maps x to a0 + a1x + a2x
2 + · · · + amxm is called an mth degree poly-

nomial. A basic theorem of mathematics states that every mth degree

polynomial has exactly m complex points at which the polynomial is

zero.7 There may be fewer than m such points in R, however. Another

important theorem states that any sufficiently smooth function can

be approximated arbitrarily well by a polynomial of some (potentially

large) degree.

2.4. Exponential Functions and Logarithms

One of the fundamental functions of mathematics is the exponen-

tial function, which maps x to ex, where e is the irrational number

2.71828182846 . . ..8 This function arises in so many different contexts

in mathematics that can arguably be called the most important mathe-

matical function. Here we give a few useful facts about the exponential

7 These are called roots of the

polynomial.

8

x

e

1

10

f(x) = ex
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9 By the properties listed

above, notice that

ex log(b) = elog(bx) = bx.

function:

Properties of the Exponential Function

For any x, u ∈ R,

1. ex > 0, e0 = 1, and e1 = e.

2. ex → ∞ and e−x → 0, as x → ∞.

3. ex+u = ex eu.

4.

ex =
∞
∑

k=0

xk

k!
,

5. d
dx

ex = ex and
∫ x
−∞ et dt = ex.

Notice that from the above properties ex increases as x increases,

from 0 “at” −∞ to ∞ “at” ∞. Suppose that ex1 = ex2 , then by property

3 above, 1 = ex1/ex2 = ex1e−x2 = ex1−x2 which implies that x1−x2 = 0,

or x1 = x2. In other words, given any y > 0, we can find some x ∈ R

with ex = y. That value x is called the logarithm of y, denoted by log y.

Whereas ex maps R onto ]0,∞[ , log maps ]0,∞[ onto R. Here we give

a few useful facts about the logarithm function:

Properties of the Logarithm Function

For any y, v > 0 and p ∈ R,

1. elog(y) = y and log(ex) = x.

2. If 0 < y < 1, log(y) < 0; log(1) = 0; and if y > 1,

log(y) > 0.

3. As y → ∞, log(y) → ∞ and as y → 0, log(y) →
−∞.

4. log(y v) = log(y) + log(v).

5. log(1/y) = − log(y).

6. log(yp) = p log(y).

7. d
dy

log(y) = 1/y and
∫ y
0 log(t), dt = y log(y) − y.

We defined the logarithm of y as the number x such that ex = y; we call

this the logarithm “base e”. We could just as easily define a logarithm

“base 10” (the number x such that 10x = y) or logarithm “base 2”

(the number x such that 2x = y) or logarithm “base b” for any b > 0.9



Some Important Examples 273

Because of the importance of the exponential function, the logarithm

base e is called the natural logarithm. If we want to talk about other

bases, we will denote it with a subscript on the “log”, as in log10, log2,

and logb.

2.5. Trigonometric Functions

The trigonometric functions sin and cos are intimately related to the

exponential function through the relationship between complex num-

bers:

eıθ = cos θ + ı sin θ.

As x changes, eıx moves around the unit circle in the complex plane.10

What this tells us is that the coordinates of a point on the unit circle

an angle θ from the positive x-axis are (cos θ, sin θ).11 This observation

yields the key identity: cos2 θ + sin2 θ = 1. The functions cos and sin

satisfy a huge variety of useful identities, including the following:

Trigonometric Identities

For any θ, φ ∈ R,

1. cos2 θ + sin2 θ = 1,

2. cos θ = sin(π/2 − θ) and sin θ = cos(π/2 − θ),

3. sin(θ + φ) = sin θ cos φ + cos θ sin φ and

cos(θ + φ) = cos θ cos φ − sin θ sin φ,

4. sin′ = cos and cos′ = − sin.

From sin and cos, we can produce the other trigonometric functions

including tan = sin / cos, cot = cos / sin, sec = 1/ cos, csc = 1/ sin. For

example, tan(θ) is defined for −π/2 < θ < π/2 and satisfies identities

like sec2 θ − tan2 θ = 1.

Finally, over limited ranges these trigonometric functions are invert-

ible. The inverses are usually obtained by putting the word “arc” in

front of the name. Thus, we have arcsin, arccos, arctan, and so forth.

10 Taking θ = π yields the

miraculous relationship

eıπ + 1 = 0

among the five most important

numbers in mathematics.

11

(r cos θ, r sin θ)

r

r cos θ

r sin θ

θ
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2.6. Other Commonly Used Functions

The Gamma Function Γ(x) arises frequently in probabilistic calcula-

tions. It is defined by

Γ(x) =
∫ ∞

0
tx−1 e−t dt.

While this may look daunting, you are actually already familiar with

the Gamma Function: For an integer k,

Γ(k + 1) = k! = k(k − 1) . . . 1, (F.4)

where k! is read “k factorial”. Hence, Γ(1) = Γ(2) = 1, Γ(4) = 6, and so

forth. This follows from the more general recurrence relationship which

the Γ satisfies:

Γ(x + 1) = x Γ(x).

We can also compute that Γ(1/2) =
√

π, so it follows that Γ(3/2) =

(1/2)
√

π, Γ(5/2) = (3/4)
√

π, and so forth.

In general, there is no explicit expression for Γ(x) in terms of ele-

mentary functions when x is not an integer or half integer. A formula

called Stirling’s Approximation does give us a useful approximation to

Γ for large x, and hence to n! for large n:

lim
x→∞

Γ(x + 1)√
2π xx+1/2 e−x

= 1. (F.5)

In other words, if n is large, we can approximate n! by
√

2π nn+1/2 e−n.

The floor and ceiling functions map a real number x to a nearby

integer. The floor of x, denoted by bxc is the largest integer that is less

than or equal to x. For example, b1.5c = 1 = b1c and b−0.25c = −1.

The ceiling of x, denoted by dxe, is the smallest integer that is greater

than or equal to x. For example, d1.5e = 2 = d2e and d−0.25e = 0.

Notice that if k is an integer, then k = bkc = dke.
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2.7. Vector Functions

2.7.1. Rn-valued functions

A vector is, in essence, an indexed list of numbers. A vector valued

function can therefore be viewed as an indexed list of functions; this

view is helpful in working with such functions.

If, for some n > 1, g is an Rn-valued function defined on a set X ,

then we can write

g(x) ≡ (g1(x), g2(x), . . . , gn(x)), (F.6)

where the gi’s are real-valued functions defined on X . These are referred

to as the component functions of g. Therefore, to specify an Rn-valued

function, we need only give its n component functions, and we can

move freely between working with g or the gis.

Most of the operators we use work transparently on vector-valued

functions. For example, if we can define an integral
∫

and derivative

d/dx operators on X , then we have

∫

g(x) dx = (
∫

g1(x) dx, . . . ,
∫

gn(x) dx)

d

dx
g(x) = (

d

dx
g1(x), . . . ,

d

dx
gn(x)).

That is, the operator just acts on each component, giving a new vector.

More importantly, the same story holds for the expected value and

distribution operators. If Y = (Y1, . . . , Yn) is any Rn-valued random

variable and if X is any random variable (scalar or vector valued), we

have that

EY = (EY1, . . . , EYn)

D
X
g = Eg(X) = (Eg1(X), . . . , Egn(X)).

2.7.2. Real-valued functions defined on Rn

We can also considered real-valued functions defined on Rn for some

n > 1. If h is such a function and x = (x1, . . . , xn) is an n vector in Rn

with components x1, . . . , xn ∈ R, then we can write the value of h at x

in two ways:

h(x) ≡ h(x1, . . . , xn). (F.7)
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We treat these as completely equivalent and interchangeable.

When integrating functions defined on Rn, we use the analogous

equivalence for infinitesimals

dx ≡ dx1 dx2 · · · dxn. (F.8)

Thus, in R2, dx is an infinitesimal area element and in R3, dx is an

infinitesimal volume element. These directly generalize the infinitesimal

length element in R.

Using these forms for the infinitesimal, we can write the integral of

h in either of two equivalent ways

∫

h(x) dx ≡
∫ ∫

· · ·
∫

h(x1, . . . , xn) dx1 dx2 · · · dxn. (F.9)

The former is usually more convenient when working with integrals

in the abstract. The operation of integrating a function like h has the

same structure regardless of the dimension of the dimension. The latter

is more convenient when actually doing the calculations.

2.7.3. Summary

Vector Function Equivalences

• A vector-valued function g can be defined in terms

of real-valued component functions g1, . . . , gn as in

equation (F.6).

• The operators E, D
X
, as well as integration and dif-

ferentiation, operate on vector-valued functions to

produce a vector by acting on the real-valued com-

ponent functions.

• A real-valued function h defined on Rn can be writ-

ten with its argument in vector or component form

as in equation (F.7).

• The integral of a real-valued function h defined on

Rn can be written in either vector or component

form as in equation (F.9).
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3. How to make new functions from old ones

Most of the functions we will deal with are either in the list of examples

above or are constructed from other functions by one of the methods

described below.

Composition. If f :X → Y and g:Y → Z are functions, then the

composite function g ◦ f :X → Z defined by

(g ◦ f)(x) = g(f(x)).

This function can only be defined if the range of f is a subset of the

domain of g.

Thought Question If f and g are as above, can g ◦ f and f ◦ g

be different functions? Can they be the same function? Give exam-

ples.

Linear Combinations. Consider the power functions x0, x, x2, and

x3. If I have constants 1.2, 3.1, -3, and 10, I can form a new function

f(x) = 1.2x0 + 3.1x − 3x2 + 10x3, which is just a cubic polynomial.

The operation of multiplying several function by constants and then

adding the results together is called taking a linear combination of the

functions. Suppose we have functions f1, . . . , fm with the same domain

X and a codomain that is either Rk (or Ck) for some k ∈ Z+. Given real

(or complex) constants a1, . . . , am, we can form a linear combination of

the fi’s

f = a1f1 + · · · + amfm,

which is defined by

f(x) = a1f1(x) + · · ·+ amfm(x), x ∈ X .

As you may have guessed, polynomials are just linear combinations of

power functions.

Products. If I have two functions f, g:X → C,12 then the product

f · g is a new function defined by

(f · g)(x) = f(x)g(x), x ∈ X .

Notice that since all constants can be considered functions on any do-

main, we can always multiply a function by a constant to get a new

function.

12 Any functions X → R

satisfy this condition.
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Cumulative Integrals. If f : R → R, then we can define

F (x) =
∫ x

−∞

f(t) dt.

Such a cumulative integral function has at least one derivative, and

F ′(x) = f(x). Moreover, if f(t) ≥ 0 for every t ∈ R, F (x) cannot

decrease as x gets larger; that is, y ≥ x implies that F (y) ≥ F (x).

To see this, think about the area under a curve accumulating as x

increases; if the curve is always above zero, then the area is always

increasing.

Thought Question Draw the graph of the cumulative integral of

1[0,1].

Derivatives. If f : R → R is sufficiently smooth so that its derivatives

are defined, then we can form new functions by taking derivatives f ′,

f ′′, f ′′′, f (iv).

4. One-to-one Correspondences

One-to-one and Onto. The only requirement on a function is that each

argument can have one and only one value. However, it is possible for

the function to take the same value for different arguments, cf. constant

functions for example. Consider the functions from R → R given by

f1(x) = x2, f2(x) = ex, f3(x) = x3, and f4(x) = x(x − 1)(x + 1). The

first, f1, maps the real line onto the non-negative numbers: for every

y ≥ 0, there is an x ∈ R such that f1(x) = y. Moreover, for every

x ∈ R, f1 takes the same value on ±x. The function f2 also maps

the real line onto the non-negative numbers, but it does it “without

repeats”. If f2(x) = f2(z), it must be true that x = z. Or put another

way, if x 6= z, then f2(x) 6= f2(z). Such a function is said to be “one-to-

one” because every value is mapped from only one point. The function

f3 is also one-to-one, but in addition, it maps R onto R itself: for every

y ∈ R, there is an x ∈ R with y = f3(x). In contrast, f4 maps R onto

R but it is not on one-to-one as a quick sketch of its graph will show.

These different properties of a function are defined as follows. We

say that a function f :X → Y is

• onto if the range and codomain are equal, that is f(X ) = Y.

• one-to-one if x1 6= x2 implies that f(x1) 6= f(x2).
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• A one-to-one correspondence if f is both onto and one-to-one.

As we saw above, two sets are said to have the same cardinality if there

exists a one-to-one correspondence between them. If f is a one-to-one,

then it is a one-to-one correspondence between its domain, X , and its

range, f(X ).

Inverse Functions. If f is a one-to-one correspondence between X and

Y, then, under f , each element of X corresponds to a unique element

of Y. Hence, we can define a function f−1:Y → X that maps the other

way. This is called the inverse of f , and if f has an inverse,13 we say

that f is invertible. In particular, we have that

• f−1(f(x)) = x

• f(f−1(y)) = y

• If B ⊂ Y, then the direct image of B under f−1, f−1(B), is exactly

the same as the inverse image of B under f defined above, also

denoted by f−1(B).

Despite all the notation, the idea is simple. If f maps X and Y by

one-to-one correspondence, we think of each point in X connected by

an arrow to one and only one point in Y. The inverse function f−1

simply reverses the direction of the arrow.

Thought Question Suppose f has an inverse function and also

has at least one derivative. Use the chain rule to find the derivative

of f−1.

Monotonic Functions. Real-valued functions defined on some subset

A of R that do not decrease as their arguments increase are called

increasing. More precisely, if f :A → R and if x > y implies that f(x) ≥
f(y), we say that f is increasing. If x > y implies f(x) > f(y), we say

that f is strictly increasing. The function −1 ]−∞,0[ +1 [0,1] +2 · 1 ]1,∞[ is

increasing but not strictly increasing; the functions ex, tanx, x/1+x are

strictly increasing. Real-valued functions defined on some subset A of

R that do not increase as their arguments increase are called decreasing

More precisely, if f :A → R and if x > y implies that f(x) ≤ f(y), we

say that f is decreasing. If x > y implies f(x) < f(y), we say that f is

strictly decreasing. The function 2 ·1 ]−∞,0[ +1 [0,1] −1 ]1,∞[ is decreasing

while e−x, 1/1 + x, and the function that maps x ∈ ]0,∞[ to 1/x are

13 Not every function has an

inverse, only those that are

one-to-one correspondences

between their domain and

codomain.
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strictly decreasing. A function that is either increasing or decreasing is

called monotonic. The functions sin, x2, and e−x2
are not monotonic.

Thought Question If f : R → R is a strictly increasing function

with at least one derivative, is it necessarily a one-to-one corre-

spondence between its domain and range? Why or why not?


